Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 815
Filter
1.
J Med Internet Res ; 26: e50049, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38857066

ABSTRACT

BACKGROUND: It is necessary to harmonize and standardize data variables used in case report forms (CRFs) of clinical studies to facilitate the merging and sharing of the collected patient data across several clinical studies. This is particularly true for clinical studies that focus on infectious diseases. Public health may be highly dependent on the findings of such studies. Hence, there is an elevated urgency to generate meaningful, reliable insights, ideally based on a high sample number and quality data. The implementation of core data elements and the incorporation of interoperability standards can facilitate the creation of harmonized clinical data sets. OBJECTIVE: This study's objective was to compare, harmonize, and standardize variables focused on diagnostic tests used as part of CRFs in 6 international clinical studies of infectious diseases in order to, ultimately, then make available the panstudy common data elements (CDEs) for ongoing and future studies to foster interoperability and comparability of collected data across trials. METHODS: We reviewed and compared the metadata that comprised the CRFs used for data collection in and across all 6 infectious disease studies under consideration in order to identify CDEs. We examined the availability of international semantic standard codes within the Systemized Nomenclature of Medicine - Clinical Terms, the National Cancer Institute Thesaurus, and the Logical Observation Identifiers Names and Codes system for the unambiguous representation of diagnostic testing information that makes up the CDEs. We then proposed 2 data models that incorporate semantic and syntactic standards for the identified CDEs. RESULTS: Of 216 variables that were considered in the scope of the analysis, we identified 11 CDEs to describe diagnostic tests (in particular, serology and sequencing) for infectious diseases: viral lineage/clade; test date, type, performer, and manufacturer; target gene; quantitative and qualitative results; and specimen identifier, type, and collection date. CONCLUSIONS: The identification of CDEs for infectious diseases is the first step in facilitating the exchange and possible merging of a subset of data across clinical studies (and with that, large research projects) for possible shared analysis to increase the power of findings. The path to harmonization and standardization of clinical study data in the interest of interoperability can be paved in 2 ways. First, a map to standard terminologies ensures that each data element's (variable's) definition is unambiguous and that it has a single, unique interpretation across studies. Second, the exchange of these data is assisted by "wrapping" them in a standard exchange format, such as Fast Health care Interoperability Resources or the Clinical Data Interchange Standards Consortium's Clinical Data Acquisition Standards Harmonization Model.


Subject(s)
Communicable Diseases , Semantics , Humans , Communicable Diseases/diagnosis , Common Data Elements
2.
Lab Chip ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920004

ABSTRACT

Point-of-care (POC) diagnostics have emerged as a crucial technology for emerging pathogen detections to enable rapid and on-site detection of infectious diseases. However, current POC devices often suffer from limited sensitivity with poor reliability to provide quantitative readouts. In this paper, we present a self-powered digital loop-mediated isothermal amplification (dLAMP) microfluidic chip (SP-dChip) for the rapid and quantitative detection of nucleic acids. The SP-dChip utilizes a vacuum lung design to passively digitize samples into individual nanoliter wells for high-throughput analysis. The superior digitization scheme is further combined with reverse transcription loop-mediated isothermal amplification (RT-LAMP) to demonstrate dLAMP detection of Zika virus (ZIKV). Firstly, the LAMP assay is loaded into the chip and passively digitized into individual wells. Mineral oil is then pipetted through the chip to differentiate each well as an individual reactor. The chip did not require any external pumping or power input for rapid and reliable results to detect ZIKA RNA as low as 100 copies per µL within one hour. As such, this SP-dChip offers a new class of solutions for truly affordable, portable, and quantitative POC detections for emerging viruses.

3.
Braz J Infect Dis ; 28(3): 103746, 2024.
Article in English | MEDLINE | ID: mdl-38703788

ABSTRACT

Immunodiagnostic tests for detecting dengue virus infections encounter challenges related to cross-reactivity with other related flaviviruses. Our research focuses on the development of a synthetic multiepitope antigen tailored for dengue immunodiagnostics. Selected dengue epitopes involved structural linearity and dissimilarity from the proteomes of Zika and Yellow fever viruses which served for computationally modeling the three-dimensional protein structure, resulting in the design of two proteins: rDME-C and rDME-BR. Both proteins consist of seven epitopes, separated by the GPGPG linker, and a carboxy-terminal 6 × -histidine tag. The molecular weights of the final proteins rDME-C and rDME-BR are 16.83 kDa and 16.80 kDa, respectively, both with an isoelectric point of 6.35. The distinguishing factor between the two proteins lies in the origin of their epitope sequences, where rDME-C is based on the reference dengue proteome, while rDME-BR utilizes sequences from prevalent Dengue genotypes in Brazil from 2008 to 2019. PyMol analysis revealed exposure of epitopes in the secondary structure. Successful expression of the antigens was achieved in soluble form and fluorescence experiments indicated a disordered structure. In subsequent testing, rDME-BR and rDME-C antigens were assessed using an indirect Elisa protocol against Dengue infected serum, previously examined with a commercial diagnostic test. Optimal concentrations for antigens were determined at 10 µg/mL for rDME-BR and 30 µg/mL for rDME-C, with serum dilutions ranging from 1:50 to 1:100. Both antigens effectively detected IgM and IgG antibodies in Dengue fever patients, with rDME-BR exhibiting higher sensitivity. Our in-house test showed a sensitivity of 77.3 % and 82.6 % and a specificity of 89.4 % and 71.4 % for rDME-C and rDEM-BR antigens. No cross-reactivity was observed with serum from Zika-infected mice but with COVID-19 serum samples. Our findings underscore the utility of synthetic biology in crafting Dengue-specific multiepitope proteins and hold promise for precise clinical diagnosis and monitoring responses to emerging Dengue vaccines.


Subject(s)
Antigens, Viral , Dengue Virus , Dengue , Enzyme-Linked Immunosorbent Assay , Epitopes , Dengue/diagnosis , Dengue/immunology , Dengue/blood , Antigens, Viral/immunology , Epitopes/immunology , Humans , Dengue Virus/immunology , Dengue Virus/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions/immunology , Sensitivity and Specificity
4.
Braz J Infect Dis ; 28(3): 103766, 2024.
Article in English | MEDLINE | ID: mdl-38802065

ABSTRACT

BACKGROUND: The last five decades have seen a surge in viral outbreaks, particularly in tropical and subtropical regions like Brazil, where endemic arboviruses such as Dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) pose significant threats. However, current diagnostic strategies exhibit limitations, leading to gaps in infection screening, arbovirus differential diagnoses, DENV serotyping, and life-long infection tracking. This deficiency impedes critical information availability regarding an individual's current infection and past infection history, disease risk assessment, vaccination needs, and policy formulation. Additionally, the availability of point-of-care diagnostics and knowledge regarding immune profiles at the time of infection are crucial considerations. OBJECTIVES: This review underscores the urgent need to strengthen diagnostic methods for arboviruses in Brazil and emphasizes the importance of data collection to inform public health policies for improved diagnostics, surveillance, and policy formulation. METHODS: We evaluated the diagnostic landscape for arboviral infections in Brazil, focusing on tailored, validated methods. We assessed diagnostic methods available for sensitivity and specificity metrics in the context of Brazil. RESULTS: Our review identifies high-sensitivity, high-specificity diagnostic methods for arboviruses and co-infections. Grifols transcription-mediated amplification assays are recommended for DENV, CHIKV, and ZIKV screening, while IgG/IgM ELISA assays outperform Rapid Diagnostic Tests (RDTs). The Triplex real-time RT-PCR assay is recommended for molecular screening due to its sensitivity and specificity. CONCLUSION: Enhanced diagnostic methods, on-going screening, and tracking are urgently needed in Brazil to capture the complex landscape of arboviral infections in the country. Recommendations include nationwide arbovirus differential diagnosis for DENV, ZIKV, and CHIKV, along with increased DENV serotyping, and lifelong infection tracking to combat enduring viral threats and reduce severe presentations.


Subject(s)
Arbovirus Infections , Arboviruses , Humans , Brazil/epidemiology , Arbovirus Infections/diagnosis , Arbovirus Infections/epidemiology , Arboviruses/immunology , Arboviruses/classification , Sensitivity and Specificity , Public Health , Data Collection , Dengue/diagnosis , Dengue/epidemiology , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
5.
Talanta ; 276: 126215, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38723474

ABSTRACT

Antibody detection is the critical first step for tracking the spread of many diseases including COVID-19. Lateral flow immunoassay (LFIA) is the most commonly used method for rapid antibody detection because it is easy-to-use and inexpensive. However, LFIA has limited sensitivity when gold nanoparticles (AuNPs) are used as the signals. In this study, the endospores of Bacillus subtilis were used in combination with AuNP in a LFIA to detect antibodies. The endospores serve as a signal amplifier. The detection limit was about 10-8 M for anti-beta galactosidase antibody detection whereas the detection limit of conventional LFIA is about 10-6 M. Furthermore, the proposed methods have no additional user steps compared with the traditional LFIA. This method, therefore, improved the sensitivity 100-fold without compromising any advantages of LFIA. We believe that the proposed method will be useful for detection of antibodies against HIV, Zika virus, SARS-CoV-2, and so on.


Subject(s)
Bacillus subtilis , Gold , Limit of Detection , Metal Nanoparticles , Bacillus subtilis/immunology , Immunoassay/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Spores, Bacterial/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Zika Virus/immunology
6.
Trop Med Infect Dis ; 9(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38787038

ABSTRACT

Brazil reported 18,282 suspected congenital Zika syndrome (CZS) cases up to 2018 and accounts for 61.4% of the total reported Zika cases in the Americas in the period. To detect high-risk areas for children with CZS in the city of Rio de Janeiro, we used cluster detection and thematic maps. We analyzed data using a Poisson model in Satscan 10.1.3 software. We also analyzed the records of children with CZS from 2015 to 2016 to describe the clinical and epidemiological maternal and child profile, as well as live births in 2016 and the social development index (SDI) by neighborhood. In 2015 and 2016, the incidence rates of CZS were 8.84 and 46.96 per 100,000 live births in the city, respectively. Severe congenital findings such as microcephaly and brain damage, osteoarticular impairment, ocular abnormalities, and hearing loss were observed in 47 children. The spatial distribution of CZS was concentrated in the north and west zones in heterogeneous neighborhoods. The neighborhoods with the highest occurrence of CZS cases were found to have the worst SDIs. Stascan detected three spatial clusters in the north zone, where the SDI is lower. The clusters presented high relative risks for CZS (7.86, 1.46, and 2.08), although they were not statistically significant. Our findings highlight a higher occurrence of CZS in areas with less favorable socioeconomic conditions.

7.
Micromachines (Basel) ; 15(5)2024 May 19.
Article in English | MEDLINE | ID: mdl-38793236

ABSTRACT

Chikungunya virus, a mosquito-borne virus that causes epidemics, is often misdiagnosed due to symptom similarities with other arboviruses. Here, a portable and integrated nucleic acid-based diagnostic device, which combines reverse transcription-loop-mediated isothermal amplification and lateral-flow detection, was developed. The device is simple to use, precise, equipment-free, and highly sensitive, enabling rapid chikungunya virus identification. The result can be obtained by the naked eye within 40 min. The assay can effectively distinguish chikungunya virus from dengue virus, Japanese encephalitis virus, Zika virus, and yellow fever virus with high specificity and sensitivity as low as 598.46 copies mL-1. It has many benefits for the community screening and monitoring of chikungunya virus in resource-limited areas because of its effectiveness and simplicity. The platform has great potential for the rapid nucleic acid detection of other viruses.

8.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786028

ABSTRACT

Zika (ZIKV) and Chikungunya (CHIKV) viruses are mosquito-transmitted infections, or vector-borne pathogens, that emerged a few years ago. Reliable diagnostic tools for ZIKV and CHIKV-inexpensive, multiplexed, rapid, highly sensitive, and specific point-of-care (POC) systems-are vital for appropriate risk management and therapy. We recently studied a detection system with great success in Mexico (Villahermosa, state of Tabasco), working with human sera from patients infected with those viruses. The research conducted in Mexico validated the efficacy of a novel two-step rapid isothermal amplification technique (RAMP). This approach, which encompasses recombinase polymerase amplification (RPA) followed by loop-mediated isothermal amplification (LAMP), had been previously established in the lab using lab-derived Zika (ZIKV) and Chikungunya (CHIKV) viruses. Crucially, our findings confirmed that this technique is also effective when applied to human sera samples collected from locally infected individuals in Mexico.


Subject(s)
Chikungunya virus , Nucleic Acid Amplification Techniques , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Zika Virus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Zika Virus Infection/blood , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Chikungunya Fever/blood , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , RNA, Viral/blood , Mexico , Sensitivity and Specificity , RNA Viruses/genetics , RNA Viruses/isolation & purification
10.
Viruses ; 16(4)2024 03 30.
Article in English | MEDLINE | ID: mdl-38675882

ABSTRACT

As a mosquito-borne flavivirus, Zika virus (ZIKV) has been identified as a global health threat. The virus has been linked to severe congenital disabilities, including microcephaly and other congenital malformations, resulting in fatal intrauterine death. Therefore, developing sensitive and specific methods for the early detection and accurate diagnosis of the ZIKV is essential for controlling its spread and mitigating its impact on public health. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the non-structural protein 5 (NS5) region of the ZIKV genome (abbreviated ZIKV-PAND). Without preamplification with the polymerase chain reaction (PCR), the minimum detection concentration (MDC) of ZIKV-PAND was about 10 nM. When introducing an amplification step, the MDC can be dramatically decreased to the aM level (8.3 aM), which is comparable to qRT-PCR assay (1.6 aM). In addition, the diagnostic findings from the analysis of simulated clinical samples or Zika virus samples using ZIKV-PAND show a complete agreement of 100% with qRT-PCR assays. This correlation can aid in the implementation of molecular testing for clinical diagnoses and the investigation of ZIKV infection on an epidemiological scale.


Subject(s)
Pyrococcus furiosus , Viral Nonstructural Proteins , Zika Virus Infection , Zika Virus , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Humans , Viral Nonstructural Proteins/genetics , Pyrococcus furiosus/genetics , Argonaute Proteins/genetics , Sensitivity and Specificity , RNA, Viral/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Genome, Viral
11.
PLoS Negl Trop Dis ; 18(4): e0012100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635656

ABSTRACT

Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is the causative agent of Zika fever, a mild and frequent oligosymptomatic disease in humans. Nonetheless, on rare occasions, ZIKV infection can be associated with Guillain-Barré Syndrome (GBS), and severe congenital complications, such as microcephaly. The oligosymptomatic disease, however, presents symptoms that are quite similar to those observed in infections caused by other frequent co-circulating arboviruses, including dengue virus (DENV). Moreover, the antigenic similarity between ZIKV and DENV, and even with other members of the Flaviviridae family, complicates serological testing due to the high cross-reactivity of antibodies. Here, we designed, produced in a prokaryotic expression system, and purified three multiepitope proteins (ZIKV-1, ZIKV-2, and ZIKV-3) for differential diagnosis of Zika. The proteins were evaluated as antigens in ELISA tests for the detection of anti-ZIKV IgG using ZIKV- and DENV-positive human sera. The recombinant proteins were able to bind and detect anti-ZIKV antibodies without cross-reactivity with DENV-positive sera and showed no reactivity with Chikungunya virus (CHIKV)- positive sera. ZIKV-1, ZIKV-2, and ZIKV-3 proteins presented 81.6%, 95%, and 66% sensitivity and 97%, 96%, and 84% specificity, respectively. Our results demonstrate the potential of the designed and expressed antigens in the development of specific diagnostic tests for the detection of IgG antibodies against ZIKV, especially in regions with the circulation of multiple arboviruses.


Subject(s)
Arboviruses , Chikungunya Fever , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/diagnosis , Zika Virus/genetics , Epitopes , Antibodies, Viral , Immunoglobulin G
12.
Diagnostics (Basel) ; 14(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611633

ABSTRACT

The protein-L-utilizing Förster resonance energy transfer (LFRET) assay enables mix-and-read antibody detection, as demonstrated for sera from patients with, e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus, and orthohantavirus infections. In this study, we compared paired serum and whole blood (WB) samples of COVID-19 patients and SARS-CoV-2 vaccine recipients. We found that LFRET also detects specific antibodies in WB samples. In 44 serum-WB pairs from patients with laboratory-confirmed COVID-19, LFRET showed a strong correlation between the sample materials. By analyzing 89 additional WB samples, totaling 133 WB samples, we found that LFRET results were moderately correlated with enzyme-linked immunosorbent assay results for samples collected 2 to 14 months after receiving COVID-19 diagnosis. However, the correlation decreased for samples >14 months after receiving a diagnosis. When comparing the WB LFRET results to neutralizing antibody titers, a strong correlation emerged for samples collected 1 to 14 months after receiving a diagnosis. This study also highlights the versatility of LFRET in detecting antibodies directly from WB samples and suggests that it could be employed for rapidly assessing antibody responses to infectious agents or vaccines.

13.
PLoS Negl Trop Dis ; 18(4): e0012077, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598549

ABSTRACT

BACKGROUND: Fever is the most frequent symptom in patients seeking care in South and Southeast Asia. The introduction of rapid diagnostic tests (RDTs) for malaria continues to drive patient management and care. Malaria-negative cases are commonly treated with antibiotics without confirmation of bacteraemia. Conventional laboratory tests for differential diagnosis require skilled staff and appropriate access to healthcare facilities. In addition, introducing single-disease RDTs instead of conventional laboratory tests remains costly. To overcome some of the delivery challenges of multiple separate tests, a multiplexed RDT with the capacity to diagnose a diverse range of tropical fevers would be a cost-effective solution. In this study, a multiplex lateral flow immunoassay (DPP Fever Panel II Assay) that can detect serum immunoglobulin M (IgM) and specific microbial antigens of common fever agents in Asia (Orientia tsutsugamushi, Rickettsia typhi, Leptospira spp., Burkholderia pseudomallei, Dengue virus, Chikungunya virus, and Zika virus), was evaluated. METHODOLOGY/PRINCIPAL FINDINGS: Whole blood (WB) and serum samples from 300 patients with undefined febrile illness (UFI) recruited in Vientiane, Laos PDR were tested using the DPP Fever Panel II, which consists of an Antibody panel and Antigen panel. To compare reader performance, results were recorded using two DPP readers, DPP Micro Reader (Micro Reader 1) and DPP Micro Reader Next Generation (Micro Reader 2). WB and serum samples were run on the same fever panel and read on both micro readers in order to compare results. ROC analysis and equal variance analysis were performed to inform the diagnostic validity of the test compared against the respective reference standards of each fever agent (S1 Table). Overall better AUC values were observed in whole blood results. No significant difference in AUC performance was observed when comparing whole blood and serum sample testing, except for when testing for R. typhi IgM (p = 0.04), Leptospira IgM (p = 0.02), and Dengue IgG (p = 0.03). Linear regression depicted R2 values had ~70% agreement across WB and serum samples, except when testing for leptospirosis and Zika, where the R2 values were 0.37 and 0.47, respectively. No significant difference was observed between the performance of Micro Reader 1 and Micro Reader 2, except when testing for the following pathogens: Zika IgM, Zika IgG, and B pseudomallei CPS Ag. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that the diagnostic accuracy of the DPP Fever Panel II is comparable to that of commonly used RDTs. The optimal cut-off would depend on the use of the test and the desired sensitivity and specificity. Further studies are required to authenticate the use of these cut-offs in other endemic regions. This multiplex RDT offers diagnostic benefits in areas with limited access to healthcare and has the potential to improve field testing capacities. This could improve tropical fever management and reduce the public health burden in endemic low-resource areas.


Subject(s)
Immunoglobulin M , Sensitivity and Specificity , Humans , Immunoglobulin M/blood , Female , Male , Laos , Adult , Fever/diagnosis , Antibodies, Bacterial/blood , Diagnostic Tests, Routine/methods , Middle Aged , Adolescent , Young Adult , Antibodies, Viral/blood , Antigens, Bacterial/immunology , Antigens, Bacterial/analysis , Immunoassay/methods , Immunoassay/standards
14.
Microorganisms ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674713

ABSTRACT

Viral hemorrhagic fever poses a significant public health challenge due to its severe clinical presentation and high mortality rate. The diagnostic process is hindered by similarity of symptoms across different diseases and the broad spectrum of pathogens that can cause hemorrhagic fever. In this study, we applied viral metagenomic analysis to 43 serum samples collected by the Public Health Laboratory (Fundação Ezequiel Dias, FUNED) in Minas Gerais State, Brazil, from patients diagnosed with hemorrhagic fever who had tested negative for the standard local hemorrhagic disease testing panel. This panel includes tests for Dengue virus (DENV) IgM, Zika virus IgM, Chikungunya virus IgM, yellow fever IgM, Hantavirus IgM, Rickettsia rickettsii IgM/IgG, and Leptospira interrogans IgM, in addition to respective molecular tests for these infectious agents. The samples were grouped into 18 pools according to geographic origin and analyzed through next-generation sequencing on the NextSeq 2000 platform. Bioinformatic analysis revealed a prevalent occurrence of commensal viruses across all pools, but, notably, a significant number of reads corresponding to the DENV serotype 2 were identified in one specific pool. Further verification via real-time PCR confirmed the presence of DENV-2 RNA in an index case involving an oncology patient with hemorrhagic fever who had initially tested negative for anti-DENV IgM antibodies, thereby excluding this sample from initial molecular testing. The complete DENV-2 genome isolated from this patient was taxonomically classified within the cosmopolitan genotype that was recently introduced into Brazil. These findings highlight the critical role of considering the patient's clinical condition when deciding upon the most appropriate testing procedures. Additionally, this study showcases the potential of viral metagenomics in pinpointing the viral agents behind hemorrhagic diseases. Future research is needed to assess the practicality of incorporating metagenomics into standard viral diagnostic protocols.

15.
P R Health Sci J ; 43(1): 54-56, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512762

ABSTRACT

We report on the first case of congenital Zika syndrome to be identified during the COVID-19 pandemic in Puerto Rico. The Zika virus (ZIKV) infection was first seen in Puerto Rico in December 2015. It is a flavivirus with vertical transmission, spreading from infected mothers to their fetuses and having a broad spectrum of clinical manifestations, of which microcephaly is the most worrisome. In Puerto Rico, routine ZIKV screening during pregnancy was implemented in October 2016. However, this practice has become less frequent over time. Nevertheless, the transmission of ZIKV continues, so it is important to ensure routine ZIKV screening in endemic regions, such as Puerto Rico.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Pregnancy , Infant , Female , Humans , Infant, Newborn , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Pandemics , COVID-19/epidemiology , Infant, Premature , COVID-19 Testing
16.
Viruses ; 16(2)2024 02 13.
Article in English | MEDLINE | ID: mdl-38400061

ABSTRACT

Tick-borne encephalitis is a vaccine-preventable disease of concern for public health in large parts of Europe, with EU notification rates increasing since 2018. It is caused by the orthoflavivirus tick-borne encephalitis virus (TBEV) and a diagnosis of infection is mainly based on serology due to its short viremic phase, often before symptom onset. The interpretation of TBEV serology is hampered by a history of orthoflavivirus vaccination and by previous infections with related orthoflaviviruses. Here, we sought to improve TBEV sero-diagnostics using an antigen combination of in-house expressed NS1 and EDIII in a multiplex, low-specimen-volume set-up for the detection of immune responses to TBEV and other clinically important orthoflaviviruses (i.e., West Nile virus, dengue virus, Japanese encephalitis virus, Usutu virus and Zika virus). We show that the combined use of NS1 and EDIII results in both a specific and sensitive test for the detection of TBEV IgG for patient diagnostics, vaccination responses and in seroprevalence studies. This novel approach potentially allows for a low volume-based, simultaneous analysis of IgG responses to a range of orthoflaviviruses with overlapping geographic circulations and clinical manifestations.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Encephalitis, Viral , Flavivirus Infections , Zika Virus Infection , Zika Virus , Humans , Protein Domains , Seroepidemiologic Studies , Antibodies, Viral , Flavivirus Infections/diagnosis , Immunoglobulin G
17.
Braz J Microbiol ; 55(2): 1083-1090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424268

ABSTRACT

Chikungunya (CHIKV), Zika (ZIKV), and dengue viruses (DENV) are vector-borne pathogens that cause emerging and re-emerging epidemics throughout tropical and subtropical countries. The symptomatology is similar among these viruses and frequently co-circulates in the same areas, making the diagnosis arduous. Although there are different methods for detecting and quantifying pathogens, real-time reverse transcription-polymerase chain reaction (real-time RT-qPCR) has become a leading technique for detecting viruses. However, the currently developed assays frequently involve probes and high-cost reagents, limiting access in low-income countries. Therefore, this study aims to design and evaluate a quantitative one-step RT-qPCR assay to detect CHIKV, ZIKV, and DENV with high specificity, reproducibility, and low cost in multiple cell substrates. We established a DNA intercalating green dye-based RT-qPCR test that targets nsP1 of CHIKV, and NS5 gene of ZIKV, and DENV for the amplification reaction. The assay exhibited a high specificity confirmed by the melting curve analysis. No cross-reactivity was observed between the three viruses or unspecific amplification of host RNA. The sensitivity of the reaction was evaluated for each virus assay, getting a limit of detection of one RNA copy per virus. Standard curves were constructed, obtaining a reaction efficiency of ~ 100%, a correlation coefficient (R2) of ~ 0.97, and a slope of -3.3. The coefficient of variation (CV) ranged from 0.02 to 1.43. In addition, the method was optimized for viral quantification and tested in Vero, BHK-21, C6/36, LULO, and the Aedes cell lines. Thus, the DNA intercalating green dye-based RT-qPCR assay was a highly specific, sensitive, reproducible, and effective method for detecting and quantifying CHIKV, ZIKV, and DENV in different cell substrates that could also be applied in clinical samples.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue Virus , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Zika Virus Infection , Zika Virus , Zika Virus/genetics , Zika Virus/isolation & purification , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Dengue Virus/genetics , Dengue Virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Animals , Humans , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Zika Virus Infection/virology , Zika Virus Infection/diagnosis , Dengue/virology , Dengue/diagnosis , Chlorocebus aethiops , Reproducibility of Results , Vero Cells , RNA, Viral/genetics , Cell Line
18.
Rev Soc Bras Med Trop ; 57: e004002023, 2024.
Article in English | MEDLINE | ID: mdl-38422343

ABSTRACT

BACKGROUND: Arboviral diseases are a group of infectious diseases caused by viruses transmitted by arthropods, mainly mosquitoes. These diseases, such as those caused by the dengue (DENV), Zika (ZIKV), chikungunya (CHIKV), and yellow fever (YFV) viruses, have a significant impact worldwide. In this context, entomological surveillance plays a crucial role in the control and prevention of arboviruses by providing essential information on the presence, distribution, and activity of vector mosquitoes. Based on entomological surveillance, transovarian transmission provides information regarding the maintenance and dissemination of arboviruses. The objective of this study was to detect these arboviruses in Goiânia, Goiás, and analyze the occurrence of transovarian transmission. METHODS: Aedes aegypti eggs were collected from different regions of Goiânia and cultivated under controlled laboratory conditions until the emergence of adult mosquitoes. Adult females were grouped into pools containing their heads and thoraxes. These pools were subsequently evaluated using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS: A total of 157 pools (N=1570) were analyzed, with two pools testing positive for CHIKV and one pool testing positive for ZIKV, indicating that the offspring resulting from transovarian transmission are potentially infectious. CONCLUSIONS: In summary, the demonstration of the vertical transmission mechanisms of CHIKV and ZIKV in A. aegypti serves as an alert to health authorities, as these diseases are still underreported, and their primary urban vector has likely acquired this capacity, contributing to the dissemination of these infections.


Subject(s)
Aedes , Arboviruses , Chikungunya Fever , Chikungunya virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Female , Adult , Humans , Zika Virus Infection/epidemiology , Chikungunya Fever/epidemiology , Mosquito Vectors , Yellow fever virus
19.
J Med Entomol ; 61(3): 818-823, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38408180

ABSTRACT

Arboviruses can be difficult to detect in the field due to relatively low prevalence in mosquito populations. The discovery that infected mosquitoes can release viruses in both their saliva and excreta gave rise to low-cost methods for the detection of arboviruses during entomological surveillance. We implemented both saliva and excreta-based entomological surveillance during the emergence of Zika virus (ZIKV) in French Guiana in 2016 by trapping mosquitoes around households of symptomatic cases with confirmed ZIKV infection. ZIKV was detected in mosquito excreta and not in mosquito saliva in 1 trap collection out of 85 (1.2%). One female Ae. aegypti L. (Diptera: Culicidae) was found with a ZIKV systemic infection in the corresponding trap. The lag time between symptom onset in a ZIKV-infected individual living near the trap site and ZIKV detection in this mosquito was 1 wk. These results highlight the potential of detection in excreta from trapped mosquitoes as a sensitive and cost-effective method to non invasively detect arbovirus circulation.


Subject(s)
Aedes , Feces , Saliva , Zika Virus , Animals , French Guiana , Zika Virus/isolation & purification , Feces/virology , Female , Aedes/virology , Saliva/virology , Mosquito Vectors/virology , Male , Zika Virus Infection/transmission
20.
PLoS One ; 19(1): e0296406, 2024.
Article in English | MEDLINE | ID: mdl-38165914

ABSTRACT

INTRODUCTION: Arboviral diseases, such as dengue, chikungunya, yellow fever, and Zika, are caused by viruses that are transmitted to humans through mosquito bites. However, the status of arbovirus vectors in eastern Ethiopia is unknown. The aim of this study was to investigate distribution, breeding habitat, bionomics and phylogenetic relationship of Aedes aegypti mosquito species in Somali Regional State, Eastern Ethiopia. METHODS: Entomological surveys were conducted in four sites including Jigjiga, Degehabur, Kebridehar and Godey in 2018 (October to December) to study the distribution of Ae. aegypti and with a follow-up collection in 2020 (July-December). In addition, an investigation into the seasonality and bionomics of Ae. aegypti was conducted in 2021 (January-April) in Kebridehar town. Adult mosquitoes were collected from indoor and outdoor locations using CDC light traps (LTs), pyrethrum spray collection (PSCs), and aspirators. Larvae and pupae were also collected from a total of 169 water-holding containers using a dipper between October and November 2020 (rainy season) in Kebridehar town. The species identification of wild caught and reared adults was conducted using a taxonomic key. In addition, species identification using mitochondrial and nuclear genes maximum likelihood-based phylogenetic analysis was performed. RESULTS: In the 2018 collection, Ae. aegypti was found in all study sites (Jigjiga, Degahabour, Kebridehar and Godey). In the 2020-2021 collection, a total of 470 (Female = 341, Male = 129) wild caught adult Ae. aegypti mosquitoes were collected, mostly during the rainy season with the highest frequency in November (n = 177) while the lowest abundance was in the dry season (n = 14) for both February and March. The majority of Ae. aegypt were caught using PSC (n = 365) followed by CDC LT (n = 102) and least were collected by aspirator from an animal shelter (n = 3). Aedes aegypti larval density was highest in tires (0.97 larvae per dip) followed by cemented cisterns (0.73 larvae per dip) and the Relative Breeding Index (RBI) was 0.87 and Container Index (CI) was 0.56. Genetic analysis of ITS2 and COI revealed one and 18 haplotypes, respectively and phylogenetic analysis confirmed species identification. The 2022 collection revealed no Ae. aegpti, but two previously uncharacterized species to that region. Phylogenetic analysis of these two species revealed their identities as Ae. hirsutus and Culiseta longiareolata. CONCLUSION: Data from our study indicate that, Ae. aegypti is present both during the wet and dry seasons due to the availability of breeding habitats, including water containers like cemented cisterns, tires, barrels, and plastic containers. This study emphasizes the necessity of establishing a national entomological surveillance program for Aedes in Somali region.


Subject(s)
Aedes , Dengue , Zika Virus Infection , Zika Virus , Male , Female , Humans , Animals , Adult , Aedes/genetics , Phylogeny , Ethiopia , Likelihood Functions , Somalia , Mosquito Vectors/genetics , Plant Breeding , Ecosystem , Ecology , Water , Larva/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...