Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.011
Filtrar
1.
Microb Cell Fact ; 23(1): 99, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566096

RESUMO

BACKGROUND: The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS: We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS: Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.


Assuntos
6-Fitase , Saccharomycetales , Pichia/metabolismo , Metanol/metabolismo , 6-Fitase/genética , 6-Fitase/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo
2.
World J Microbiol Biotechnol ; 40(5): 155, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581587

RESUMO

The study aims to enhance ethanol production by Wickerhamomyces subpelliculosus ZE75 isolated from marine sediment. In addition, analyzing the kinetic parameters of ethanol production and optimization of the fermentation conditions was performed. The marine yeast isolate ZE75 was selected as the front runner ethanol-producer, with an ethanol yield of 89.77 gL-1. ZE75 was identified relying on the phenotypic and genotypic characteristics of W. subpelliculosus. The genotypic characterization based on the Internal Transcribed Spacer (ITS) sequence was deposited in the GenBank database with the accession number OP715873. The maximum specific ethanol production rate (vmax) was 0.482 gg-1 h-1 at 175 gL-1 glucose concentration, with a high accuracy of R2 0.95. The maximum growth specific rates (µmax) were 0.141 h-1 obtained at 150 gL-1 glucose concentration with R2 0.91. Optimization of the fermentation parameters such as pH and salinity has been achieved. The highest ethanol yield 0.5637 gg-1 was achieved in a 100% natural seawater-based medium. The maximum ethanol production of 104.04 gL-1 was achieved at pH 4.5 with a specific ethanol rate of 0.1669 gg-1 h-1. The findings of the present study recommend the possibility of ethanol production from a seawater-based medium on a large scale using W. subpelliculosus ZE75.


Assuntos
Etanol , Saccharomycetales , Leveduras , Fermentação , Glucose
3.
Sci Rep ; 14(1): 8111, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582950

RESUMO

Colisepticaemia caused by avian pathogenic Escherichia coli (APEC) is a challenging disease due to its high economic importance in poultry, dubious pathogenesis and potential link with zoonosis and food safety. The existing in vitro studies can't define hallmark traits of APEC isolates, suggesting a paradigm shift towards host response to understand pathogenesis. This study investigated the comprehensive pathological and microbial progression of colisepticaemia, and transmission of E. coli into eggs using novel tools. In total 48 hens were allocated into three groups and were inoculated intratracheally with ilux2-E. coli PA14/17480/5-/ovary (bioluminescent strain), E. coli PA14/17480/5-/ovary or phosphate buffered saline. Infection with both strains led to typical clinical signs and lesions of colibacillosis as in field outbreaks. Based on lung histopathology, colisepticaemia progression was divided into four disease stages as: stage I (1-3 days post infection (dpi)), stage II (6 dpi), stage III (9 dpi) and stage IV (16 dpi) that were histologically characterized by predominance of heterophils, mixed cells, pyogranuloma, and convalescence, respectively. As disease progressed, bacterial colonization in host organs also decreased, revealed by the quantification of bacterial bioluminescence, bacteriology, and quantitative immunohistochemistry. Furthermore, immunofluorescence, immunohistochemistry, and bacteria re-isolation showed that E. coli colonized the reproductive tract of infected hens and reached to egg yolk and albumen. In conclusion, the study provides novel insights into the pathogenesis of colisepticemia by characterizing microbial and pathological changes at different disease stages, and of the bacteria transmission to table eggs, which have serious consequences on poultry health and food safety.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Feminino , Escherichia coli , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Infecções por Escherichia coli/microbiologia , Gema de Ovo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38591772

RESUMO

Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.


Assuntos
Agaricales , Saccharomycetales , Filogenia , DNA Espaçador Ribossômico/genética , Agaricales/genética , Trametes/genética , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Saccharomycetales/genética , DNA Fúngico/genética , Técnicas de Tipagem Micológica
5.
Artigo em Inglês | MEDLINE | ID: mdl-38591773

RESUMO

Four yeast strains, representing a novel anamorphic species, were isolated in Thailand. The two strains (ST-3660T and ST-3647) were obtained from two different estuarine water samples in a mangrove forest. Strain DMKU-FW1-37 was derived from a grease sample, and another strain (TSU57) was isolated from a fruiting body of Phallus sp. Pairwise sequence analysis showed that the four strains had identical or differed by only one nucleotide substitution in the D1/D2 domains of the large subunit (LSU) rRNA gene, and differed by one to three nucleotide substitutions in the internal transcribed spacer (ITS) regions. Savitreea pentosicarens is the most closely related species to the four strains, but with 9-10 (1.57-1.72 %) nucleotide substitutions in the D1/D2 domains of the LSU rRNA gene and 29-31 (4.22-4.45 %) nucleotide substitutions in the ITS regions. Phylogenetic analyses based on the concatenated sequences of the ITS regions and the D1/D2 domains of the LSU rRNA gene showed that the four strains form a well-separated lineage from S. pentosicarens with high bootstrap support, confirming that they represent a distinct species. Therefore, the four strains are assigned as representives of a novel species of the genus Savitreea, for which the name Savitreea siamensis sp. nov. is proposed. The holotype is TBRC 4481T and the ex-type is PYCC 9794T (=ST-3660T). The MycoBank number of the novel species is MB 851951.


Assuntos
Ácidos Graxos , Saccharomycetales , Filogenia , DNA Espaçador Ribossômico/genética , Tailândia , Análise de Sequência de DNA , DNA Fúngico/genética , Técnicas de Tipagem Micológica , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Nucleotídeos
6.
Microbiome ; 12(1): 73, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605412

RESUMO

BACKGROUND: The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS: Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS: The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.


Assuntos
Ácidos Graxos , Morus , Animais , Feminino , Ácidos Graxos/metabolismo , Gema de Ovo/metabolismo , Morus/metabolismo , Metabolismo dos Lipídeos , Galinhas/metabolismo , Dieta , Ácidos Graxos Insaturados/metabolismo , Ração Animal/análise , Suplementos Nutricionais
7.
Appl Microbiol Biotechnol ; 108(1): 296, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607413

RESUMO

Sophorolipids (SLs) are promising glycolipid biosurfactants as they are easily produced and functional. SLs from microorganisms are comprised of mixtures of multiple derivatives that have different structures and properties, including well-known acidic and lactonic SL (ASLs and LSLs, respectively). In this study, we established a method for analyzing all SL derivatives in the products of Starmerella bombicola, a typical SL-producing yeast. Detailed component analyses of S. bombicola products were carried out using reversed-phase high-performance liquid chromatography and mass spectrometry. Methanol was used as the eluent as it is a good solvent for all SL derivatives. With this approach, it was possible to not only quantify the ratio of the main components of ASL, LSL, and SL glycerides but also confirm trace components such as SL mono-glyceride and bola-form SL (sophorose at both ends); notably, this is the first time these components have been isolated and identified successfully in naturally occurring SLs. In addition, our results revealed a novel SL derivative in which a fatty acid is bonded in series to the ASL, which had not been reported previously. Using the present analysis method, it was possible to easily track compositional changes in the SL components during culture. Our results showed that LSL and ASL are produced initially and that SL glycerides accumulate from the middle stage during the fermentation process. KEY POINTS: • An easy and detailed component analysis method for sophorolipids (SLs) is introduced. • Multiple SL derivatives were identified different from known SLs. • A novel hydrophobic acidic SL was isolated and characterized.


Assuntos
Ácidos Oleicos , Saccharomycetales , Ácidos Graxos , Glicerídeos
8.
Food Res Int ; 184: 114215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609213

RESUMO

The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.


Assuntos
Bacillus , Esporos Bacterianos , Esporos Bacterianos/genética , Bactérias , Cognição , Gema de Ovo
9.
BMC Public Health ; 24(1): 1026, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609881

RESUMO

BACKGROUND: Patients with sickle cell disease (SCD) are prone to iron profile derangements. This study aimed to determine the prevalence of iron deficiency anaemia (IDA) and their predictors among children with SCD aged between 6 months and 14 years. Assessment of the prevalence of IDA and its predictors helps to understand ways of alleviating the magnitude of the problem so as to prevent possible complications such as shortness of breath and chest pain. METHODS: This was a cross-sectional analytical hospital-based study which included 174 patients with SCD attending SCD clinics at St. Gema hospital and Dodoma regional referral hospital in Dodoma city from October 2020 to March 2021. The cut-off points for detection of IDA was serum ferritin level < 30 µg/L and low mean corpuscular volume (MCV) for age. Data were analyzed using SPSS software version 25.0. Multivariate logistic regression analysis was used to determine the predictors of IDA. P-value less than 0.05 was considered significant. RESULTS: The prevalence of IDA in this study was (16.1%, n = 28). Family income of less than 70,000/= TZS/month (AOR = 2.2, 95% CI = 1.07-2.49, p = 0.023), being transfused with blood less than 3 times from the time of being diagnosed with SCD (AOR = 5.5, 95% CI = 1.03-8.91, p = 0.046), and eating red meat at least once per month (AOR = 3.60, 95% CI = 1.37-9.46, p = 0.010) remained the independent predictors of IDA in multivariate regression analysis. CONCLUSION: The findings of this study have shown that, support of families with children suffering from SCD in terms of financial support for improving medical services including optimal blood transfusion and affordability of diet which is rich in iron such as red meat is imperative.


Assuntos
Anemia Ferropriva , Anemia Falciforme , Criança , Humanos , Lactente , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/epidemiologia , Prevalência , Tanzânia/epidemiologia , Estudos Transversais , Ferro , Anemia Falciforme/complicações , Anemia Falciforme/epidemiologia
10.
Microb Cell Fact ; 23(1): 110, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609906

RESUMO

BACKGROUND: The wasabi receptor, also known as the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel, is a potential target for development of repellents for insects, like the pine weevil (Hylobius abietis) feeding on conifer seedlings and causing damage in forestry. Heterologous expression of TRPA1 from pine weevil in the yeast Pichia pastoris can potentially provide protein for structural and functional studies. Here we take advantage of the Green Fluorescent Protein (GFP) tag to examine the various steps of heterologous expression, to get more insight in clone selection, expression and isolation of the intact purified protein. RESULTS: The sequence of HaTRPA1 is reported and GFP-tagged constructs were made of the full-length protein and a truncated version (Δ1-708 HaTRPA1), lacking the N-terminal ankyrin repeat domain. Clones were screened on GFP expression plates, induced in small liquid cultures and in fed-batch cultures, and evaluated by flow cytometry and fluorescence microscopy. The screening on plates successfully identifies low-expression clones, but fails to predict the ranking of the best performing clones in small-scale liquid cultures. The two constructs differ in their cellular localization. Δ1-708 HaTRPA1 is found in a ring at the perimeter of cell, whereas HaTRPA1 is forming highly fluorescent speckles in interior regions of the cell. The pattern is consistent in different clones of the same construct and persists in fed-batch culture. The expression of Δ1-708 HaTRPA1 decreases the viability more than HaTRPA1, and in fed-batch culture it is clear that intact cells first express Δ1-708 HaTRPA1 and then become damaged. Purifications show that both constructs suffer from degradation of the expressed protein, but especially the HaTRPA1 construct. CONCLUSIONS: The GFP tag makes it possible to follow expression by flow cytometry and fluorescence microscopy. Analyses of localization, cell viability and expression show that the former two parameters are specific for each of the two evaluated constructs, whereas the relative expression of the constructs varies with the cultivation method. High expression is not all that matters, so taking damaged cells into account, something that may be linked to protein degradation, is important when picking the most suitable construct, clone, and expression scheme.


Assuntos
Saccharomycetales , Gorgulhos , Animais , Proteínas de Fluorescência Verde/genética , Citometria de Fluxo
11.
Vet Q ; 44(1): 1-17, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38557401

RESUMO

This study evaluates the effects of dietary Chinese herb ultrafine powder (CHUP) supplementation in late-phase laying hens on the quality and nutritional values of eggs. A total of 576 Xinyang black-feather laying hens (300-day-old) were randomly allocated into eight groups for a 120-day feeding trial. Each group contained eight replicates with nine hens per replicate. The experimental groups included the control (basal diet) and different levels of CHUP groups (details in 'Materials and methods'). The results showed that the eggshell strength was increased (p < 0.05) in the L, LF, L-LF, L-T, and LF-T groups on day 60 of the trial. In addition, the plasma estradiol level in the L-LF, LF-T, and L-LF-T groups and unsaturated fatty acids concentrations in egg yolk of the CHUP groups (except LF-T group) were increased, whereas total cholesterol (T, L-LF, L-T, and L-LF-T groups) in egg yolk and the atherogenicity (T, L-T, and L-LF-T groups) and thrombogenicity (T, L-LF, L-T, and L-LF-T groups) indexes were decreased (p < 0.05) on day 60 of the trial compared with the control group. Moreover, bitter amino acids in egg albumen were decreased (p < 0.05) in the L-LF group on day 60 and the L-LF-T group on day 120 of the trial. Collectively, these findings indicate that dietary CHUP supplementation could improve eggshell quality and increase plasma reproductive hormone, fatty acid and amino acid composition, and nutritional values of eggs, especially L-LF and L-LF-T.


Assuntos
Ração Animal , Galinhas , Animais , Feminino , Pós/análise , Pós/farmacologia , Ração Animal/análise , Óvulo , Gema de Ovo/química , Dieta/veterinária , Aminoácidos , Suplementos Nutricionais
12.
Fungal Biol ; 128(2): 1657-1663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575238

RESUMO

Xylitol is an increasingly popular functional food additive, and the newly isolated yeast Wickerhamomyces anomalus WA has shown extensive substrate utilization capability, with the ability to grow on hexose (d-galactose, d-glucose, d-mannose, l-fructose, and d-sorbose) and pentose (d-xylose and l-arabinose) substrates, as well as high tolerance to xylose at concentrations of up to 300 g/L. Optimal xylitol fermentation conditions were achieved at 32 °C, 140 rpm, pH 5.0, and initial cell concentration OD600 of 2.0, with YP (yeast extract 10 g/L, peptone 20 g/L) as the optimal nitrogen source. Xylitol yield increased from 0.61 g/g to 0.91 g/g with an increase in initial substrate concentration from 20 g/L to 180 g/L. Additionally, 20 g/L glycerol was found to be the optimal co-substrate for xylitol fermentation, resulting in an increase in xylitol yield from 0.82 g/g to 0.94 g/g at 140 rpm, enabling complete conversion of xylose to xylitol.


Assuntos
Saccharomycetales , Xilitol , Fermentação , Xilose , Glucose
13.
PLoS One ; 19(4): e0301584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578716

RESUMO

Argentina is among the most important lemon fruit producers in the world. Penicillium digitatum is the primary lemon fungal phytopathogen, causing green mold during the postharvest. Several alternatives to the use of synthetic fungicides have been developed, being the use of biocontrol yeasts one of the most promising. Although many of the reports are based on the use of a single yeast species, it has been shown that the combination of agents with different mechanisms of action can increase control efficiency through synergistic effects. The combined use of native yeasts with different mechanisms of action had not been studied as a biological control strategy in lemons. In this work, the mechanisms of action of native yeasts (Clavispora lusitaniae AgL21, Clavispora lusitaniae AgL2 and Clavispora lusitaniae AcL2) with biocontrol activity against P. digitatum were evaluated. Isolate AgL21 was selected for its ability to form biofilm, colonize lemon wounds, and inhibit fungal spore germination. The compatibility of C. lusitaniae AgL21 with two killer yeasts of the species Kazachstania exigua (AcL4 and AcL8) was evaluated. In vivo assays were then carried out with the yeasts applied individually or mixed in equal cell concentrations. AgL21 alone was able to control green mold with 87.5% efficiency, while individual killer yeasts were significantly less efficient (43.3% and 38.3%, respectively). Inhibitory effects were increased when C. lusitaniae AgL21 and K. exigua strains were jointly applied. The most efficient treatment was the combination of AgL21 and AcL4, reaching 100% efficiency in wound protection. The combination of AgL21 with AcL8 was as well promising, with an efficiency of 97.5%. The combined application of native yeasts showed a synergistic effect considering that the multiple mechanisms of action involved could hinder the development of green mold in lemon more efficiently than using single yeasts. Therefore, this work demonstrates that the integration of native yeasts with diverse modes of action can provide new insights to formulate effective microbial consortia. This could lead to the development of tailor-made biofungicides, allowing control of postharvest fungal diseases in lemons while remaining competitive with traditionally used synthetic chemicals.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , Saccharomycetales , Leveduras , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Esporos Fúngicos , Frutas/microbiologia , Doenças das Plantas/microbiologia
14.
Bioresour Technol ; 399: 130599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493938

RESUMO

This study established a Candida rugosa lipase (CRL) system to catalyze triolein and ethyl ferulate interesterification. The products were identified, and the binding mode between the substrates and CRL was predicted through molecular docking. Three methods for preparing CRL-AuNPs were proposed and characterized. It was found that the addition of 40 mL of 15 nm gold nanoparticles increased the CRL activity from 3.05 U/mg to 4.75 U/mg, but the hybridization efficiency was only 32.7 %. By using 4 mL of 0.1 mg/mL chloroauric acid, the hybridization efficiency was improved to 50.7 %, but the enzyme activity was sharply decreased. However, when the molar ratio of Mb to HAuCl4 was 0.2, the hybridization efficiency increased to 71.8 %, and the CRL activity was also enhanced to 5.98 U/mg. Under optimal conditions, the enzyme activity of CRL-AuNPs③ was maintained at 95 % after 6 repetitions and 85.6 % after 30 days at room temperature.


Assuntos
Ácidos Cafeicos , Lipase , Nanopartículas Metálicas , Saccharomycetales , Lipase/metabolismo , Ouro , Enzimas Imobilizadas/metabolismo , Trioleína , Simulação de Acoplamento Molecular , Candida/metabolismo , Estabilidade Enzimática
15.
Pol J Vet Sci ; 27(1): 139-142, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38511651

RESUMO

Avian gastric yeast (Macrorhabdus ornithogaster) is a microorganism that infects aviary birds worldwide, both captive and wild. A total number of 352 birds, belonging to 18 avian species, were examined from 2019 to 2022 for M. ornithogaster, using fecal smears of live birds or cytological samples of the proventriculus taken at necropsy. These cytological samples were taken from birds that died from different causes. Some of the birds exhibited symptoms such as lethargy, regurgitation, weight loss and anorexia. Faecal samples were collected from all the birds and analysed for gastric yeast using a direct smear and Gram-staining method. The microorganism was diagnosed most frequently in budgerigars (55.5%), the African gray parrot (33.3%), and nymphs (34.3%). The prevalence of M. ornithogaster in canaries was 10%. The infection was detected in 31% of the examined birds, which shows that the occurrence of M. ornithogaster in exotic birds is common. No clinical signs were observed in the vast majority of birds that tested positive for gastric yeast.


Assuntos
Doenças das Aves , Melopsittacus , Saccharomycetales , Animais , Saccharomyces cerevisiae , Doenças das Aves/epidemiologia
16.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474615

RESUMO

The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Saccharum/metabolismo , Melaço/análise , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae/metabolismo , Frutanos/química , Sacarose/metabolismo
17.
Food Res Int ; 181: 114117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448112

RESUMO

The inoculation of S. cerevisiae can address the excessive acidity in Suanyu, but its influence on the microbial community structure has not been documented. In this study, the microbiota succession, and metabolites of Suanyu with the inoculation of acid-reducing S. cerevisiae L7 were explored. The findings revealed that the addition of S. cerevisiae L7 elevated the pH, and decreased the microbial α-diversity. In Suanyu, the dominant bacterial genera were Lactiplantibacillus and Bacillus, while the dominant fungal genera were Meyerozyma and Saccharomyces. Following the inoculation of S. cerevisiae L7, the relative abundance of Lactiplantibacillus decreased from 21 % to 13 %. Meanwhile, the growth of fungi such as Meyerozyma and Candida was suppressed. The rise in Saccharomyces had a significant impact on various pathways related to amino acid and carbohydrate metabolism, causing the accumulation of flavor compounds. This study sheds more lights on the methods for manipulating microbial community structure in fermented food.


Assuntos
Bacillus , Microbiota , Saccharomyces , Saccharomycetales , Saccharomyces cerevisiae , Aminoácidos
18.
Nat Microbiol ; 9(3): 864-876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443579

RESUMO

The industrial yeast Komagataella phaffii (formerly named Pichia pastoris) is commonly used to synthesize recombinant proteins, many of which are used as human therapeutics or in food. However, the basic strain, named NRRL Y-11430, from which all commercial hosts are derived, is not available without restrictions on its use. Comparative genome sequencing leaves little doubt that NRRL Y-11430 is derived from a K. phaffii type strain deposited in the UC Davis Phaff Yeast Strain Collection in 1954. We analysed four equivalent type strains in several culture collections and identified the NCYC 2543 strain, from which we started to develop an open-access Pichia chassis strain that anyone can use to produce recombinant proteins to industry standards. NRRL Y-11430 is readily transformable, which we found to be due to a HOC1 open-reading-frame truncation that alters cell-wall mannan. We introduced the HOC1 open-reading-frame truncation into NCYC 2543, which increased the transformability and improved secretion of some but not all of our tested proteins. We provide our genome-sequenced type strain, the hoc1tr derivative that we named OPENPichia as well as a synthetic, modular expression vector toolkit under liberal end-user distribution licences as an unencumbered OPENPichia resource for the microbial biotechnology community.


Assuntos
Parede Celular , Microbiota , Saccharomycetales , Humanos , Alimentos , Proteínas Recombinantes/genética
19.
Microb Biotechnol ; 17(3): e14447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478376

RESUMO

Chicken coccidiosis is an intestinal disease caused by the parasite Eimeria, which severely damages the growth of chickens and causes significant economic losses in the poultry industry. Improvement of the immune protective effect of antigens to develop high efficiency subunit vaccines is one of the hotspots in coccidiosis research. Sporozoite-specific surface antigen 1 (SAG1) of Eimeria tenella (E. tenella) is a well-known protective antigen and is one of the main target antigens for the development of subunit, DNA and vector vaccines. However, the production and immunoprotective effects of SAG1 need to be further improved. Here, we report that both SAG1 from E. tenella and its fusion protein with the xylanase XynCDBFV-SAG1 are recombinant expressed and produced in Pichia pastoris (P. pastoris). The substantial expression quantity of fusion protein XynCDBFV-SAG1 is achieved through fermentation in a 15-L bioreactor, reaching up to about 2 g/L. Moreover, chickens immunized with the fusion protein induced higher protective immunity as evidenced by a significant reduction in the shedding of oocysts after E. tenella challenge infection compared with immunized with recombinant SAG1. Our results indicate that the xylanase enhances the immunogenicity of subunit antigens and has the potential for developing novel molecular adjuvants. The high expression level of fusion protein XynCDBFV-SAG1 in P. pastoris holds promise for the development of effective recombinant anti-coccidial subunit vaccine.


Assuntos
Coccidiose , Eimeria tenella , Saccharomycetales , Animais , Eimeria tenella/genética , Galinhas , Antígenos de Superfície , Antígenos de Protozoários/genética , Coccidiose/prevenção & controle , Coccidiose/veterinária , Proteínas Recombinantes/genética , Vacinas Sintéticas/genética
20.
J Agric Food Chem ; 72(10): 5237-5246, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427027

RESUMO

In this study, egg yolk selenium peptides (Se-EYP) were prepared using double-enzyme hydrolysis combined with a shearing pretreatment. The properties of the selenopeptides formed were then characterized, including their yield, composition, molecular weight distribution, antioxidant activity, in vitro digestion, and immunomodulatory activity. The peptide yield obtained after enzymatic hydrolysis using a combination of alkaline protease and neutral protease was 74.5%, of which 82.6% had a molecular weight <1000 Da. The selenium content of the lyophilized solid product was 4.01 µg/g. Chromatography-mass spectrometry analysis showed that 88.6% of selenium in Se-EYP was in the organic form, of which SeMet accounted for 60.3%, SeCys2 for 21.8%, and MeSeCys for 17.9%. After being exposed to in vitro simulated digestion, Se-EYP still had 65.1% of oligopeptides present, and the in vitro antioxidant activity was enhanced. Moreover, Se-EYP exhibited superior immune detection indices, including immune organ index, level of immune factors in the serum, histopathological changes in the spleen, and selenium content in the liver. Our results suggest that Se-EYP may be used as selenium-enriched ingredients in functional food products.


Assuntos
Selênio , Selênio/análise , Antioxidantes , Gema de Ovo/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA