Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.017
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2313203121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530891

Resumo

Consumers range from specialists that feed on few resources to generalists that feed on many. Generalism has the clear advantage of having more resources to exploit, but the costs that limit generalism are less clear. We explore two understudied costs of generalism in a generalist amoeba predator, Dictyostelium discoideum, feeding on naturally co-occurring bacterial prey. Both involve costs of combining prey that are suitable on their own. First, amoebas exhibit a reduction in growth rate when they switched to one species of prey bacteria from another compared to controls that experience only the second prey. The effect was consistent across all six tested species of bacteria. These switching costs typically disappear within a day, indicating adjustment to new prey bacteria. This suggests that these costs are physiological. Second, amoebas usually grow more slowly on mixtures of prey bacteria compared to the expectation based on their growth on single prey. There were clear mixing costs in three of the six tested prey mixtures, and none showed significant mixing benefits. These results support the idea that, although amoebas can consume a variety of prey, they must use partially different methods and thus must pay costs to handle multiple prey, either sequentially or simultaneously.


Assuntos
Amoeba , Dictyostelium , Animais , Dictyostelium/microbiologia , Eucariotos , Dieta , Bactérias , Amoeba/microbiologia , Comportamento Predatório , Cadeia Alimentar
2.
PLoS Biol ; 21(4): e3002059, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011094

Resumo

Predation plays a role in preventing the evolution of ever more complicated sexual displays, because such displays often increase an individual's predation risk. Sexual selection theory, however, omits a key feature of predation in modeling costs to sexually selected traits: Predation is density dependent. As a result of this density dependence, predator-prey dynamics should feed back into the evolution of sexual displays, which, in turn, feeds back into predator-prey dynamics. Here, we develop both population and quantitative genetic models of sexual selection that explicitly link the evolution of sexual displays with predator-prey dynamics. Our primary result is that predation can drive eco-evolutionary cycles in sexually selected traits. We also show that mechanistically modeling the cost to sexual displays as predation leads to novel outcomes such as the maintenance of polymorphism in sexual displays and alters ecological dynamics by muting prey cycles. These results suggest predation as a potential mechanism to maintain variation in sexual displays and underscore that short-term studies of sexual display evolution may not accurately predict long-run dynamics. Further, they demonstrate that a common verbal model (that predation limits sexual displays) with widespread empirical support can result in unappreciated, complex dynamics due to the density-dependent nature of predation.


Assuntos
Evolução Biológica , Comportamento Predatório , Animais , Dinâmica Populacional , Fenótipo , Polimorfismo Genético
3.
Physiol Genomics ; 56(5): 397-408, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497119

Resumo

Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical costs of pig production. A divergent genetic selection experiment from a Large White pig population was performed for 10 generations, leading to pig lines with relatively low- (LRFI) and high- (HRFI) residual feed intake (RFI). Feeding behavior and metabolic differences have been previously reported between the two lines. We hypothesized that part of these differences could be related to differential sensing and absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs (n = 24). We identified 1,106 differentially expressed genes between the two lines, notably affecting pathways of the transmembrane transport activity and related to mitosis or chromosome separation. The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA production and autophagy. Several nutrient transporter and tight junction genes were differentially expressed between lines and/or by short-term feed intake. We also identified 409 differentially methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs changed the transcriptome profiles of the duodenum, and notably its response to feed intake, suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency.NEW & NOTEWORTHY The duodenum is a key organ for the hunger/satiety loop and nutrient sensing. We investigated how the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We observed thousands of changes in gene expression levels between overnight-fasted and fed pigs in high-feed efficiency pig lines, but almost none in the related low-feed efficiency pig line.


Assuntos
Metilação de DNA , Transcriptoma , Suínos/genética , Animais , Transcriptoma/genética , Metilação de DNA/genética , Ingestão de Alimentos/genética , Perfilação da Expressão Gênica , Duodeno , Ração Animal
4.
BMC Genomics ; 25(1): 234, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438858

Resumo

BACKGROUND: Provision of feed is a major determinant of overall profitability in beef production systems, accounting for up to 75% of the variable costs. Thus, improving cattle feed efficiency, by way of determining the underlying genomic control and subsequently selecting for feed efficient cattle, provides a method through which feed input costs may be reduced. The objective of this study was to undertake gene co-expression network analysis using RNA-Sequence data generated from Longissimus dorsi and liver tissue samples collected from steers of two contrasting breeds (Charolais and Holstein-Friesian) divergent for residual feed intake (RFI), across two consecutive distinct dietary phases (zero-grazed grass and high-concentrate). Categories including differentially expressed genes (DEGs) based on the contrasts of RFI phenotype, breed and dietary source, as well as key transcription factors and proteins secreted in plasma were utilised as nodes of the gene co-expression network. RESULTS: Of the 2,929 DEGs within the network analysis, 1,604 were reported to have statistically significant correlations (≥ 0.80), resulting in a total of 43,876 significant connections between genes. Pathway analysis of clusters of co-expressed genes revealed enrichment of processes related to lipid metabolism (fatty acid biosynthesis, fatty acid ß-oxidation, cholesterol biosynthesis), immune function, (complement cascade, coagulation system, acute phase response signalling), and energy production (oxidative phosphorylation, mitochondrial L-carnitine shuttle pathway) based on genes related to RFI, breed and dietary source contrasts. CONCLUSIONS: Although similar biological processes were evident across the three factors examined, no one gene node was evident across RFI, breed and diet contrasts in both liver and muscle tissues. However within the liver tissue, the IRX4, NR1H3, HOXA13 and ZNF648 gene nodes, which all encode transcription factors displayed significant connections across the RFI, diet and breed comparisons, indicating a role for these transcription factors towards the RFI phenotype irrespective of diet and breed. Moreover, the NR1H3 gene encodes a protein secreted into plasma from the hepatocytes of the liver, highlighting the potential for this gene to be explored as a robust biomarker for the RFI trait in beef cattle.


Assuntos
Dieta , Fatores de Transcrição , Bovinos , Animais , Dieta/veterinária , Regulação da Expressão Gênica , Ingestão de Alimentos/genética , Ácidos Graxos
5.
BMC Genomics ; 25(1): 54, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212678

Resumo

BACKGROUND: Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS: A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS: A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Bovinos/genética , Animais , Fenótipo , Ingestão de Alimentos/genética , Comportamento Alimentar , Ração Animal/análise
6.
Environ Microbiol ; 26(1): e16554, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097191

Resumo

Under iron-limiting conditions, fluorescent pseudomonads acquire iron from the environment by secreting strain-specific, iron-chelating siderophores termed pyoverdines (PVD). The rhizosphere bacterium Pseudomonas protegens Pf-5 produces its own PVD but also can cross-feed on PVDs produced by other species. Previous work has found that Pf-5 continues to produce its own PVD when allowed to cross-feed, raising questions about the benefit of heterologous PVD utilisation. Here, we investigate this question using a defined, unidirectional P. protegens Pf-5/Pseudomonas aeruginosa PAO1 cross-feeding model. Quantifying the production of PVD in the presence of heterologous PVD produced by PAO1, we show that cross-feeding Pf-5 strains reduce the production of their own PVD, while non-cross-feeding Pf-5 strains increase the production of PVD. Measuring the fitness of cross-feeding and non-cross-feeding Pf-5 strains in triple coculture with PAO1, we find that cross-feeding provides a fitness benefit to Pf-5 when the availability of heterologous PVD is high. We conclude that cross-feeding can reduce the costs of self-PVD production and may thus aid in the colonisation of iron-limited environments that contain compatible siderophores produced by other resident microbes. Taken together, these results expand our understanding of the mechanisms of interspecific competition for iron in microbial communities.


Assuntos
Ferro , Oligopeptídeos , Pseudomonas , Pseudomonas/genética , Sideróforos , Pseudomonas aeruginosa
7.
BMC Microbiol ; 24(1): 271, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033096

Resumo

BACKGROUND: Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount. The utilization of probiotics to synthesize SeNPs, achieving large-scale industrialization, is a current hotspot in the field of SeNPs synthesis and is currently the most promising synthetic method. To minimize production costs and maximize yield of SeNPs, this study selected agricultural by-products that are nutrient-rich, cost-effective, and readily available as culture medium components. This approach not only fulfills industrial production requirements but also mitigates the impact on downstream processes. RESULTS: The experimental findings revealed that SeNPs synthesized by B. licheniformis F1 exhibited a spherical morphology with diameters ranging from 110 to 170 nm and demonstrating high stability. Both the secondary metabolites of B. licheniformis F1 and the synthesized SeNPs possessed significant free radical scavenging ability. To provide a more robust foundation for acquiring large quantities of SeNPs via fermentation with B. licheniformis F1, key factors were identified through single-factor experiments and response surface methodology (RSM) include a 2% seed liquid inoculum, a temperature of 37 ℃, and agitation at 180 rpm. Additionally, critical factors during the optimization process were corn powder (11.18 g/L), soybean meal (10.34 g/L), and NaCl (10.68 g/L). Upon validating the optimized conditions and culture medium, B. licheniformis F1 can synthesize nearly 100.00% SeNPs from 5 mmol/L sodium selenite. Subsequently, pilot-scale verification in a 5 L fermentor using the optimized medium resulted in a shortened fermentation time, significantly reducing production costs. CONCLUSION: In this study, the efficient production of SeNPs by the probiotic B. licheniformis F1 was successfully achieved, leading to a significant reduction in fermentation costs. The exploration of the practical applications of this strain holds significant potential and provides valuable guidance for facilitating the industrial-scale implementation of microbial synthesis of SeNPs.


Assuntos
Bacillus licheniformis , Meios de Cultura , Fermentação , Probióticos , Selênio , Bacillus licheniformis/metabolismo , Selênio/metabolismo , Meios de Cultura/química , Probióticos/metabolismo , Nanopartículas/química , Nanopartículas Metálicas/química
8.
Microb Ecol ; 87(1): 61, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662080

Resumo

Emissions from transportation and industry primarily cause global warming, leading to floods, glacier melt, and rising seas. Widespread greenhouse gas emissions and resulting global warming pose significant risks to the environment, economy, and society. The need for alternative fuels drives the development of third-generation feedstocks: microalgae, seaweed, and cyanobacteria. These microalgae offer traits like rapid growth, high lipid content, non-competition with human food, and growth on non-arable land using brackish or waste water, making them promising for biofuel. These unique phototrophic organisms use sunlight, water, and carbon dioxide (CO2) to produce biofuels, biochemicals, and more. This review delves into the realm of microalgal biofuels, exploring contemporary methodologies employed for lipid extraction, significant value-added products, and the challenges inherent in their commercial-scale production. While the cost of microalgae bioproducts remains high, utilizing wastewater nutrients for cultivation could substantially cut production costs. Furthermore, this review summarizes the significance of biocircular economy approaches, which encompass the utilization of microalgal biomass as a feed supplement and biofertilizer, and biosorption of heavy metals and dyes. Besides, the discussion extends to the in-depth analysis and future prospects on the commercial potential of biofuel within the context of sustainable development. An economically efficient microalgae biorefinery should prioritize affordable nutrient inputs, efficient harvesting techniques, and the generation of valuable by-products.


Assuntos
Biocombustíveis , Biomassa , Microalgas , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Cianobactérias/metabolismo , Alga Marinha/metabolismo , Dióxido de Carbono/metabolismo
9.
Environ Sci Technol ; 58(2): 1131-1141, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38169368

Resumo

Hydrogen gas evolution using an impure or saline water feed is a promising strategy to reduce overall energy consumption and investment costs for on-site, large-scale production using renewable energy sources. The chlorine evolution reaction is one of the biggest concerns in hydrogen evolution with impure water feeds. The "alkaline design criterion" in impure water electrolysis was examined here because water oxidation catalysts can exhibit a larger kinetic overpotential without interfering chlorine chemistry under alkaline conditions. Here, we demonstrated that relatively inexpensive thin-film composite (TFC) membranes, currently used for high-pressure reverse osmosis (RO) desalination applications, can have much higher rejection of Cl- (total crossover of 2.9 ± 0.9 mmol) than an anion-exchange membrane (AEM) (51.8 ± 2.3 mmol) with electrolytes of 0.5 M KOH for the anolyte and 0.5 M NaCl for the catholyte with a constant current (100 mA/cm2 for 20 h). The membrane resistances, which were similar for the TFC membrane and the AEM based on electrochemical impedance spectroscopy (EIS) and Ohm's law methods, could be further reduced by increasing the electrolyte concentration or removal of the structural polyester supporting layer (TFC-no PET). TFC membranes could enable pressurized gas production, as this membrane was demonstrated to be mechanically stable with no change in permeate flux at 35 bar. These results show that TFC membranes provide a novel pathway for producing green hydrogen with a saline water feed at elevated pressures compared to systems using AEMs or porous diaphragms.


Assuntos
Cloro , Hidrogênio , Metacrilatos , Osmose , Membranas Artificiais , Águas Salinas , Cloretos
10.
Avian Pathol ; : 1-12, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38529824

Resumo

Coccidiosis, caused by parasites of the genus Eimeria, is a significant economic burden to the poultry industry. In this study, we conducted a comprehensive analysis to evaluate the financial losses associated with Eimeria infection in chickens in Algeria, relying on data provided by key stakeholders in the Algerian poultry industry to assess sub-clinical as well as clinical impact. We employed the updated 2020 version of a model established to estimate the cost of coccidiosis in chickens, taking into consideration specific cultural and technical aspects of poultry farming in Algeria. The findings predict economic losses due to coccidiosis in chickens of approximately £86.7 million in Algeria for the year 2022, representing £0.30 per chicken raised. The majority of the cost was attributed to morbidity (74.9%), emphasizing the substantial economic impact of reduced productivity including decreased bodyweight gain and increased feed conversion ratio. Costs associated with control measures made up 20.5% of the total calculated cost, with 4.6% of the cost related to mortality. These figures provide a clear indication of the scope and economic impact of Eimeria infection of chickens in Algeria, illustrating the impact of practices common across North Africa. They underscore the ongoing requirement for effective preventive and control measures to reduce these financial losses while improving productivity and welfare, ensuring the economic sustainability of the Algerian poultry industry.

11.
Genet Sel Evol ; 56(1): 8, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243193

Resumo

BACKGROUND: Improving pigs' ability to digest diets with an increased dietary fiber content is a lever to improve feed efficiency and limit feed costs in pig production. The aim of this study was to determine whether information on the gut microbiota and host genetics can contribute to predict digestive efficiency (DE, i.e. digestibility coefficients of energy, organic matter, and nitrogen), feed efficiency (FE, i.e. feed conversion ratio and residual feed intake), average daily gain, and daily feed intake phenotypes. Data were available for 1082 pigs fed a conventional or high-fiber diet. Fecal samples were collected at 16 weeks, and DE was estimated using near­infrared spectrometry. A cross-validation approach was used to predict traits within the same diet, for the opposite diet, and for a combination of both diets, by implementing three models, i.e. with only genomic (Gen), only microbiota (Micro), and both genomic and microbiota information (Micro+Gen). The predictive ability with and without sharing common sires and breeding environment was also evaluated. Prediction accuracy of the phenotypes was calculated as the correlation between model prediction and phenotype adjusted for fixed effects. RESULTS: Prediction accuracies of the three models were low to moderate (< 0.47) for growth and FE traits and not significantly different between models. In contrast, for DE traits, prediction accuracies of model Gen were low (< 0.30) and those of models Micro and Micro+Gen were moderate to high (> 0.52). Prediction accuracies were not affected by the stratification of diets in the reference and validation sets and were in the same order of magnitude within the same diet, for the opposite diet, and for the combination of both diets. Prediction accuracies of the three models were significantly higher when pigs in the reference and validation populations shared common sires and breeding environment than when they did not (P < 0.001). CONCLUSIONS: The microbiota is a relevant source of information to predict DE regardless of the diet, but not to predict growth and FE traits for which prediction accuracies were similar to those obtained with genomic information only. Further analyses on larger datasets and more diverse diets should be carried out to complement and consolidate these results.


Assuntos
Dieta , Microbiota , Animais , Suínos , Dieta/veterinária , Ingestão de Alimentos/genética , Fenótipo , Genoma , Ração Animal/análise
12.
Environ Res ; 244: 117949, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109961

Resumo

Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.


Assuntos
Compostagem , Plásticos , Humanos , Biopolímeros/química , Tecnologia , Resíduos Industriais
13.
Appl Microbiol Biotechnol ; 108(1): 32, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175237

Resumo

Black soldier fly larvae (BSFL) are considered a sustainable ingredient in livestock feed. However, addressing issues related to feed substrate and intestinal microbiota is essential to ensure optimal larval development. The aim of this study was to assess and elucidate the contribution of substrate nutrients and intestinal microbes to protein and fat synthesis in BSFL. The results showed that larvae that were fed high-quality feed (chicken feed) had high fat biomass, while larvae that were fed medium-quality feed (wheat bran) had high protein biomass. These results indicate that the original nutritional content of the feed cannot fully explain larval growth and nutrient utilization. However, the phenomenon could be explained by the functional metabolism of intestinal microbes. Chicken feed enhanced the fatty acid metabolism of middle intestine microorganisms in larvae within 0-7 days. This process facilitated larval fat synthesis. In contrast, wheat bran stimulated the amino acid metabolism in posterior intestine microorganisms in larvae within 4-7 days, leading to better protein synthesis. The findings of this study highlight the importance of the microbial functional potential in the intestine in regulating protein and lipid synthesis in BSFL, which is also influenced by the type of feed. In conclusion, our study suggests that both feed type and intestinal microbes play a crucial role in efficiently converting organic waste into high-quality insect protein and fat. Additionally, a mixed culture of chicken feed and wheat bran was found to be effective in promoting larval biomass while reducing feed costs. KEY POINTS: • Intestinal microbes explain BSFL growth better than feed substrates. • Chicken feed promotes fatty acid synthesis in the middle intestine • Wheat bran promotes amino acid synthesis in the posterior intestine.


Assuntos
Microbiota , Animais , Larva , Galinhas , Fibras na Dieta , Intestinos , Aminoácidos , Ácidos Graxos
14.
BMC Vet Res ; 20(1): 246, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849831

Resumo

BACKGROUND: Reducing production costs while producing high-quality livestock and poultry products is an ongoing concern in the livestock industry. The addition of oil to livestock and poultry diets can enhance feed palatability and improve growth performance. Emulsifiers can be used as potential feed supplements to improve dietary energy utilization and maintain the efficient productivity of broilers. Therefore, further investigation is warranted to evaluate whether dietary emulsifier supplementation can improve the efficiency of fat utilization in the diet of yellow-feathered broilers. In the present study, the effects of adding emulsifier to the diet on lipid metabolism and the performance of yellow-feathered broilers were tested. A total of 240 yellow-feasted broilers (21-day-old) were randomly divided into 4 groups (6 replicates per group, 10 broilers per replicate, half male and half female within each replicate). The groups were as follows: the control group (fed with basal diet), the group fed with basal diet supplemented with 500 mg/kg emulsifier, the group fed with a reduced oil diet (reduced by 1%) supplemented with 500 mg/kg emulsifier, and the group fed with a reduced oil diet supplemented with 500 mg/kg emulsifier. The trial lasted for 42 days, during which the average daily feed intake, average daily gain, and feed-to-gain ratio were measured. Additionally, the expression levels of lipid metabolism-related genes in the liver, abdominal fat and each intestinal segment were assessed. RESULTS: The results showed that compared with the basal diet group, (1) The average daily gain of the basal diet + 500 mg/kg emulsifier group significantly increased (P < 0.05), and the half-even-chamber rate was significantly increased (P < 0.05); (2) The mRNA expression levels of Cd36, Dgat2, Apob, Fatp4, Fabp2, and Mttp in the small intestine were significantly increased (P < 0.05). (3) Furthermore, liver TG content significantly decreased (P < 0.05), and the mRNA expression level of Fasn in liver was significantly decreased (P < 0.05), while the expression of Apob, Lpl, Cpt-1, and Pparα significantly increased (P < 0.05). (4) The mRNA expression levels of Lpl and Fatp4 in adipose tissue were significantly increased (P < 0.05), while the expression of Atgl was significantly decreased (P < 0.05). (5) Compared with the reduced oil diet group, the half-evading rate and abdominal fat rate of broilers in the reduced oil diet + 500 mg/kg emulsifier group were significantly increased (P < 0.05), and the serum level of LDL-C increased significantly (P < 0.05)0.6) The mRNA expression levels of Cd36, Fatp4, Dgat2, Apob, and Mttp in the small intestine were significantly increased (P < 0.05). 7) The mRNA expression levels of Fasn and Acc were significantly decreased in the liver (P < 0.05), while the mRNA expression levels of Lpin1, Dgat2, Apob, Lpl, Cpt-1, and Pparα were significantly increased (P < 0.05). CONCLUSIONS: These results suggest that dietary emulsifier can enhance the fat utilization efficiency of broilers by increasing the small intestinal fatty acid uptake capacity, inhibiting hepatic fatty acid synthesis and promoting hepatic TG synthesis and transport capacity. This study provides valuable insights for the potential use of emulsifier supplementation to improve the performance of broiler chickens.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Emulsificantes , Metabolismo dos Lipídeos , Animais , Galinhas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Emulsificantes/farmacologia , Ração Animal/análise , Masculino , Feminino , Dieta/veterinária , Fígado/metabolismo , Fígado/efeitos dos fármacos
15.
Anim Genet ; 55(1): 20-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112204

Resumo

Feed costs and carcass yields affect the profitability and sustainability of sheep production. Therefore, it is crucial to select animals with a higher feed efficiency and high-quality meat production. This study focuses on the impact of dietary and genetic factors on production traits such as feed efficiency, carcass quality, and meat quality. Diets promote optimal sheep growth and development and provide sufficient protein can lead to higher-quality meat. However, establishing an optimized production system requires careful consideration and balance of dietary parameters. This includes ensuring adequate protein intake and feeding diets with higher intestinal absorption rates to enhance nutrient absorption in the gut. The study identifies specific genes, such as Callipyge, Calpastatin, and Myostatin, and the presence of causal mutations in these genes, as factors influencing animal growth rates, feed efficiency, and meat fatty acid profiles. Additionally, variants of other reported genes, including PIGY, UCP1, MEF2B, TNNC2, FABP4, SCD, FASN, ADCY8, ME1, CA1, GLIS1, IL1RAPL1, SOX5, SOX6, and IGF1, show potential as markers for sheep selection. A meta-analysis of reported heritability estimates reveals that residual feed intake (0.27 ± 0.07), hot carcass weight (0.26 ± 0.05), dressing percentage (0.23 ± 0.05), and intramuscular fat content (0.45 ± 0.04) are moderately to highly heritable traits. This suggests that these traits are less influenced by environmental factors and could be improved through genetic selection. Additionally, positive genetic correlations exist between body weight and hot carcass weight (0.91 ± 0.06), dressing percentage (0.35 ± 0.15), and shear force (0.27 ± 0.24), indicating that selecting for higher body weight could lead to favorable changes in carcass quality, and meat quality.


Assuntos
Dieta , Carne , Animais , Ovinos/genética , Dieta/veterinária , Ingestão de Alimentos/genética , Fenótipo , Peso Corporal , Ração Animal , Composição Corporal/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-39004302

Resumo

We explored the relationship between gestational states, fecundity, and steroid hormone levels in three species of live-bearing fish with different maternal provisioning strategies. We studied two lecithotrophic species, Gambusia affinis and Xiphophorus couchianus, where embryos feed exclusively on yolk stored in the eggs, and one matrotrophic species, Heterandria formosa, which actively transfers nutrients to embryos through a follicular placenta. We measured water-borne cortisol, estradiol, and progesterone along with brood size (fecundity) and gestational stage(s). We examined the physiological costs of both maternal provisioning modes. Matrotrophy likely imposes energetic demands due to active nutrient transfer, while lecithotrophy may incur costs from carrying many large embryos. We hypothesized that fecundity, gestational stage, and hormones would covary differently in lecithotrophic vs. matrotrophic species. We found no relationships between hormones and fecundity or gestational stage in any species. However, in H. formosa, we found a positive relationship between estradiol levels and female mass, and a negative relationship between progesterone levels and female mass indicating a change in the circulating levels of both hormones as females grow. We observed differences in average hormone levels among species: the matrotrophic species had higher progesterone and lower estradiol compared to lecithotrophic species. Higher estradiol in lecithotrophic species may relate to egg yolk formation, while placental structures could play a role in progesterone production in matrotrophic species. Elevated cortisol in H. formosa suggests either higher energetic costs or a preparative role for reproduction. Our findings highlight progesterone's importance in maintaining gestation in matrotrophic species, like other placental species.

17.
J Dairy Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876224

Resumo

This study investigated the feasibility of integrating hydroponic barley forage (HBF) production into dairy ruminant production, focusing on its effect on milk yield and components, energy and water footprints, and economic implications. Maize silage (MS) was used as a benchmark for comparison. The research was conducted on a water buffalo dairy farm equipped with a fully automated hydroponic system producing approximately 6,000 kg/d of HBF as fed (up 1,000 kg/d on DM basis). Thirty-three lactating water buffaloes were assigned to 3 dietary treatments based on the level of MS or HBF in the diet: D0 (100% MS), D50 (50% MS and 50% HBF), and D100 (100% HBF). The feeding trial lasted 5 weeks plus a 2-week adaptation period during which each cow underwent a weighing, BCS scoring, recording of milk yield and components, including somatic cell count and coagulation characteristics. Based on the data obtained from the in vivo study, the water and energy footprints for the production of MS and HBF and buffalo milk, as well as income over feed cost, were evaluated. Complete replacement of MS with HBF resulted in a slight increase in milk yield without significant impact on milk component. The resource footprint analysis showed potential benefits associated with HBF in terms of water consumption. However, the energy footprint assessment showed that the energy ratio of HBF was less than 1 (0.88) compared with 11.89 for MS. This affected the energy efficiency of milk yield in the 3 diets, with the D50 diet showing poorer performance due to similar milk yield compared with D0, but higher energy costs due to the inclusion of HBF. The production cost of HBF was about 4 times higher than that of farm-produced MS, making feed costs for milk yield more expensive. Nevertheless, HBF can potentially improve income over feed costs if it increases milk yield enough to offset its higher production costs. Overall, the results suggest that the current practice of using HBF to replace high quality feedstuffs as concentrates is likely to result in energy and economic losses.

18.
J Dairy Sci ; 107(3): 1523-1534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37690722

Resumo

Feed efficiency has become an increasingly important research topic in recent years. As feed costs rise and the environmental impacts of agriculture become more apparent, improving the efficiency with which dairy cows convert feed to milk is increasingly important. However, feed intake is expensive to measure accurately on large populations, making the inclusion of this trait in breeding programs difficult. Understanding how the genetic parameters of feed efficiency and traits related to feed efficiency vary throughout the lactation period is valuable to gain understanding into the genetic nature of feed efficiency. This study used 121,226 dry matter intake (DMI) records, 120,500 energy-corrected milk (ECM) records, and 98,975 metabolic body weight (MBW) records, collected on 7,440 first-lactation Holstein cows from 6 countries (Canada, Denmark, Germany, Spain, Switzerland, and the United States), from January 2003 to February 2022. Genetic parameters were estimated using a multiple-trait random regression model with a fourth-order Legendre polynomial for all traits. Weekly phenotypes for DMI were re-parameterized using linear regressions of DMI on ECM and MBW, creating a measure of feed efficiency that was genetically corrected for ECM and MBW, referred to as genomic residual feed intake (gRFI). Heritability (SE) estimates varied from 0.15 (0.03) to 0.29 (0.02) for DMI, 0.24 (0.01) to 0.29 (0.03) for ECM, 0.55 (0.03) to 0.83 (0.05) for MBW, and 0.12 (0.03) to 0.22 (0.06) for gRFI. In general, heritability estimates were lower in the first stage of lactation compared with the later stages of lactation. Additive genetic correlations between weeks of lactation varied, with stronger correlations between weeks of lactation that were close together. The results of this study contribute to a better understanding of the change in genetic parameters across the first lactation, providing insight into potential selection strategies to include feed efficiency in breeding programs.


Assuntos
Lactação , Leite , Animais , Feminino , Bovinos/genética , Lactação/genética , Ingestão de Alimentos/genética , Agricultura , Fenótipo
19.
J Dairy Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754817

Resumo

Large data sets allow estimating feed required for individual milk components or body maintenance. Phenotypic regressions are useful for nutrition management, but genetic regressions are more useful in breeding programs. Dry matter intake (DMI) records from 8,513 lactations of 6,621 Holstein cows were predicted from phenotypes or genomic evaluations for milk components and body size traits. The mixed models also included days in milk, age-parity subclass, trial date, management group, and body weight change during 28- and 42-d feeding trials in mid-lactation. Phenotypic regressions of DMI on milk (0.014 ± 0.006), fat (3.06 ± 0.01), and protein (4.79 ± 0.25) were much less than corresponding genomic regressions (0.08 ± 0.03, 11.30 ± 0.47, and 9.35 ± 0.87) or sire genomic regressions multiplied by 2 (0.048 ± 0.04, 6.73 ± 0.94, and 4.98 ± 1.75). Thus, marginal feed costs as fractions of marginal milk revenue were higher from genetic than phenotypic regressions. According to the energy-corrected milk formula, fat production requires 69% more DMI than protein production. In the phenotypic regression, it was estimated that protein production requires 56% more DMI than fat. However, the genomic regression for the animal showed a difference of only 21% more DMI for protein compared with fat, while the sire genomic regressions indicated approximately 35% more DMI for fat than protein. Estimates of annual maintenance in kg DMI / kg body weight/lactation were similar from phenotypic regression (5.9 ± 0.14), genomic regression (5.8 ± 0.31), and sire genomic regression multiplied by 2 (5.3 ± 0.55) and are larger than those estimated by NASEM (2021) based on NEL equations. Multiple regressions on genomic evaluations for the 5 type traits in body weight composite (BWC) showed that strength was the type trait most associated with body weight and DMI, agreeing with the current BWC formula, whereas other traits were less useful predictors, especially for DMI. The Net Merit formula used to weight different genetic traits to achieve an economically optimal overall selection response was revised in 2021 to better account for these estimated regressions. To improve profitability, breeding programs should select smaller cows with negative residual feed intake that produce more milk, fat, and protein.

20.
J Dairy Sci ; 107(2): 870-882, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37769943

Resumo

Diet formulation in a pasture-based dairy system is a challenge as the quality and quantity of available pasture, which generally constitutes the base diet, is constantly changing. The objective of this paper is to cover a more in-depth review of the nutritional characteristics of pasture-based diets, identifying potential system, plant, and animal factors that condition pasture dietary inclusion in dairy cows. In practice, there is a wide diversity of pasture-based systems with predominant to minimal use of pasture requiring a more specific classification that potentially considers the amount and time of access to pasture, access to housing, length of grazing season, seasonality of calving, and level and method of supplementation. There are important differences in the nutritional quality between pasture species and even cultivars. However, under management practices that promote maintenance of pasture in a vegetative state as well as controlling the availability of pasture, it is possible to achieve high dry matter intakes (∼2.9%-3.4% of live weight) of pasture with moderate to high diet energy density, protein supply, and digestibility. The amount of pasture to include in the diet will depend on several factors, such as the type of production system, the cost of supplementary feeds, and the farmer's objectives, but inclusions of ∼40% to 50% of the diet seem to potentially reduce costs while apparently not limiting voluntary feed intake. Considering that there seems to be a continuum of intermediate management systems, a better understanding of the factors inherent to the feed ingredients used, as well as the use of nutrients by cows, and potential interactions between animal × system should be addressed in greater depth. This requires a meta-analysis approach, but given the diversity of the pasture-based system in practice, the existing information is highly fragmented. A clear definition of "subsystems" is necessary to direct the future research and development of mechanistic models.


Assuntos
Lactação , Leite , Animais , Bovinos , Feminino , Humanos , Ração Animal/análise , Indústria de Laticínios/métodos , Dieta/veterinária , Ingestão de Alimentos , Leite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA