Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364.985
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959890

Resumo

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Cell ; 185(8): 1294-1296, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35427498

Resumo

Can gut-residing bacteria influence mood and anxiety? And can targeting bacteria-produced metabolites reduce anxiety? Based on two Nature and Nature Medicine papers, the answers to these questions are likely yes. Needham, Campbell, and colleagues identified bacteria that enhance anxiety-like behaviors in mice and ways to mitigate anxiety in autistic patients.


Assuntos
Ansiedade , Bactérias , Microbioma Gastrointestinal , Afeto , Animais , Ansiedade/terapia , Transtorno Autístico , Humanos , Camundongos
3.
Nat Immunol ; 25(4): 607-621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589621

Resumo

One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain-gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials.


Assuntos
Pesquisa Biomédica , COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , Hospitalização , Imunoglobulina G
4.
Cell ; 183(3): 605-619.e22, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031743

Resumo

Exploration of novel environments ensures survival and evolutionary fitness. It is expressed through exploratory bouts and arrests that change dynamically based on experience. Neural circuits mediating exploratory behavior should therefore integrate experience and use it to select the proper behavioral output. Using a spatial exploration assay, we uncovered an experience-dependent increase in momentary arrests in locations where animals arrested previously. Calcium imaging in freely exploring mice revealed a genetically and projection-defined neuronal ensemble in the basolateral amygdala that is active during self-paced behavioral arrests. This ensemble was recruited in an experience-dependent manner, and closed-loop optogenetic manipulation of these neurons revealed that they are sufficient and necessary to drive experience-dependent arrests during exploration. Projection-specific imaging and optogenetic experiments revealed that these arrests are effected by basolateral amygdala neurons projecting to the central amygdala, uncovering an amygdala circuit that mediates momentary arrests in familiar places but not avoidance or anxiety/fear-like behaviors.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Central da Amígdala/fisiologia , Comportamento Exploratório/fisiologia , Rede Nervosa/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/diagnóstico por imagem , Feminino , Locomoção , Aprendizado de Máquina , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Imagem Óptica
5.
Cell ; 182(6): 1574-1588.e19, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946782

Resumo

Hallucinogens like lysergic acid diethylamide (LSD), psilocybin, and substituted N-benzyl phenylalkylamines are widely used recreationally with psilocybin being considered as a therapeutic for many neuropsychiatric disorders including depression, anxiety, and substance abuse. How psychedelics mediate their actions-both therapeutic and hallucinogenic-are not understood, although activation of the 5-HT2A serotonin receptor (HTR2A) is key. To gain molecular insights into psychedelic actions, we determined the active-state structure of HTR2A bound to 25-CN-NBOH-a prototypical hallucinogen-in complex with an engineered Gαq heterotrimer by cryoelectron microscopy (cryo-EM). We also obtained the X-ray crystal structures of HTR2A complexed with the arrestin-biased ligand LSD or the inverse agonist methiothepin. Comparisons of these structures reveal determinants responsible for HTR2A-Gαq protein interactions as well as the conformational rearrangements involved in active-state transitions. Given the potential therapeutic actions of hallucinogens, these findings could accelerate the discovery of more selective drugs for the treatment of a variety of neuropsychiatric disorders.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Alucinógenos/química , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Células HEK293 , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Humanos , Ligantes , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/farmacologia , Metiotepina/química , Metiotepina/metabolismo , Modelos Químicos , Mutação , Conformação Proteica em alfa-Hélice , Receptor 5-HT2A de Serotonina/genética , Proteínas Recombinantes , Serotonina/metabolismo , Spodoptera
6.
Nat Immunol ; 23(11): 1527-1535, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369271

Resumo

Myriad clinical findings provide links between chronic stressors, inflammation, and mood disorders. Furthermore, traumatic or chronic exposure to psychological stressors may promote stress sensitization, in which individuals have long-term complications, including increased vulnerability to subsequent stressors. Post-traumatic stress disorder (PTSD) is a clinically relevant example of stress sensitization. PTSD alters neuronal circuitry and mood; however, the mechanisms underlying long-term stress sensitization within this disorder are unclear. Rodent models of chronic social defeat recapitulate several key physiological, immunological, and behavioral responses associated with psychological stress in humans. Repeated social defeat (RSD) uniquely promotes the convergence of neuronal, central inflammatory (microglial), and peripheral immune (monocyte) pathways, leading to prolonged anxiety, social withdrawal, and cognitive impairment. Moreover, RSD promotes stress sensitization, in which mice are highly sensitive to subthreshold stress exposure and recurrence of anxiety weeks after the cessation of stress. Therefore, the purpose of this Review is to discuss the influence of social-defeat stress on the immune system that may underlie stress sensitization within three key cellular compartments: neurons, microglia, and monocytes. Delineating the mechanisms of stress sensitization is critical in understanding and treating conditions such as PTSD.


Assuntos
Neuroimunomodulação , Estresse Psicológico , Humanos , Animais , Camundongos , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Ansiedade/psicologia , Microglia , Monócitos
7.
Cell ; 179(4): 803-805, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675492

Resumo

How does stress promote anxiety? In this issue of Cell, Fan et al. report that immune cells have a direct role in this process. They show that chronic stress promotes mitochondrial fission in CD4+ T cells, causing increased synthesis of xanthine, which acts on the brain and induces anxiety-like behaviors.


Assuntos
Linfócitos T CD4-Positivos , Doenças Metabólicas , Ansiedade , Humanos , Dinâmica Mitocondrial
8.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675497

Resumo

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Encefalopatias Metabólicas/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/genética , Ansiedade/imunologia , Ansiedade/fisiopatologia , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/fisiopatologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Dinâmica Mitocondrial/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise de Célula Única , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Transcriptoma/genética , Xantina/metabolismo
9.
Cell ; 178(4): 867-886.e24, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398341

Resumo

Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.


Assuntos
Transtorno do Espectro Autista/metabolismo , Agonistas GABAérgicos/farmacologia , Ácidos Isonicotínicos/farmacologia , Fenótipo , Células Receptoras Sensoriais/efeitos dos fármacos , Tato/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Agonistas GABAérgicos/uso terapêutico , Ácidos Isonicotínicos/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Inibição Pré-Pulso/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
10.
Cell ; 176(3): 597-609.e18, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661754

Resumo

Many evolutionary years separate humans and macaques, and although the amygdala and cingulate cortex evolved to enable emotion and cognition in both, an evident functional gap exists. Although they were traditionally attributed to differential neuroanatomy, functional differences might also arise from coding mechanisms. Here we find that human neurons better utilize information capacity (efficient coding) than macaque neurons in both regions, and that cingulate neurons are more efficient than amygdala neurons in both species. In contrast, we find more overlap in the neural vocabulary and more synchronized activity (robustness coding) in monkeys in both regions and in the amygdala of both species. Our findings demonstrate a tradeoff between robustness and efficiency across species and regions. We suggest that this tradeoff can contribute to differential cognitive functions between species and underlie the complementary roles of the amygdala and the cingulate cortex. In turn, it can contribute to fragility underlying human psychopathologies.


Assuntos
Tonsila do Cerebelo/fisiologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Adulto , Animais , Evolução Biológica , Criança , Pré-Escolar , Cognição/fisiologia , Emoções/fisiologia , Feminino , Humanos , Macaca , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Especificidade da Espécie
11.
Immunity ; 57(3): 495-512.e11, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38395698

Resumo

Na+/K+-ATPase (NKA) plays an important role in the central nervous system. However, little is known about its function in the microglia. Here, we found that NKAα1 forms a complex with the purinergic P2X7 receptor (P2X7R), an adenosine 5'-triphosphate (ATP)-gated ion channel, under physiological conditions. Chronic stress or treatment with lipopolysaccharide plus ATP decreased the membrane expression of NKAα1 in microglia, facilitated P2X7R function, and promoted microglia inflammatory activation via activation of the NLRP3 inflammasome. Accordingly, global deletion or conditional deletion of NKAα1 in microglia under chronic stress-induced aggravated anxiety-like behavior and neuronal hyperexcitability. DR5-12D, a monoclonal antibody that stabilizes membrane NKAα1, improved stress-induced anxiety-like behavior and ameliorated neuronal hyperexcitability and neurogenesis deficits in the ventral hippocampus of mice. Our results reveal that NKAα1 limits microglia inflammation and may provide a target for the treatment of stress-related neuroinflammation and diseases.


Assuntos
Microglia , Receptores Purinérgicos P2X7 , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Ansiedade , Microglia/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
12.
Cell ; 175(6): 1688-1700.e14, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30415834

Resumo

Human brain networks that encode variation in mood on naturalistic timescales remain largely unexplored. Here we combine multi-site, semi-chronic, intracranial electroencephalography recordings from the human limbic system with machine learning methods to discover a brain subnetwork that correlates with variation in individual subjects' self-reported mood over days. First we defined the subnetworks that influence intrinsic brain dynamics by identifying regions that showed coordinated changes in spectral coherence. The most common subnetwork, found in 13 of 21 subjects, was characterized by ß-frequency coherence (13-30 Hz) between the amygdala and hippocampus. Increased variability of this subnetwork correlated with worsening mood across these 13 subjects. Moreover, these subjects had significantly higher trait anxiety than the 8 of 21 for whom this amygdala-hippocampus subnetwork was absent. These results demonstrate an approach for extracting network-behavior relationships from complex datasets, and they reveal a conserved subnetwork associated with a psychological trait that significantly influences intrinsic brain dynamics and encodes fluctuations in mood.


Assuntos
Afeto , Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Eletroencefalografia , Feminino , Humanos , Aprendizado de Máquina , Masculino , Processamento de Sinais Assistido por Computador
13.
Cell ; 175(2): 472-487.e20, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146164

Resumo

The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.


Assuntos
Núcleo Dorsal da Rafe/anatomia & histologia , Núcleo Dorsal da Rafe/fisiologia , Serotonina/fisiologia , Adaptação Psicológica/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Feminino , Lobo Frontal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Serotonina/metabolismo
14.
Nat Immunol ; 21(11): 1421-1429, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929273

Resumo

Interleukin (IL)-17a has been highly conserved during evolution of the vertebrate immune system and widely studied in contexts of infection and autoimmunity. Studies suggest that IL-17a promotes behavioral changes in experimental models of autism and aggregation behavior in worms. Here, through a cellular and molecular characterization of meningeal γδ17 T cells, we defined the nearest central nervous system-associated source of IL-17a under homeostasis. Meningeal γδ T cells express high levels of the chemokine receptor CXCR6 and seed meninges shortly after birth. Physiological release of IL-17a by these cells was correlated with anxiety-like behavior in mice and was partially dependent on T cell receptor engagement and commensal-derived signals. IL-17a receptor was expressed in cortical glutamatergic neurons under steady state and its genetic deletion decreased anxiety-like behavior in mice. Our findings suggest that IL-17a production by meningeal γδ17 T cells represents an evolutionary bridge between this conserved anti-pathogen molecule and survival behavioral traits in vertebrates.


Assuntos
Ansiedade/etiologia , Ansiedade/metabolismo , Interleucina-17/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Ansiedade/psicologia , Comportamento Animal , Proliferação de Células , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Dura-Máter , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interleucina-17/genética , Meninges/imunologia , Meninges/metabolismo , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética , Transdução de Sinais , Transcriptoma
15.
Cell ; 168(1-2): 311-324.e18, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086095

Resumo

Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here, we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates.


Assuntos
Núcleo Central da Amígdala/fisiologia , Comportamento Predatório , Animais , Ansiedade/metabolismo , Núcleo Central da Amígdala/anatomia & histologia , Eletromiografia , Interneurônios/metabolismo , Mandíbula/anatomia & histologia , Mandíbula/inervação , Mandíbula/fisiologia , Camundongos , Pescoço/anatomia & histologia , Pescoço/inervação , Pescoço/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia
16.
Physiol Rev ; 104(3): 1205-1263, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38483288

Resumo

Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.


Assuntos
Neurobiologia , Resiliência Psicológica , Estresse Psicológico , Biologia de Sistemas , Humanos , Animais , Estresse Psicológico/fisiopatologia , Encéfalo
17.
Cell ; 167(1): 60-72.e11, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641503

Resumo

The frequency of human social and emotional disorders varies significantly between males and females. We have recently reported that oxytocin receptor interneurons (OxtrINs) modulate female sociosexual behavior. Here, we show that, in male mice, OxtrINs regulate anxiety-related behaviors. We demonstrate that corticotropin-releasing-hormone-binding protein (CRHBP), an antagonist of the stress hormone CRH, is specifically expressed in OxtrINs. Production of CRHBP blocks the CRH-induced potentiation of postsynaptic layer 2/3 pyramidal cell activity of male, but not female, mice, thus producing an anxiolytic effect. Our data identify OxtrINs as critical for modulation of social and emotional behaviors in both females and males and reveal a molecular mechanism that acts on local medial prefrontal cortex (mPFC) circuits to coordinate responses to OXT and CRH. They suggest that additional studies of the impact of the OXT/OXTR and CRHBP/CRH pathways in males and females will be important in development of gender-specific therapies.


Assuntos
Ansiedade/psicologia , Proteínas de Transporte/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Interneurônios/metabolismo , Ocitocina/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Ocitocina/metabolismo , Caracteres Sexuais , Animais , Ansiedade/metabolismo , Comportamento Animal , Feminino , Potenciação de Longa Duração , Masculino , Redes e Vias Metabólicas , Camundongos , Fatores Sexuais
18.
Cell ; 166(2): 273-274, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419865

Resumo

A study finds that deficits in touch-sensing somatosensory neurons contribute to social interaction and anxiety phenotypes in mouse models of autism and Rett syndrome. These findings suggest that some core symptoms of autism might originate from aberrant development or function of the peripheral nervous system.


Assuntos
Transtorno Autístico/genética , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Modelos Animais de Doenças , Camundongos , Síndrome de Rett/genética , Tato
19.
Cell ; 166(2): 299-313, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27293187

Resumo

Patients with autism spectrum disorders (ASDs) commonly experience aberrant tactile sensitivity, yet the neural alterations underlying somatosensory dysfunction and the extent to which tactile deficits contribute to ASD characteristics are unknown. We report that mice harboring mutations in Mecp2, Gabrb3, Shank3, and Fmr1 genes associated with ASDs in humans exhibit altered tactile discrimination and hypersensitivity to gentle touch. Deletion of Mecp2 or Gabrb3 in peripheral somatosensory neurons causes mechanosensory dysfunction through loss of GABAA receptor-mediated presynaptic inhibition of inputs to the CNS. Remarkably, tactile defects resulting from Mecp2 or Gabrb3 deletion in somatosensory neurons during development, but not in adulthood, cause social interaction deficits and anxiety-like behavior. Restoring Mecp2 expression exclusively in the somatosensory neurons of Mecp2-null mice rescues tactile sensitivity, anxiety-like behavior, and social interaction deficits, but not lethality, memory, or motor deficits. Thus, mechanosensory processing defects contribute to anxiety-like behavior and social interaction deficits in ASD mouse models. PAPERCLIP.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Comportamento Animal , Modelos Animais de Doenças , Relações Interpessoais , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Receptores de GABA-A/genética , Células Receptoras Sensoriais , Corno Dorsal da Medula Espinal/metabolismo , Sinapses/metabolismo , Tato
20.
Cell ; 167(4): 915-932, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814521

Resumo

Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease.


Assuntos
Encéfalo/fisiologia , Microbioma Gastrointestinal , Animais , Comportamento , Encéfalo/crescimento & desenvolvimento , Feminino , Humanos , Transtornos do Neurodesenvolvimento/microbiologia , Gravidez , Vagina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA