Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
J. venom. anim. toxins incl. trop. dis ; 29: e20220077, 2023. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1418312

Resumo

Background: Bivalent freeze-dried neurotoxic (FN) antivenom has been the primary treatment since the 1980s for Taiwan cobra (Naja atra) envenomation in Taiwan. However, envenomation-related wound necrosis is a significant problem after cobra snakebites. In the present study, we analyzed the changes in serum venom concentration before and after antivenom administration to discover their clinical implications and the surgical treatment options for wound necrosis. Methods: The patients were divided into limb swelling and wound necrosis groups. The clinical outcome was that swelling started to subside 12 hours after antivenom treatment in the first group. Serum venom concentrations before and after using antivenoms were measured to assess the antivenom's ability to neutralize the circulating cobra venom. The venom levels in wound wet dressing gauzes, blister fluids, and debrided tissues were also investigated to determine their clinical significance. We also observed the evolutional changes of wound necrosis and chose a better wound debridement timing. Results: We prospectively enrolled 15 Taiwan cobra snakebite patients. Males accounted for most of this study population (n = 11, 73%). The wound necrosis group received more antivenom doses than the limb swelling group (4; IQR:2-6 vs 1; IQR:1-2, p = 0.05), and less records of serum venom concentrations changed before/after antivenom use (p = 0.0079). The necrotic wound site may release venom into circulation and cause more severe envenomation symptoms. Antivenom can efficiently diminish limb swelling in cobra bite patients. However, antivenom cannot reduce wound necrosis. Patients with early debridement of wound necrosis had a better limb outcome, while late or without debridement may have long-term hospital stay and distal limb morbidity. Conclusions: Antivenom can efficiently eliminate the circulating cobra venom in limb swelling patients without wound necrosis. Early debridement of the bite site wound and wet dressing management are suggestions for preventing extended tissue necrosis and hospital stay.(AU)


Assuntos
Animais , Mordeduras de Serpentes/terapia , Agentes Neurotóxicos/efeitos adversos , Taiwan , Necrose/terapia
2.
J. venom. anim. toxins incl. trop. dis ; 28: e20210080, 2022. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1395757

Resumo

Background: A new pit viper, Protobothrops kelomohy, has been recently discovered in northern and northwestern Thailand. Envenoming by the other Protobothrops species across several Asian countries has been a serious health problem since their venom is highly hematotoxic. However, the management of P. kelomohy bites is required as no specific antivenom is available. This study aimed to investigate the biochemical properties and proteomes of P. kelomohy venom (PKV), including the cross-neutralization to its lethality with antivenoms available in Thailand. Methods: PKV was evaluated for its neutralizing capacity (ER50), lethality (LD50), procoagulant and hemorrhagic effects with three monovalent antivenoms (TAAV, DSAV, and CRAV) and one polyvalent (HPAV) hematotoxic antivenom. The enzymatic activities were examined in comparison with venoms of Trimeresurus albolabris (TAV), Daboia siamensis (DSV), Calloselasma rhodostoma (CRV). Molecular mass was separated on SDS-PAGE, then the specific proteins were determined by western blotting. The venom protein classification was analyzed using mass spectrometry-based proteomics. Results: Intravenous LD50 of PKV was 0.67 µg/g. ER50 of HPAV, DSAV and TAAV neutralize PKV at 1.02, 0.36 and 0.12 mg/mL, respectively. PKV exhibited procoagulant effect with a minimal coagulation dose of 12.5 ± 0.016 µg/mL and hemorrhagic effect with a minimal hemorrhagic dose of 1.20 ± 0.71 µg/mouse. HPAV was significantly effective in neutralizing procoagulant and hemorrhagic effects of PKV than those of TAAV, DSAV and CRAV. All enzymatic activities among four venoms exhibited significant differences. PKV proteome revealed eleven classes of putative snake venom proteins, predominantly metalloproteinase (40.85%), serine protease (29.93%), and phospholipase A2 (15.49%). Conclusions: Enzymatic activities of PKV are similarly related to other viperid venoms in this study by quantitatively hematotoxic properties. Three major venom toxins were responsible for coagulopathy in PKV envenomation. The antivenom HPAV was considered effective in neutralizing the lethality, procoagulant and hemorrhagic effects of PKV.(AU)


Assuntos
Animais , Venenos de Víboras/análise , Fenômenos Bioquímicos/fisiologia , Proteômica/métodos , Tailândia , Antivenenos/análise
3.
Acta sci. vet. (Impr.) ; 50: Pub.1860-2022. tab
Artigo em Português | VETINDEX | ID: biblio-1458535

Resumo

Background: Scorpionism is a worldwide medical issue, especially relevant in the tropical and subtropical countries. Tityusserrulatus is the species responsible for most cases in Brazil. Antivenom administration to victims is the sole specific therapyobtained from donor animals. Most of these donors suffer with symptoms of the poisoning, debilitating their health andreducing their life expectancy. The aim of the present research was to evaluate whether the immunogens prepared fromthe crude and detoxified venom of T. serrulatus promoted different changes in fractionated sheep plasma proteins, duringa scorpion antivenom serum production.Materials, Methods & Results: Twelve sheep, healthy, mean weight of 30 kg, were distributed into 3 groups (n = 4): G1(control), G2 (crude venom) and G3 (detoxified venom). The adopted immunization protocol (first cycle) had 6 doses, 3using Freund’s adjuvant, with a 21-day interval between each one (day 0, 22 and 43), and 3 doses with no adjuvant (booster)and 0.2 mg of antigen (reinforcement), spaced 3 days between each other (day 50, 53 and 56). Group control (G1) received6 immunizations with phosphate buffered saline (PBS) associated with Freund’s adjuvant (1:1), while the other 2 groupsreceived 0.5 mg of venom (G2) and detoxified venom (G3), respectively, diluted in PBS, associated with the Freund adjuvant. The boosters were 1/3 of the initial dose, diluted only PBS. At baseline (T0) and at 24 and 48 h after immunization,all animals underwent clinical examinations. Blood samples were collected at day 0, 22, 43, 53 and 56 for proteinogramanalysis. Total protein, albumin and globulins fractions were measured. Plasma albumin concentration at T0 ranged from3.41-4.86 g/dL, with a mean value of 4.12 g/dL. There was no statistical difference between...


Assuntos
Animais , Antivenenos , Ovinos/imunologia , Proteínas Sanguíneas/análise , Venenos de Escorpião/imunologia , Escorpiões , Soros Imunes
4.
Acta sci. vet. (Impr.) ; 50(supl.1): Pub. 841, 2022. ilus
Artigo em Inglês | VETINDEX | ID: biblio-1415202

Resumo

Background: Snakebite envenoming is a condition that affects humans and domestic animals worldwide. Identification of the snake species involved in the envenomation is infrequent. Bothrops envenomation presents typical clinicopathological features. This report describes epidemiological, clinical, and pathological data of 2 cases of Bothrops envenomation in dogs, including the first case of Bothrops moojeni snake striking a domestic animal in Brazil. Cases: Case 1. A dog was witnessed to have a Bothrops moojeni snakebite on a farm. In the first 24 h, acute lameness, pain, diffuse swelling, focal bleeding at the left forelimb, and increased whole-blood clotting time were observed in the envenomed dog. Polyvalent antivenom was administered in addition to fluid therapy, analgesics, corticosteroids, and antibiotics. On the 5th day, the animal presented spontaneous bleeding at the wound site, thrombocytopenia, and increased whole-blood clotting time. An additional dose of polyvalent antivenom was administered, and local treatment at the snakebite site was initiated. After 13 days, the dog showed no clinical or laboratory changes and recovered entirely. Case 2. A mongrel dog was taken for a necropsy to determine the cause of death. Grossly, major findings included swelling in the nasal plane that extended to the neck and dissecting hemorrhage in the subcutaneous tissue and adjacent musculature. Hemorrhages were observed in the heart, parietal pleura, left forelimb, lumbar region, and perirenal tissue. Marked necrosis and disruption of small blood vessels and lymphatics within the deep dermis and subcutaneous tissue were the main microscopic findings close to the snakebite site. Additionally, degeneration and necrosis of muscle fibers and dissecting hemorrhage were observed in the head and neck tissues surrounding the snakebite site. Kidneys showed marked interstitial hemorrhage and acute tubular nephrosis. Discussion: Bothrops envenoming is characterized by local (hemorrhage, dermonecrosis, and myonecrosis) and systemic (coagulative disorders, systemic hemorrhage, and acute kidney injury) changes due to the effect of the main venom components such as phospholipase A2 and metalloproteinases. These changes are hallmarks for the bothropic envenomation, supporting the diagnosis in cases 1 and 2. In case 1, the dog developed a Bothrops moojeni snakebite envenomation, but the immediate treatment with antivenom allowed a favorable outcome. In case 2, gross and microscopic findings supported the presumptive diagnosis of fatal bothropic envenomation. A marked local reaction such as swelling, pain, bleeding, bruising, and tissue necrosis was observed in case 1. In case 2, the most significant local changes were swelling and edema at the head and neck, hemorrhage in the subcutaneous tissue, and adjacent musculature. Systemic effects were observed clinically as spontaneous bleeding, thrombocytopenia, increased whole-blood clotting time (Case 1), systemic hemorrhages, and acute tubular nephrosis (Case 2). A proper treatment probably prevented the development of acute renal failure in Case 1. Herein, we show the first case of accidental snakebite envenomation by B. moojeni in a dog in Brazil. Information is scarce on the identification of venomous snake species striking domestic animals. Fast detection of well-determined clinical and pathological findings of Bothrops envenomation is essential for a correct diagnosis, therapeutics, and a good prognosis, even in cases with an unknown history.


Assuntos
Animais , Cães , Mordeduras de Serpentes/fisiopatologia , Mordeduras de Serpentes/veterinária , Inibidores dos Fatores de Coagulação Sanguínea/análise , Venenos de Crotalídeos/toxicidade , Bothrops
5.
J. venom. anim. toxins incl. trop. dis ; 28: e20210103, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1386129

Resumo

Background: Several studies have been published on the characterization of Trimeresurus venoms. However, there is still limited information concerning the venom composition of Trimeresurus species distributed throughout Indonesia, which contributes to significant snakebite envenomation cases. The present study describes a comparative on the composition of T. albolabris, T. insularis, T. puniceus, and T. purpureomaculatus venoms originated from Indonesia. Methods: Protein content in the venom of four Trimeresurus species was determined using Bradford assay, and the venom proteome was elucidated using one-dimension SDS PAGE nano-ESI- LCMS/MS shotgun proteomics. Results: The venom of T. albolabris contained the highest protein content of 11.1 mg/mL, followed by T. puniceus, T. insularis and T. purpureomaculatus venom with 10.7 mg/mL, 8.9 mg/mL and 5.54 mg/mL protein, respectively. In total, our venomic analysis identified 65 proteins belonging to 16 protein families in T. purpureomaculatus; 64 proteins belonging to 18 protein families in T. albolabris; 58 different proteins belonging to 14 protein families in T. puniceus; and 48 different proteins belonging to 14 protein familiesin T. insularis. Four major proteins identified in all venoms belonged to snake venom metalloproteinase, C-type lectin, snake venom serine protease, and phospholipase A2. There were 11 common proteins in all venoms, and T. puniceus venom has the highest number of unique proteins compared to the other three venoms. Cluster analysis of the proteins and venoms showed that T. puniceus venom has the most distinct venom composition. Conclusions: Overall, the results highlighted venom compositional variation of four Trimeresurus spp. from Indonesia. The venoms appear to be highly similar, comprising at least four protein families that correlate with venom's toxin properties and function. This study adds more information on venom variability among Trimeresurus species within the close geographic origin and may contribute to the development of optimum heterologous antivenom.(AU)


Assuntos
Trimeresurus/fisiologia , Proteoma/análise , Venenos de Crotalídeos/química , Indonésia
6.
J. venom. anim. toxins incl. trop. dis ; 28: e20220017, 2022. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1386130

Resumo

The innovation timeline is expensive, risky, competitive, time-consuming, and labor-intensive. In order to overcome such challenges and optimize financial resources, pharmaceutical companies nowadays hire contract development and manufacturing organizations (CDMO) to help them. Based on the experience acquired first from the development of two biopharmaceuticals, the Heterologous Fibrin Sealant and the Apilic Antivenom, and more recently, during their respective clinical trials; the Center for the Study of Venoms and Venomous Animals (CEVAP) proposed to the Ministry of Health the creation of the first Brazilian CDMO. This groundbreaking venture will assist in converting a candidate molecule - from its discovery, proof of concept, product development, up to pilot batch production - into a product. The CDMO impact and legacy will be immense, offering service provision to the public and private sector by producing validated samples for clinical trials and academic training on translational research for those seeking a position in pharmaceutical industries and manufacturing platforms.(AU)


Assuntos
Produtos Biológicos/análise , Proposta de Concorrência/organização & administração , Protocolo de Ensaio Clínico , Brasil , Boas Práticas de Fabricação
7.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484779

Resumo

Abstract King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.

8.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200177, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31990

Resumo

The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.(AU)


Assuntos
Animais , Venenos/toxicidade , Antivenenos/biossíntese , Daboia , Proteômica , Localizações Geográficas
9.
J. venom. anim. toxins incl. trop. dis ; 27: e20200177, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1250255

Resumo

The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.(AU)


Assuntos
Animais , Venenos/toxicidade , Antivenenos/biossíntese , Daboia , Proteômica , Localizações Geográficas
10.
J. venom. anim. toxins incl. trop. dis ; 27: e20210051, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1356458

Resumo

King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.(AU)


Assuntos
Animais , Intoxicação , Mordeduras de Serpentes , Serpentes , Antivenenos , Proteoma , Venenos Elapídicos , História Natural
11.
J. venom. anim. toxins incl. trop. dis ; 27: e20200066, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154773

Resumo

In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom's, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Bothrops , Serina Proteases , Peptídeos
12.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200066, 2021. graf
Artigo em Inglês | VETINDEX | ID: vti-31986

Resumo

In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom's, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Bothrops , Serina Proteases , Peptídeos
13.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484777

Resumo

Abstract Venom from Amazonian scorpions of the genus Tityus contains components capable of eliciting a distinct clinical, mostly neurological, syndrome. This contrasts with the mainly autonomic manifestations produced after envenomation by congeneric southern and northern South American species. Herein, we summarize Pan-Amazonian scorpionism by synthesizing available toxinological, clinical, and molecular data gathered from all affected areas in Amazonia, including Brazil, Ecuador, Colombia, Peru, Venezuela, and French Guiana. We searched multiple databases, as well as our own records, for reports of scorpion envenomations in Amazonia by confirmed Tityus spp., and compared the clinical manifestations. To help uncover clinical and venom relationships among problematic species, we explored phylogenetic relationships with a rate-calibrated analysis of mitochondrial COI data from available species. The possible existence of diversity gradients for venom toxic and immunogenic components despite the predicted strong phylogenetic association among species is underscored by discussed clinical and toxinological findings. A multicentric effort, involving all nations affected by this neglected disease, is urgently needed to offer alternatives for treating and understanding this pathology, including the preparation of neutralizing antibodies with a broad range of efficacy.

14.
J. venom. anim. toxins incl. trop. dis ; 27: e20200047, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287090

Resumo

The venom of the krait (Bungarus sindanus), an Elapidae snake, is highly toxic to humans and contains a great amount of acetylcholinesterase (AChE). The enzyme AChE provokes the hydrolysis of substrate acetylcholine (ACh) in the nervous system and terminates nerve impulse. Different inhibitors inactivate AChE and lead to ACh accumulation and disrupted neurotransmission. Methods: The present study was designed to evaluate the effect of palladium(II) complex as antivenom against krait venom AChE using kinetics methods. Results: Statistical analysis showed that krait venom AChE inhibition decreases with the increase of Pd(II) complex (0.025-0.05 µM) and exerted 61% inhibition against the AChE at a fixed concentration (0.5 mM) of ACh. Kinetic analysis using the Lineweaver Burk plot showed that Pd(II) caused a competitive inhibition. The compound Pd(II) complex binds at the active site of the enzyme. It was observed that K m (Michaelis-Menten constant of AChE-ACh into AChE and product) increased from 0.108 to 0.310 mM (45.74 to 318.35%) and V max remained constant with an increase of Pd(II) complex concentrations. In AChE K Iapp was found to increase from 0.0912 to 0.025 µM (29.82-72.58%) and did not affect the V maxapp with an increase of ACh from (0.05-1 mM). K i (inhibitory constant) was estimated to be 0.029µM for snake venom; while the K m was estimated to be 0.4 mM. The calculated IC50 for Pd(II) complex was found to be 0.043 µM at constant ACh concentration (0.5 mM). Conclusions: The results show that the Pd(II) complex can be deliberated as an inhibitor of AChE.(AU)


Assuntos
Animais , Bungarus , Venenos Elapídicos/toxicidade , Biologia Sintética , Paládio , Acetilcolinesterase
15.
J. venom. anim. toxins incl. trop. dis ; 27: e20210028, 2021. tab, mapas, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1351018

Resumo

Venom from Amazonian scorpions of the genus Tityus contains components capable of eliciting a distinct clinical, mostly neurological, syndrome. This contrasts with the mainly autonomic manifestations produced after envenomation by congeneric southern and northern South American species. Herein, we summarize Pan-Amazonian scorpionism by synthesizing available toxinological, clinical, and molecular data gathered from all affected areas in Amazonia, including Brazil, Ecuador, Colombia, Peru, Venezuela, and French Guiana. We searched multiple databases, as well as our own records, for reports of scorpion envenomations in Amazonia by confirmed Tityus spp., and compared the clinical manifestations. To help uncover clinical and venom relationships among problematic species, we explored phylogenetic relationships with a rate-calibrated analysis of mitochondrial COI data from available species. The possible existence of diversity gradients for venom toxic and immunogenic components despite the predicted strong phylogenetic association among species is underscored by discussed clinical and toxinological findings. A multicentric effort, involving all nations affected by this neglected disease, is urgently needed to offer alternatives for treating and understanding this pathology, including the preparation of neutralizing antibodies with a broad range of efficacy.(AU)


Assuntos
Animais , Filogenia , Escorpiões , Toxicologia , Anticorpos Neutralizantes
16.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200047, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31975

Resumo

The venom of the krait (Bungarus sindanus), an Elapidae snake, is highly toxic to humans and contains a great amount of acetylcholinesterase (AChE). The enzyme AChE provokes the hydrolysis of substrate acetylcholine (ACh) in the nervous system and terminates nerve impulse. Different inhibitors inactivate AChE and lead to ACh accumulation and disrupted neurotransmission. Methods: The present study was designed to evaluate the effect of palladium(II) complex as antivenom against krait venom AChE using kinetics methods. Results: Statistical analysis showed that krait venom AChE inhibition decreases with the increase of Pd(II) complex (0.025-0.05 µM) and exerted 61% inhibition against the AChE at a fixed concentration (0.5 mM) of ACh. Kinetic analysis using the Lineweaver Burk plot showed that Pd(II) caused a competitive inhibition. The compound Pd(II) complex binds at the active site of the enzyme. It was observed that K m (Michaelis-Menten constant of AChE-ACh into AChE and product) increased from 0.108 to 0.310 mM (45.74 to 318.35%) and V max remained constant with an increase of Pd(II) complex concentrations. In AChE K Iapp was found to increase from 0.0912 to 0.025 µM (29.82-72.58%) and did not affect the V maxapp with an increase of ACh from (0.05-1 mM). K i (inhibitory constant) was estimated to be 0.029µM for snake venom; while the K m was estimated to be 0.4 mM. The calculated IC50 for Pd(II) complex was found to be 0.043 µM at constant ACh concentration (0.5 mM). Conclusions: The results show that the Pd(II) complex can be deliberated as an inhibitor of AChE.(AU)


Assuntos
Animais , Bungarus , Venenos Elapídicos/toxicidade , Biologia Sintética , Paládio , Acetilcolinesterase
17.
J. venom. anim. toxins incl. trop. dis ; 27: e20200068, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154772

Resumo

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Viperidae , Venenos Elapídicos/biossíntese , Bem-Estar do Animal , Custos e Análise de Custo
18.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200068, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31985

Resumo

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Viperidae , Venenos Elapídicos/biossíntese , Bem-Estar do Animal , Custos e Análise de Custo
19.
Pesqui. vet. bras ; 41: e06639, 2021. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1250494

Resumo

In Brazil, snakes from the Bothrops genus are responsible for thousands of accidents, and their venoms are mainly composed of proteolytic enzymes. Although the antibothropic serum produced by the Brazilian Institutes is remarkably efficient, more studies are necessary, especially in veterinary medicine. The venom contain enzymes and non-enzymatic proteins that interfere with hemostasis leading to hemorrhage or even thrombosis. Possible treatment associations with known bothropic antivenom were the reason for the development of the present study. The aim of this study was to evaluate hemostasis alterations caused by Bothrops alternatus venom in rabbits followed by treatments with anti-bothropic serum, tranexamic acid and desmopressin. Twenty New Zealand rabbits were distributed into five groups (n=4) that were experimentally envenomed with 150mcg/kg of B. alternatus venom via intramuscular injection and treated as follow: Group 1 (G1) was the positive control and received venom and PBS/BSA; Group 2 (G2) was treated with tranexamic acid; Group 3 (G3) with desmopressin; Group 4 (G4) with tranexamic acid and anti-bothropic serum; and Group 5 (G5) with anti-bothropic serum and desmopressin. Blood samples were collected before venom administration, and one, four, eight and 12 hours after, for Partial activated partial thromboplastin time, Prothrombin Time, Thrombin Time and fibrinogen evaluation. Thrombin generation (TG) test was carried out with a pool of samples from final times (8 and 12h). At the end of 12h, all animals were euthanized and necropsy was conducted. Samples from muscle tissue, heart, lungs and kidney were analyzed. Classic coagulation tests showed no significant differences amongst groups and times. However, TG indicated that the venom causes a hypocoagulability state, which was not reversed by proposed treatments. Histology showed muscle inflammation, hemorrhage and necrosis, as well as hemorrhage in other tissues with no differences amongst groups. B. alternatus envenomation causes hypocoagulability detected by TG assay, but not through classical coagulation tests. The use of tranexamic acid and desmopressin for hemostasis stabilization after inoculation of the venom did not show advantage in coagulation restoration.(AU)


No Brasil, as serpentes do gênero Bothrops são responsáveis por milhares de acidentes, e seus venenos são compostos principalmente de enzimas proteolíticas. Embora o soro antiofídico produzido pelos institutos brasileiros seja notavelmente eficiente, mais estudos são necessários, especialmente na medicina veterinária. O veneno contem enzimas e proteínas não-enzimáticas que interferem com a hemostasia levando a hemorragias ou trombose. A associação de outros tratamentos ao soro antibotrópico foi a razão para o desenvolvimento do presente estudo. O objetivo deste estudo foi avaliar as alterações da hemostasia causadas pelo veneno de Bothrops alternatus em coelhos, após tratamento com soro antibotrópico, ácido tranexâmico e desmopressina. Vinte coelhos da Nova Zelândia foram distribuídos em cinco grupos (n = 4) que foram submetidos a experimentos com 150mcg/kg de veneno de B. alternatus por injeção intramuscular. O Grupo 1 (G1) foi o controle positivo e recebeu veneno e PBS / BSA, enquanto o Grupo 2 (G2) foi tratado com ácido tranexâmico, o Grupo 3 (G3) com desmopressina, o Grupo 4 (G4) com ácido tranexâmico e soro antibotrópico, e o Grupo 5 (G5) com soro antibotrópico e desmopressina. As amostras de sangue foram coletadas antes da administração do veneno, e uma, quatro, oito e 12 horas após os tratamentos para realização de tempo de tromboplastina parcial ativada parcial (TTPa), tempo de protrombina (TP), tempo de trombina (TT) e mensuração de fibrinogênio. Para o ensaio de geração de trombina (TG) foi realizado com um pool de amostras nos tempos finais (8 e 12h). Ao final das 12h, todos os animais foram sacrificados e a necropsia foi realizada. Amostras de tecido muscular, coração, pulmões e rins foram analisadas. Os testes TTPa, TP, TT e fibrinogênio não mostraram diferenças significativas entre os grupos e os tempos. No entanto, o TG indicou que o veneno causa um estado de hipocoagulabilidade, que não foi revertido pelos tratamentos propostos. Na histologia, foram observadas inflamação muscular, hemorragia e necrose, além de hemorragia em outros tecidos, sem diferenças entre os grupos. O envenenamento por B. alternatus causa hipocoagulabilidade detectada mais precocemente pelo teste de geração de trombina. O uso de ácido tranexâmico e desmopressina para estabilização da hemostasia após a inoculação do veneno não mostrou vantagem na restauração da coagulação.(AU)


Assuntos
Animais , Coelhos , Serpentes , Bothrops , Hemostasia , Técnicas Hemostáticas
20.
Pesqui. vet. bras ; 41: e06639, 2021. tab
Artigo em Inglês | VETINDEX | ID: vti-33432

Resumo

In Brazil, snakes from the Bothrops genus are responsible for thousands of accidents, and their venoms are mainly composed of proteolytic enzymes. Although the antibothropic serum produced by the Brazilian Institutes is remarkably efficient, more studies are necessary, especially in veterinary medicine. The venom contain enzymes and non-enzymatic proteins that interfere with hemostasis leading to hemorrhage or even thrombosis. Possible treatment associations with known bothropic antivenom were the reason for the development of the present study. The aim of this study was to evaluate hemostasis alterations caused by Bothrops alternatus venom in rabbits followed by treatments with anti-bothropic serum, tranexamic acid and desmopressin. Twenty New Zealand rabbits were distributed into five groups (n=4) that were experimentally envenomed with 150mcg/kg of B. alternatus venom via intramuscular injection and treated as follow: Group 1 (G1) was the positive control and received venom and PBS/BSA; Group 2 (G2) was treated with tranexamic acid; Group 3 (G3) with desmopressin; Group 4 (G4) with tranexamic acid and anti-bothropic serum; and Group 5 (G5) with anti-bothropic serum and desmopressin. Blood samples were collected before venom administration, and one, four, eight and 12 hours after, for Partial activated partial thromboplastin time, Prothrombin Time, Thrombin Time and fibrinogen evaluation. Thrombin generation (TG) test was carried out with a pool of samples from final times (8 and 12h). At the end of 12h, all animals were euthanized and necropsy was conducted. Samples from muscle tissue, heart, lungs and kidney were analyzed. Classic coagulation tests showed no significant differences amongst groups and times. However, TG indicated that the venom causes a hypocoagulability state, which was not reversed by proposed treatments. Histology showed muscle inflammation, hemorrhage and necrosis, as well as hemorrhage in other tissues with no differences amongst groups. B. alternatus envenomation causes hypocoagulability detected by TG assay, but not through classical coagulation tests. The use of tranexamic acid and desmopressin for hemostasis stabilization after inoculation of the venom did not show advantage in coagulation restoration.(AU)


No Brasil, as serpentes do gênero Bothrops são responsáveis por milhares de acidentes, e seus venenos são compostos principalmente de enzimas proteolíticas. Embora o soro antiofídico produzido pelos institutos brasileiros seja notavelmente eficiente, mais estudos são necessários, especialmente na medicina veterinária. O veneno contem enzimas e proteínas não-enzimáticas que interferem com a hemostasia levando a hemorragias ou trombose. A associação de outros tratamentos ao soro antibotrópico foi a razão para o desenvolvimento do presente estudo. O objetivo deste estudo foi avaliar as alterações da hemostasia causadas pelo veneno de Bothrops alternatus em coelhos, após tratamento com soro antibotrópico, ácido tranexâmico e desmopressina. Vinte coelhos da Nova Zelândia foram distribuídos em cinco grupos (n = 4) que foram submetidos a experimentos com 150mcg/kg de veneno de B. alternatus por injeção intramuscular. O Grupo 1 (G1) foi o controle positivo e recebeu veneno e PBS / BSA, enquanto o Grupo 2 (G2) foi tratado com ácido tranexâmico, o Grupo 3 (G3) com desmopressina, o Grupo 4 (G4) com ácido tranexâmico e soro antibotrópico, e o Grupo 5 (G5) com soro antibotrópico e desmopressina. As amostras de sangue foram coletadas antes da administração do veneno, e uma, quatro, oito e 12 horas após os tratamentos para realização de tempo de tromboplastina parcial ativada parcial (TTPa), tempo de protrombina (TP), tempo de trombina (TT) e mensuração de fibrinogênio. Para o ensaio de geração de trombina (TG) foi realizado com um pool de amostras nos tempos finais (8 e 12h). Ao final das 12h, todos os animais foram sacrificados e a necropsia foi realizada. Amostras de tecido muscular, coração, pulmões e rins foram analisadas. Os testes TTPa, TP, TT e fibrinogênio não mostraram diferenças significativas entre os grupos e os tempos. No entanto, o TG indicou que o veneno causa um estado de hipocoagulabilidade, que não foi revertido pelos tratamentos propostos. Na histologia, foram observadas inflamação muscular, hemorragia e necrose, além de hemorragia em outros tecidos, sem diferenças entre os grupos. O envenenamento por B. alternatus causa hipocoagulabilidade detectada mais precocemente pelo teste de geração de trombina. O uso de ácido tranexâmico e desmopressina para estabilização da hemostasia após a inoculação do veneno não mostrou vantagem na restauração da coagulação.(AU)


Assuntos
Animais , Coelhos , Serpentes , Bothrops , Hemostasia , Técnicas Hemostáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA