Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Acta sci., Anim. sci ; 45: e60317, 2023. tab
Artigo em Inglês | VETINDEX | ID: biblio-1428406

Resumo

The present study aims to conduct a review on the potential use of insect meal as an alternative protein source in poultry feed, particularly to serve the rearing of free-range chickens. Insects are already part of the diet of birds in their natural habitat, and the availability of low-cost alternative foods with low environmental impact is essential for the development of the activity. The review comprehended studies that used meals consisting of silkworm (Bombyx mori) chrysalis, earthworm (Eisenia foetida), housefly (Musca domestica), black soldier fly (Hermetia illucens) and mealworm beetle (Tenebrio molitor) to replace plant-based protein sources. In general, insect meals have a high content of crude protein and ether extract, as well as an essential amino acid profile suitable for poultry feeding. The addition of insect meal in poultry feed normally shows good results as to growth performance and egg production, without causing a negative effect on carcass characteristics, meat sensory quality and egg quality, presenting itself as an alternative protein source with good prospects for replacing plant-based sources in poultry feed.(AU)


Assuntos
Animais , Aves/fisiologia , Melhorador de Farinha , Ração Animal/análise , Biossíntese de Proteínas , Insetos Comestíveis/química
2.
Braz. j. biol ; 82: e235781, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1153480

Resumo

Resveratrol, a natural polyphenol found in tempeh, has not been investigated especially in vitro as a neuroprotective agent against 2-methoxyethanol (2-ME)-induced beta-amyloid cytotoxicity. Beta amyloid peptides (Aß) could initiate neurotoxic events and neuron-inflammatory response via microglial activation. However, it remains unknown whether the neurotoxic effect of beta-amyloid and/or associated with the potential of 2-ME to induce neurotoxic effects on primary culture of nerve cells induced by 2-ME. This study investigated potential neuroprotective of trans-resveratrol a promising agent tempeh and soybean seed coats-derived against betaamyloid cytotoxicity on primary culture of nerve cells induced by 2-methoxyethanol. Biotium and MTT assays were used to analyze neurons, which were isolated from the cerebral cortex of fetal mice at gestation day 19 (GD-19). A standard solution of 2-methoxyethanol was dosed at 10 µL. The cultured cells were randomly divided into the following groups: (1) 2-ME group + resveratrol standard, (2) 2-ME group + resveratrol isolated from tempeh, (3) 2-ME group + resveratrol isolated from soybean seed coats, and (4) the control group, without the addition of either 2-ME or resveratrol. Exposure of the primary cortical neuron cells to beta-amyloid monoclonal antibody pre-incubated for 24 h with 10 µL of 4.2 µg/mL resveratrol and 7.5 mmol/l 2-methoxy-ethanol additions. Here, we report that the addition of 2-ME and resveratrol (standard and isolated from tempeh) of cell culture at concentrations of 1.4, 2.8 and 4.2 µg/mL showed that the majority of neurons grew well. In contrast, after exposure to 2-ME and Beta-amyloid, showed that glial activated. These findings demonstrate a role for resveratrol in neuroprotective-neurorescuing action.


O resveratrol, um polifenol natural encontrado em tempê, não foi investigado apenas in vitro como agente neuroprotetor contra a citotoxicidade beta-amiloide induzida por 2-metoxietanol (2-ME). Os peptídeos betaamiloides (Aß) podem iniciar eventos neurotóxicos e resposta inflamatória dos neurônios via ativação microglial. No entanto, permanece desconhecido se o efeito neurotóxico do peptídeo beta-amiloide associado ao potencial do 2-ME causa efeitos neurotóxicos na cultura primária de células nervosas induzidas pelo 2-ME. Este estudo investigou o potencial neuroprotetor do agente trans-resveratrol em cascas de sementes de soja e tempê derivadas da citotoxicidade beta-amiloide na cultura primária de células nervosas induzidas pelo 2-metoxietanol. Ensaios de biotium e MTT foram utilizados para analisar os neurônios isolados do córtex cerebral de camundongos fetais no dia da gestação 19 (GD-19). As células cultivadas foram divididas aleatoriamente nos seguintes grupos: (1) grupo 2-ME + padrão de resveratrol; (2) grupo 2-ME + resveratrol isolado de tempê; (3) grupo 2-ME + resveratrol isolado de cascas de sementes de soja; e (4) grupo controle, sem a adição de 2-ME ou resveratrol. Houve exposição das células primárias dos neurônios corticais ao anticorpo monoclonal beta-amiloide pré-incubado por 24 horas, com 10 µL de 4,2 µg/mL de resveratrol, e adições de 7,5 mmol/l de 2-metoxietanol. A adição de 2-ME e resveratrol (padrão e isolado do tempê) da cultura de células nas concentrações de 1,4, 2,8 e 4,2 µg/mL mostrou que a maioria dos neurônios cresceu bem. Por outro lado, após a exposição ao 2-ME e beta-amiloide, a glia foi ativada. Esses achados demonstram um papel do resveratrol na ação neuroprotetora e de neurorresgate.


Assuntos
Animais , Coelhos , Estilbenos/farmacologia , Alimentos de Soja , Glycine max , Peptídeos beta-Amiloides/toxicidade , Etilenoglicóis , Resveratrol , Neurônios
3.
Braz. j. biol ; 822022.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468617

Resumo

Abstract Resveratrol, a natural polyphenol found in tempeh, has not been investigated especially in vitro as a neuroprotective agent against 2-methoxyethanol (2-ME)-induced beta-amyloid cytotoxicity. Beta amyloid peptides (A) could initiate neurotoxic events and neuron-inflammatory response via microglial activation. However, it remains unknown whether the neurotoxic effect of beta-amyloid and/or associated with the potential of 2-ME to induce neurotoxic effects on primary culture of nerve cells induced by 2-ME. This study investigated potential neuroprotective of trans-resveratrol a promising agent tempeh and soybean seed coats-derived against beta-amyloid cytotoxicity on primary culture of nerve cells induced by 2-methoxyethanol. Biotium and MTT assays were used to analyze neurons, which were isolated from the cerebral cortex of fetal mice at gestation day 19 (GD-19). A standard solution of 2-methoxyethanol was dosed at 10 L. The cultured cells were randomly divided into the following groups: (1) 2-ME group + resveratrol standard, (2) 2-ME group + resveratrol isolated from tempeh, (3) 2-ME group + resveratrol isolated from soybean seed coats, and (4) the control group, without the addition of either 2-ME or resveratrol. Exposure of the primary cortical neuron cells to beta-amyloid monoclonal antibody pre-incubated for 24 h with 10 µL of 4.2 µg/mL resveratrol and 7.5 mmol/l 2-methoxy-ethanol additions. Here, we report that the addition of 2-ME and resveratrol (standard and isolated from tempeh) of cell culture at concentrations of 1.4, 2.8 and 4.2 µg/mL showed that the majority of neurons grew well. In contrast, after exposure to 2-ME and Beta-amyloid, showed that glial activated. These findings demonstrate a role for resveratrol in neuroprotective-neurorescuing action.


Resumo O resveratrol, um polifenol natural encontrado em tempê, não foi investigado apenas in vitro como agente neuroprotetor contra a citotoxicidade beta-amiloide induzida por 2-metoxietanol (2-ME). Os peptídeos beta-amiloides (A) podem iniciar eventos neurotóxicos e resposta inflamatória dos neurônios via ativação microglial. No entanto, permanece desconhecido se o efeito neurotóxico do peptídeo beta-amiloide associado ao potencial do 2-ME causa efeitos neurotóxicos na cultura primária de células nervosas induzidas pelo 2-ME. Este estudo investigou o potencial neuroprotetor do agente trans-resveratrol em cascas de sementes de soja e tempê derivadas da citotoxicidade beta-amiloide na cultura primária de células nervosas induzidas pelo 2-metoxietanol. Ensaios de biotium e MTT foram utilizados para analisar os neurônios isolados do córtex cerebral de camundongos fetais no dia da gestação 19 (GD-19). As células cultivadas foram divididas aleatoriamente nos seguintes grupos: (1) grupo 2-ME + padrão de resveratrol; (2) grupo 2-ME + resveratrol isolado de tempê; (3) grupo 2-ME + resveratrol isolado de cascas de sementes de soja; e (4) grupo controle, sem a adição de 2-ME ou resveratrol. Houve exposição das células primárias dos neurônios corticais ao anticorpo monoclonal beta-amiloide pré-incubado por 24 horas, com 10 µL de 4,2 µg/mL de resveratrol, e adições de 7,5 mmol/l de 2-metoxietanol. A adição de 2-ME e resveratrol (padrão e isolado do tempê) da cultura de células nas concentrações de 1,4, 2,8 e 4,2 µg/mL mostrou que a maioria dos neurônios cresceu bem. Por outro lado, após a exposição ao 2-ME e beta-amiloide, a glia foi ativada. Esses achados demonstram um papel do resveratrol na ação neuroprotetora e de neurorresgate.

4.
J. venom. anim. toxins incl. trop. dis ; 28: e20220025, 2022. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1395803

Resumo

Background: Natural products represent important sources of antimicrobial compounds. Propolis and compounds from essential oils comprise good examples of such substances because of their inhibitory effects on bacterial spores, including bee pathogens. Methods: Ethanol extracts of propolis (EEP) from Apis mellifera were prepared using different methods: double ultrasonication, double maceration and maceration associated with ultrasonication. Together with the antimicrobial peptides nisin and melittin, and compounds present in the essential oils of clove (Syzygium aromaticum) and cinnamon (Cinnamomum zeylanicum), assays were carried out on one Bacillus subtilis isolate and Paenibacillus alvei (ATCC 6344) against vegetative and sporulated forms, using the resazurin microtiter assay. Synergism with all the antimicrobials in association with tetracycline was verified by the time-kill curve method. Potassium and phosphate efflux, release of proteins and nucleic acids were investigated. Results: EEPs showed the same MIC, 156.25 µg/mL against B. subtilis and 78.12 µg/mL against P. alvei. The peptides showed better activities against B. subtilis (MIC of 12 µg/ mL for melittin and 37.50 µg/mL for nisin). Antimicrobials showed similar inhibitory effects, but cinnamaldehyde (39.06 µg/mL) showed the best action against P. alvei. Melittin and nisin showed the greatest capacity to reduce spores, regarding B. subtilis there was a 100% reduction at 6.25 and 0.78 µg/mL, respectively. Concerning P. alvei, the reduction was 93 and 98% at concentrations of 80 µg/mL of melittin and 15 µg/ mL of nisin. EEPs showed the highest effects on the protein release against B. subtilis and P. alvei. Nucleic acid release, phosphate and potassium efflux assays indicated bacterial cell membrane damage. Synergism between antimicrobials and tetracycline was demonstrated against both bacteria. Conclusion: All antimicrobials tested showed antibacterial activities against vegetative and sporulated forms of P. alvei and B. subtilis, especially nisin and melittin. Synergism with tetracycline and damage on bacterial cell membrane also occurred.(AU)


Assuntos
Própole/análise , Abelhas/imunologia , Óleos Voláteis/análise , Meliteno/análise , Antibacterianos/farmacologia , Nisina/análise , Bacillus subtilis/imunologia , Paenibacillus/imunologia
5.
Braz. j. biol ; 82: 1-8, 2022. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468430

Resumo

Resveratrol, a natural polyphenol found in tempeh, has not been investigated especially in vitro as a neuroprotective agent against 2-methoxyethanol (2-ME)-induced beta-amyloid cytotoxicity. Beta amyloid peptides (Aβ) could initiate neurotoxic events and neuron-inflammatory response via microglial activation. However, it remains unknown whether the neurotoxic effect of beta-amyloid and/or associated with the potential of 2-ME to induce neurotoxic effects on primary culture of nerve cells induced by 2-ME. This study investigated potential neuroprotective of trans-resveratrol a promising agent tempeh and soybean seed coats-derived against beta amyloid cytotoxicity on primary culture of nerve cells induced by 2-methoxyethanol. Biotium and MTT assays were used to analyze neurons, which were isolated from the cerebral cortex of fetal mice at gestation day 19 (GD-19). A standard solution of 2-methoxyethanol was dosed at 10 μL. The cultured cells were randomly divided into the following groups: (1) 2-ME group + resveratrol standard, (2) 2-ME group + resveratrol isolated from tempeh, (3) 2-ME group + resveratrol isolated from soybean seed coats, and (4) the control group, without the addition of either 2-ME or resveratrol. Exposure of the primary cortical neuron cells to beta-amyloid monoclonal antibody pre-incubated for 24 h with 10 µL of 4.2 µg/mL resveratrol and 7.5 mmol/l 2-methoxy-ethanol additions. Here, we report that the addition of 2-ME and resveratrol (standard and isolated from tempeh) of cell culture at concentrations of 1.4, 2.8 and 4.2 µg/mL showed that the majority of neurons grew well. In contrast, after exposure to 2-ME and Beta-amyloid, showed that glial activated. These findings demonstrate a role for resveratrol in neuroprotective-neurorescuing action.


O resveratrol, um polifenol natural encontrado em tempê, não foi investigado apenas in vitro como agente neuroprotetor contra a citotoxicidade beta-amiloide induzida por 2-metoxietanol (2-ME). Os peptídeos beta amiloides (Aβ) podem iniciar eventos neurotóxicos e resposta inflamatória dos neurônios via ativação microglial. No entanto, permanece desconhecido se o efeito neurotóxico do peptídeo beta-amiloide associado ao potencial do 2-ME causa efeitos neurotóxicos na cultura primária de células nervosas induzidas pelo 2-ME. Este estudo investigou o potencial neuroprotetor do agente trans-resveratrol em cascas de sementes de soja e tempê derivadas da citotoxicidade beta-amiloide na cultura primária de células nervosas induzidas pelo 2-metoxietanol. Ensaios de biotium e MTT foram utilizados para analisar os neurônios isolados do córtex cerebral de camundongos fetais no dia da gestação 19 (GD-19). As células cultivadas foram divididas aleatoriamente nos seguintes grupos: (1) grupo 2-ME + padrão de resveratrol; (2) grupo 2-ME + resveratrol isolado de tempê; (3) grupo 2-ME + resveratrol isolado de cascas de sementes de soja; e (4) grupo controle, sem a adição de 2-ME ou resveratrol. Houve exposição das células primárias dos neurônios corticais ao anticorpo monoclonal beta-amiloide pré-incubado por 24 horas, com 10 µL de 4,2 µg/mL de resveratrol, e adições de 7,5 mmol/l de 2-metoxietanol. A adição de 2-ME e resveratrol (padrão e isolado do tempê) da cultura de células nas concentrações de 1,4, 2,8 e 4,2 µg/mL mostrou que a maioria dos neurônios cresceu bem. Por outro lado, após a exposição ao 2-ME e beta-amiloide, a glia foi ativada. Esses achados demonstram um papel do resveratrol na ação neuroprotetora e de neurorresgate.


Assuntos
Fármacos Neuroprotetores/análise , Polifenóis/efeitos adversos , Polifenóis/toxicidade , Resveratrol/efeitos adversos , Resveratrol/uso terapêutico , Sementes , Glycine max
6.
Braz. J. Biol. ; 82: 1-8, 2022. tab, ilus
Artigo em Inglês | VETINDEX | ID: vti-32794

Resumo

Resveratrol, a natural polyphenol found in tempeh, has not been investigated especially in vitro as a neuroprotective agent against 2-methoxyethanol (2-ME)-induced beta-amyloid cytotoxicity. Beta amyloid peptides (Aβ) could initiate neurotoxic events and neuron-inflammatory response via microglial activation. However, it remains unknown whether the neurotoxic effect of beta-amyloid and/or associated with the potential of 2-ME to induce neurotoxic effects on primary culture of nerve cells induced by 2-ME. This study investigated potential neuroprotective of trans-resveratrol a promising agent tempeh and soybean seed coats-derived against beta amyloid cytotoxicity on primary culture of nerve cells induced by 2-methoxyethanol. Biotium and MTT assays were used to analyze neurons, which were isolated from the cerebral cortex of fetal mice at gestation day 19 (GD-19). A standard solution of 2-methoxyethanol was dosed at 10 μL. The cultured cells were randomly divided into the following groups: (1) 2-ME group + resveratrol standard, (2) 2-ME group + resveratrol isolated from tempeh, (3) 2-ME group + resveratrol isolated from soybean seed coats, and (4) the control group, without the addition of either 2-ME or resveratrol. Exposure of the primary cortical neuron cells to beta-amyloid monoclonal antibody pre-incubated for 24 h with 10 µL of 4.2 µg/mL resveratrol and 7.5 mmol/l 2-methoxy-ethanol additions. Here, we report that the addition of 2-ME and resveratrol (standard and isolated from tempeh) of cell culture at concentrations of 1.4, 2.8 and 4.2 µg/mL showed that the majority of neurons grew well. In contrast, after exposure to 2-ME and Beta-amyloid, showed that glial activated. These findings demonstrate a role for resveratrol in neuroprotective-neurorescuing action.(AU)


O resveratrol, um polifenol natural encontrado em tempê, não foi investigado apenas in vitro como agente neuroprotetor contra a citotoxicidade beta-amiloide induzida por 2-metoxietanol (2-ME). Os peptídeos beta amiloides (Aβ) podem iniciar eventos neurotóxicos e resposta inflamatória dos neurônios via ativação microglial. No entanto, permanece desconhecido se o efeito neurotóxico do peptídeo beta-amiloide associado ao potencial do 2-ME causa efeitos neurotóxicos na cultura primária de células nervosas induzidas pelo 2-ME. Este estudo investigou o potencial neuroprotetor do agente trans-resveratrol em cascas de sementes de soja e tempê derivadas da citotoxicidade beta-amiloide na cultura primária de células nervosas induzidas pelo 2-metoxietanol. Ensaios de biotium e MTT foram utilizados para analisar os neurônios isolados do córtex cerebral de camundongos fetais no dia da gestação 19 (GD-19). As células cultivadas foram divididas aleatoriamente nos seguintes grupos: (1) grupo 2-ME + padrão de resveratrol; (2) grupo 2-ME + resveratrol isolado de tempê; (3) grupo 2-ME + resveratrol isolado de cascas de sementes de soja; e (4) grupo controle, sem a adição de 2-ME ou resveratrol. Houve exposição das células primárias dos neurônios corticais ao anticorpo monoclonal beta-amiloide pré-incubado por 24 horas, com 10 µL de 4,2 µg/mL de resveratrol, e adições de 7,5 mmol/l de 2-metoxietanol. A adição de 2-ME e resveratrol (padrão e isolado do tempê) da cultura de células nas concentrações de 1,4, 2,8 e 4,2 µg/mL mostrou que a maioria dos neurônios cresceu bem. Por outro lado, após a exposição ao 2-ME e beta-amiloide, a glia foi ativada. Esses achados demonstram um papel do resveratrol na ação neuroprotetora e de neurorresgate.(AU)


Assuntos
Polifenóis/efeitos adversos , Polifenóis/toxicidade , Resveratrol/efeitos adversos , Resveratrol/uso terapêutico , Sementes , Glycine max , Fármacos Neuroprotetores/análise
7.
J. venom. anim. toxins incl. trop. dis ; 27: e20200152, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1346435

Resumo

Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.(AU)


Assuntos
Animais , Peptídeos , Venenos de Artrópodes , Artrópodes , Produtos Biológicos , Anti-Inflamatórios/análise , Citocinas , Literatura
8.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200152, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31847

Resumo

Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.(AU)


Assuntos
Animais , Peptídeos , Venenos de Artrópodes , Artrópodes , Produtos Biológicos , Anti-Inflamatórios/análise , Citocinas , Literatura
9.
J. venom. anim. toxins incl. trop. dis ; 27: e20210023, 2021. tab, graf, ilus, mapas
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1346437

Resumo

Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.(AU)


Assuntos
Animais , Proteoma , Conotoxinas , Caramujo Conus , Venenos de Moluscos , Neurotoxinas , Produtos Biológicos
10.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20210023, 2021. tab, graf, ilus, mapas
Artigo em Inglês | VETINDEX | ID: vti-31889

Resumo

Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.(AU)


Assuntos
Animais , Proteoma , Conotoxinas , Caramujo Conus , Venenos de Moluscos , Neurotoxinas , Produtos Biológicos
11.
J. venom. anim. toxins incl. trop. dis ; 26: e20200007, 2020. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135143

Resumo

Pathogenesis of Bothrops envenomations is complex and despite numerous studies on the effects of this snake venom on various biological systems, relatively little is known about such effects on the male reproductive system. In the present study, the toxicological outcomes of the low molecular weight fraction (LMWF) of B. jararaca snake venom - containing a range of bioactive peptides - were investigated on the dynamics and structure of the seminiferous epithelium and 15P-1 Sertoli cells viability. Methods: LMWF (5 µg/dose per testis) venom was administered in male Swiss mice by intratesticular (i.t.) injection. Seven days after this procedure, the testes were collected for morphological and morphometric evaluation, distribution of claudin-1 in the seminiferous epithelium by immunohistochemical analyses of testes, and the nitric oxide (NO) levels were evaluated in the total extract of the testis protein. In addition, the toxicological effects of LMWF and crude venom (CV) were analyzed on the 15P-1 Sertoli cell culture. Results: LMWF induced changes in the structure and function of the seminiferous epithelium without altering claudin-1 distribution. LMWF effects were characterized especially by lost cells in the adluminal compartment of epithelium (spermatocytes in pachytene, preleptotene spermatocytes, zygotene spermatocytes, and round spermatid) and different stages of the seminiferous epithelium cycle. LMWF also increased the NO levels in the total extract of the testis protein and was not cytotoxic in concentrations and time tested in the present study. However, CV showed cytotoxicity at 10 μg/mL from 6 to 48 h of treatment. Conclusions: The major finding of the present study was that the LMWF inhibited spermatozoa production; principally in the spermiogenesis stage without altering claudin-1 distribution in the basal compartment. Moreover, NO increased by LMWF induce open of complexes junctions and release the germ cells of the adluminal compartment to the seminiferous tubule.(AU)


Assuntos
Animais , Masculino , Peptídeos , Epitélio Seminífero , Venenos de Serpentes , Espermatogênese , Bothrops , Produtos Biológicos
12.
J. venom. anim. toxins incl. trop. dis ; 26: e20190078, 2020. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1091025

Resumo

Argenteohyla siemersi (red-spotted Argentina frog) is a casque-headed tree frog species belonging to the Hylidae family. This species has a complex combination of anti-predator defense mechanisms that include a highly lethal skin secretion. However, biochemical composition and biological effects of this secretion have not yet been studied. Methods: The A. siemersi skin secretion samples were analyzed by mass spectrometry and chromatographic analysis (MALDI-TOF/MS, RP-HPLC and GC-MS). Proteins were also studied by SDS-PAGE. Among the biological activities evaluated, several enzymatic activities (hemolytic, phospholipase A2, clotting, proteolytic and amidolytic) were assessed. Furthermore, the cytotoxic activity (cytolysis and fluorescence staining) was evaluated on myoblasts of the C2C12 cell line. Results: The MALDI-TOF/MS analysis identified polypeptides and proteins in the aqueous solution of A. siemersi skin secretion. SDS-PAGE revealed the presence of proteins with molecular masses from 15 to 55 kDa. Steroids, but no alkaloids or peptides (less than 5 KDa), were detected using mass spectrometry. Skin secretion revealed the presence of lipids in methanolic extract, as analyzed by CG-MS. This secretion showed hemolytic and phospholipase A2 activities, but was devoid of amidolytic, proteolytic or clotting activities. Moreover, dose-dependent cytotoxicity in cultured C2C12 myoblasts of the skin secretion was demonstrated. Morphological analysis, quantification of lactate dehydrogenase release and fluorescence staining indicated that the cell death triggered by this secretion involved necrosis. Conclusions: Results presented herein evidence the biochemical composition and biological effects of A. siemersi skin secretion and contribute to the knowledge on the defense mechanisms of casque-headed frogs.(AU)


Assuntos
Animais , Anuros , Peptídeos , Espectrometria de Massas , Produtos Biológicos , Eletroforese em Gel de Poliacrilamida , Fosfolipases A2 , Reações Bioquímicas/classificação , Citotoxinas
13.
J. venom. anim. toxins incl. trop. dis ; 26: e20200001, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135163

Resumo

Development of antibiotic resistance that leads to resurgence of bacterial infections poses a threat to disease-free existence for humankind and is a challenge for the welfare of the society at large. Despite research efforts directed towards treatment of pathogens, antibiotics within new improved classes have not emerged for years, a fact largely attributable to the pharmacological necessities compelling drug development. Recent reversion to the use of natural products alone or in combination with standard drugs has opened up new vistas for alternative therapeutics. The success of this strategy is evident in the sudden interest in plant extracts as additives/synergists for treatment of maladies caused by drug-resistant bacterial strains. Animal venoms have long fascinated scientists as sources of pharmacologically active components that can be exploited for the treatment of specific ailments and should be promoted further to clinical trials. In the present review, we outline the scope and possible methods for the applications of animal venoms in combination with commercial antibiotics to offer a better treatment approach against antibiotic-resistant infections.(AU)


Assuntos
Peptídeos , Venenos/química , Infecções Bacterianas , Preparações Farmacêuticas , Antibacterianos , Produtos Biológicos , Resistência Microbiana a Medicamentos
14.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200001, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32053

Resumo

Development of antibiotic resistance that leads to resurgence of bacterial infections poses a threat to disease-free existence for humankind and is a challenge for the welfare of the society at large. Despite research efforts directed towards treatment of pathogens, antibiotics within new improved classes have not emerged for years, a fact largely attributable to the pharmacological necessities compelling drug development. Recent reversion to the use of natural products alone or in combination with standard drugs has opened up new vistas for alternative therapeutics. The success of this strategy is evident in the sudden interest in plant extracts as additives/synergists for treatment of maladies caused by drug-resistant bacterial strains. Animal venoms have long fascinated scientists as sources of pharmacologically active components that can be exploited for the treatment of specific ailments and should be promoted further to clinical trials. In the present review, we outline the scope and possible methods for the applications of animal venoms in combination with commercial antibiotics to offer a better treatment approach against antibiotic-resistant infections.(AU)


Assuntos
Venenos/análise , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antibacterianos/análise , Antibacterianos/química , Peptídeos
15.
J. venom. anim. toxins incl. trop. dis ; 25: e146318, 2019. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1012632

Resumo

Spider venoms are known to contain proteins and polypeptides that perform various functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic, and hemagglutinic activities. Currently, several classes of natural molecules from spider venoms are potential sources of chemotherapeutics against tumor cells. Some of the spider peptide toxins produce lethal effects on tumor cells by regulating the cell cycle, activating caspase pathway or inactivating mitochondria. Some of them also target the various types of ion channels (including voltage-gated calcium channels, voltage-gated sodium channels, and acid-sensing ion channels) among other pain-related targets. Herein we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against the pathophysiological conditions including cancer and pain.(AU)


Assuntos
Peptídeos , Venenos de Aranha , Analgésicos , Neoplasias , Antineoplásicos
16.
J. venom. anim. toxins incl. trop. dis ; 25: e148218, 2019. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1002496

Resumo

Tityus serrulatus venom (Ts venom) is a complex mixture of several compounds with biotechnological and therapeutical potentials, which highlights the importance of the identification and characterization of these components. Although a considerable number of studies have been dedicated to the characterization of this complex cocktail, there is still a limitation of knowledge concerning its venom composition. Most of Ts venom studies aim to isolate and characterize their neurotoxins, which are small, basic proteins and are eluted with high buffer concentrations on cation exchange chromatography. The first and largest fraction from carboxymethyl cellulose-52 (CMC-52) chromatography of Ts venom, named fraction I (Fr I), is a mixture of proteins of high and low molecular masses, which do not interact with the cation exchange resin, being therefore a probable source of components still unknown of this venom. Thus, the present study aimed to perform the proteome study of Fraction I from Ts venom, by high resolution mass spectrometry, and its biochemical characterization, by the determination of several enzymatic activities. Methods: Fraction I was obtained by a cation exchange chromatography using 50 mg of crude venom. This fraction was subjected to a biochemical characterization, including determination of L-amino acid oxidase, phospholipase, hyaluronidase, proteases activities and inhibition of angiotensin converting enzyme (ACE) activity. Fraction I was submitted to reduction, alkylation and digestion processes, and the tryptic digested peptides obtained were analyzed in a Q-Exactive Orbitrap mass spectrometer. Data analysis was performed by PEAKS 8.5 software against NCBI database. Results: Fraction I exhibits proteolytic activity and it was able to inhibit ACE activity. Its proteome analysis identified 8 different classes of venom components, among them: neurotoxins (48%), metalloproteinases (21%), hypotensive peptides (11%), cysteine-rich venom protein (9%), antimicrobial peptides (AMP), phospholipases and other enzymes (chymotrypsin and lysozymes) (3%) and phosphodiesterases (2%). Conclusions: The combination of a proteomic and biochemical characterization strategies leads us to identify new components in the T. serrulatus scorpion venom. The proteome of venom´s fraction can provide valuable direction in the obtainment of components in their native forms in order to perform a preliminary characterization and, consequently, to promote advances in biological discoveries in toxinology.(AU)


Assuntos
Animais , Venenos de Escorpião , Produtos Biológicos , Proteoma , Metaloproteases , Neurotoxinas , Fosfolipases , Enzimas
17.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 25: e146318, June 3, 2019. ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-19839

Resumo

Spider venoms are known to contain proteins and polypeptides that perform various functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic, and hemagglutinic activities. Currently, several classes of natural molecules from spider venoms are potential sources of chemotherapeutics against tumor cells. Some of the spider peptide toxins produce lethal effects on tumor cells by regulating the cell cycle, activating caspase pathway or inactivating mitochondria. Some of them also target the various types of ion channels (including voltage-gated calcium channels, voltage-gated sodium channels, and acid-sensing ion channels) among other pain-related targets. Herein we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against the pathophysiological conditions including cancer and pain.(AU)


Assuntos
Animais , Venenos de Aranha/análise , Venenos de Aranha/química , Venenos de Aranha/uso terapêutico , Peptídeos/uso terapêutico , Analgésicos , Antineoplásicos/uso terapêutico , Antibióticos Antineoplásicos , Canais de Cálcio , Canais de Sódio , Canais Iônicos Sensíveis a Ácido
18.
R. bras. Parasitol. Vet. ; 28(3): 339-345, jul. 2019.
Artigo em Inglês | VETINDEX | ID: vti-22974

Resumo

Gastrointestinal nematode infection is an important cause of high economic losses in livestock production. Nematode control based on a synthetic chemical approach is considered unsustainable due to the increasing incidence of anthelmintic resistance. Control alternatives such as the use of natural products are therefore becoming relevant from an environmental and economic point of view. Proteins are macromolecules with various properties that can be obtained from a wide range of organisms, including plants and fungi. Proteins belonging to different classes have shown great potential for the control of nematodes. The action of proteins can occur at specific stages of the nematode life cycle, depending on the composition of the external layers of the nematode body and the active site of the protein. Advances in biotechnology have resulted in the emergence of numerous protein and peptide therapeutics; however, few have been discussed with a focus on the control of animal nematodes. Here, we discuss the use of exogenous proteins and peptides in the control of gastrointestinal.(AU)


A infecção por nematoides gastrintestinais é uma importante causa de grandes perdas econômicas na pecuária. O controle de nematoides com compostos químicos sintéticos é considerado insustentável devido ao aumento da resistência anti-helmíntica. Alternativas de controle, como o uso de produtos naturais, estão se tornando relevantes do ponto de vista ambiental e econômico. As proteínas são macromoléculas com várias propriedades que podem ser obtidas de uma ampla gama de organismos, incluindo plantas e fungos. Proteínas pertencentes a diferentes classes têm mostrado grande potencial para o controle de nematoides. A ação das proteínas pode ocorrer em estágios específicos do ciclo de vida do nematoide, dependendo da composição das camadas externas do parasito e do sítio ativo da proteína. Avanços na biotecnologia resultaram no surgimento de numerosas terapias de proteínas e peptídeos; no entanto, pouco foi discutido com foco no controle de nematoides parasitos de animais. Na presente revisão foi discutido o uso de proteínas exógenas e peptídeos no controle de nematoides gastrintestinais, os mecanismos sugeridos de ação, e os desafios e perspectivas para o uso dessas biomoléculas como uma classe de anti-helmínticos.(AU)


Assuntos
Animais , Controle de Qualidade , Infecções por Nematoides/prevenção & controle , Peptídeo Hidrolases , Lectinas
19.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 24: 1-11, 2018. graf, tab
Artigo em Inglês | VETINDEX | ID: vti-18346

Resumo

Background: Advancements in proteomics, including the technological improvement in instrumentation, have turned mass spectrometry into an indispensable tool in the study of venoms and toxins. In addition, the advance of nanoscale liquid chromatography coupled to nanoelectrospray mass spectrometry allows, due to its high sensitivity, the study of venoms from species previously left aside, such as ants. Ant venoms are a complex mixture of compounds used for defense, predation or communication purposes. The venom from Neoponera ants, a genus restricted to Neotropical regions, is known to have cytolytic, hemolytic, antimicrobial and insecticidal activities. Moreover, venoms from several Neoponera species have been compared and differences in their toxicity related to nesting habitat variation were reported. Therefore, the present study aimed to perform a deep peptidomic analysis of Neoponera villosa venom and a comparison of seasonal and nesting habitat variations using high-resolution mass spectrometry. Methods: Specimens of N. villosa ants were captured in Panga Natural Reserve (Uberlândia, MG, Brazil) from arboreal and ground-dwelling nests during summer and winter time. The venom glands were dissected, pooled and disrupted by ultra-sonic waves. The venom collected from different habitats (arboreal and ground-dwelling) and different seasons (summer and winter) was injected into a nanoACQUITY ULPC hyphened to a Q-Exactive Orbitrap mass spectrometer. The raw data were analyzed using PEAKS 7. Results: The results showed a molecular diversity of more than 500 peptides among these venoms, mostly in the mass range of 8004000 Da. Mutations and post-translational modifications were described and differences among the venoms were observed. Part of the peptides matched with ponericins, a well-known antimicrobial peptide family...(AU)


Assuntos
Animais , Venenos de Formiga , Mapeamento de Peptídeos , Espectrometria de Massas/métodos , Peptídeos/classificação , Estações do Ano
20.
J. venom. anim. toxins incl. trop. dis ; 24: 1-11, 2018. graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484737

Resumo

Background: Advancements in proteomics, including the technological improvement in instrumentation, have turned mass spectrometry into an indispensable tool in the study of venoms and toxins. In addition, the advance of nanoscale liquid chromatography coupled to nanoelectrospray mass spectrometry allows, due to its high sensitivity, the study of venoms from species previously left aside, such as ants. Ant venoms are a complex mixture of compounds used for defense, predation or communication purposes. The venom from Neoponera ants, a genus restricted to Neotropical regions, is known to have cytolytic, hemolytic, antimicrobial and insecticidal activities. Moreover, venoms from several Neoponera species have been compared and differences in their toxicity related to nesting habitat variation were reported. Therefore, the present study aimed to perform a deep peptidomic analysis of Neoponera villosa venom and a comparison of seasonal and nesting habitat variations using high-resolution mass spectrometry. Methods: Specimens of N. villosa ants were captured in Panga Natural Reserve (Uberlândia, MG, Brazil) from arboreal and ground-dwelling nests during summer and winter time. The venom glands were dissected, pooled and disrupted by ultra-sonic waves. The venom collected from different habitats (arboreal and ground-dwelling) and different seasons (summer and winter) was injected into a nanoACQUITY ULPC hyphened to a Q-Exactive Orbitrap mass spectrometer. The raw data were analyzed using PEAKS 7. Results: The results showed a molecular diversity of more than 500 peptides among these venoms, mostly in the mass range of 8004000 Da. Mutations and post-translational modifications were described and differences among the venoms were observed. Part of the peptides matched with ponericins, a well-known antimicrobial peptide family...


Assuntos
Animais , Espectrometria de Massas/métodos , Mapeamento de Peptídeos , Peptídeos/classificação , Venenos de Formiga , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA