Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.394
Filter
1.
Goiânia; SES/GO; Jun. 2024. 1-20 p. quad, map, fig.(Boletim epidemiológico: monitoramento dos casos de arboviroses em Goiás, 3, 4).
Monography in Portuguese | LILACS, CONASS, Coleciona SUS, SES-GO | ID: biblio-1560776

ABSTRACT

As arboviroses transmitidas pelo mosquito Aedes aegypt são um dos principais problemas de saúde pública no Estado de Goiás. O boletim epidemiológico das arboiross tem o objetivo de apresentar a situação epidemiológica dos casos no estado, utilizando como fonte de dados os registros de casos suspeitos e confirmados ocorridos nos últimos anos, disponíveis no SINan Online e SINAN Net também são apresentados dados relativos à síndrome congênita associada à infecção peli Zika vírus, disponíveis no Sistema de Registro de Eventos em Saúde Pública (RESP) - Microcefalias


Arboviruses transmitted by the Aedes aegypt mosquito are one of the main public health problems in the State of Goiás. The arboiross epidemiological bulletin aims to present the epidemiological situation of cases in the state, using records of suspected and confirmed cases as a data source. occurred in recent years, available on SINan Online and SINAN Net, data relating to congenital syndrome associated with Zika virus infection, available on the Public Health Event Registration System (RESP) - Microcephaly, is also presented


Subject(s)
Humans , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Arbovirus Infections/epidemiology , Arbovirus Infections/diagnosis , Arbovirus Infections/drug therapy , Dengue/mortality , Dengue/epidemiology , Chikungunya Fever/epidemiology , Zika Virus Infection/epidemiology
2.
Lancet Glob Health ; 12(7): e1129-e1138, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876760

ABSTRACT

BACKGROUND: Data on long-term neurodevelopmental outcomes of normocephalic children (born with normal head circumference) exposed to Zika virus in utero are scarce. We aimed to compare neurodevelopmental outcomes in normocephalic children up to age 48 months with and without Zika virus exposure in utero. METHODS: In this prospective cohort study, we included infants from two cohorts of normocephalic children born in León and Managua, Nicaragua during the 2016 Zika epidemic. In León, all women pregnant during the two enrolment periods were eligible. In Managua, mother-child pairs were included from three districts in the municipality of Managua: all women who became pregnant before June 15, 2016, and had a due date of Sept 15, 2016 or later were eligible. Infants were serologically classified as Zika virus-exposed or Zika virus-unexposed in utero and were followed up prospectively until age 48 months. At 36 months and 48 months of age, the Mullen Scales of Early Learning (MSEL) assessment was administered. Primary outcomes were MSEL early learning composite (ELC) scores at 30-48 months in León and 36-48 months in Managua. We used an inverse probability weighting generalised estimating equations model to assess the effect of Zika virus exposure on individual MSEL cognitive domain scores and ELC scores, adjusted for maternal education and age, poverty status, and infant sex. FINDINGS: The initial enrolment period for the León cohort was between Jan 31 and April 5, 2017 and the second was between Aug 30, 2017, and Feb 22, 2018. The enrolment period for the Managua cohort was between Oct 24, 2019, and May 5, 2020. 478 mothers (482 infants) from the León cohort and 615 mothers (609 infants) from the Managua cohort were enrolled, of whom 622 children (303 from the León cohort; 319 from the Managua cohort) were included in the final analysis; four children had microcephaly at birth and thus were excluded from analyses, two from each cohort. 33 (11%) of 303 children enrolled in León and 219 (69%) of 319 children enrolled in Managua were exposed to Zika virus in utero. In both cohorts, no significant differences were identified in adjusted mean ELC scores between Zika virus-exposed and unexposed infants at 36 months (between-group difference 1·2 points [95% CI -4·2 to 6·5] in the León cohort; 2·8 [-2·4 to 8·1] in the Managua cohort) or at 48 months (-0·9 [-10·8 to 8·8] in the León cohort; 0·1 [-5·1 to 5·2] in the Managua cohort). No differences in ELC scores between Zika virus-exposed and unexposed infants exceeded 6 points at any time between 30 months and 48 months in León or between 36 months and 48 months in Managua, which was considered clinically significant in other settings. INTERPRETATION: We found no significant differences in neurodevelopmental scores between normocephalic children with in-utero Zika virus exposure and Zika virus-unexposed children at age 36 months or 48 months. These findings are promising, supporting typical neurodevelopment in Zika virus-exposed normocephalic children, although additional follow-up and research is warranted. FUNDING: National Institute of Child Health and Development, National Institute of Allergy and Infectious Diseases, and Fogarty International Center. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Subject(s)
Child Development , Pregnancy Complications, Infectious , Prenatal Exposure Delayed Effects , Zika Virus Infection , Humans , Nicaragua/epidemiology , Zika Virus Infection/epidemiology , Female , Prospective Studies , Child, Preschool , Pregnancy , Male , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/virology , Infant , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , Zika Virus , Adult , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/virology
3.
Int J Pharm ; 660: 124320, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866086

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that highly susceptibly causes Guillain-Barré syndrome and microcephaly in newborns. Vaccination is one of the most effective measures for preventing infectious diseases. However, there is currently no approved vaccine to prevent ZIKV infection. Here, we developed nanoparticle (NP) vaccines by covalently conjugating self-assembled 24-subunit ferritin to the envelope structural protein subunit of ZIKV to achieve antigen polyaggregation. The immunogenicityof the NP vaccine was evaluated in mice. Compared to monomer vaccines, the NP vaccine achieved effective antigen presentation, promoted the differentiation of follicular T helper cells in lymph nodes, and induced significantly greater antigen-specific humoral and cellular immune responses. Moreover, the NP vaccine enhanced high-affinity antigen-specific IgG antibody levels, increased secretion of the cytokines IL-4 and IFN-γ by splenocytes, significantly activated T/B lymphocytes, and improved the generation of memory T/B cells. In addition, no significant adverse reactions occurred when NP vaccine was combined with adjuvants. Overall, ferritin-based NP vaccines are safe and effective ZIKV vaccine candidates.

4.
Mol Ther ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822526

ABSTRACT

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.

5.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932158

ABSTRACT

Humans continue to be at risk from the Zika virus. Although there have been significant research advancements regarding Zika, the absence of a vaccine or approved treatment poses further challenges for healthcare providers. In this study, we developed a microparticulate Zika vaccine using an inactivated whole Zika virus as the antigen that can be administered pain-free via intranasal (IN) immunization. These microparticles (MP) were formulated using a double emulsion method developed by our lab. We explored a prime dose and two-booster-dose vaccination strategy using MPL-A® and Alhydrogel® as adjuvants to further stimulate the immune response. MPL-A® induces a Th1-mediated immune response and Alhydrogel® (alum) induces a Th2-mediated immune response. There was a high recovery yield of MPs, less than 5 µm in size, and particle charge of -19.42 ± 0.66 mV. IN immunization of Zika MP vaccine and the adjuvanted Zika MP vaccine showed a robust humoral response as indicated by several antibodies (IgA, IgM, and IgG) and several IgG subtypes (IgG1, IgG2a, and IgG3). Vaccine MP elicited a balance Th1- and Th2-mediated immune response. Immune organs, such as the spleen and lymph nodes, exhibited a significant increase in CD4+ helper and CD8+ cytotoxic T-cell cellular response in both vaccine groups. Zika MP vaccine and adjuvanted Zika MP vaccine displayed a robust memory response (CD27 and CD45R) in the spleen and lymph nodes. Adjuvanted vaccine-induced higher Zika-specific intracellular cytokines than the unadjuvanted vaccine. Our results suggest that more than one dose or multiple doses may be necessary to achieve necessary immunological responses. Compared to unvaccinated mice, the Zika vaccine MP and adjuvanted MP vaccine when administered via intranasal route demonstrated robust humoral, cellular, and memory responses. In this pre-clinical study, we established a pain-free microparticulate Zika vaccine that produced a significant immune response when administered intranasally.


Subject(s)
Administration, Intranasal , Antibodies, Viral , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/prevention & control , Zika Virus Infection/immunology , Zika Virus/immunology , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Immunization/methods , Adjuvants, Immunologic/administration & dosage , Disease Models, Animal , Adjuvants, Vaccine/administration & dosage , Vaccination/methods , Cytokines/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology
6.
Nat Commun ; 15(1): 5173, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890352

ABSTRACT

Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.


Subject(s)
Disease Models, Animal , Myelin Sheath , Oligodendroglia , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/virology , Zika Virus Infection/pathology , Oligodendroglia/virology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Female , Myelin Sheath/metabolism , Pregnancy , Zika Virus/pathogenicity , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/pathology , Macaca nemestrina , Brain/virology , Brain/pathology , Brain/metabolism , Humans , Myelin Basic Protein/metabolism , Myelin Basic Protein/genetics
7.
Behav Brain Res ; 471: 115114, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878972

ABSTRACT

Zika virus (ZIKV) is a neurotropic Orthoflavivirus that causes a myriad of neurological manifestations in newborns exposed in uterus. Despite the devastating consequences of ZIKV on the developing brain, strategies to prevent or treat the consequences of viral infection are not yet available. We previously showed that short-term treatment with the TNF-α neutralizing monoclonal antibody. Infliximab could prevent seizures at acute and chronic stages of ZIKV infection, but had no impact on long-term cognitive and motor dysfunction. Due to the central role of inflammation in ZIKV-neuropathology, we hypothesized that prolonged treatment with the anti-TNF-α monoclonal antibody Infliximab could provide complete rescue of long-term behavioral deficits associated with neonatal ZIKV infection in mice. Here, neonatal (post-natal day 3) Swiss mice were submitted to subcutaneous (s.c.) injection of 106 PFU of ZIKV or mock medium and were then treated with Infliximab (20 µg/day) or sterile saline intraperitoneally (i.p.), for 40 days starting on the day of infection, and behavioral assessment started at 60 days post-infection (dpi). Infliximab prevented ZIKV-induced cognitive and motor impairments in mice. In addition, microgliosis and cell death found in mice following ZIKV infection were partially reversed by TNF-α blockage. Altogether, these results suggest that TNF-α-mediated inflammation is central for late ZIKV-induced behavioral deficits and cell death and strategies targeting this cytokine may be promising approaches to treat subjects exposed to the virus during development.

8.
Biochem Biophys Rep ; 39: 101747, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38939125

ABSTRACT

Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders such as microcephaly and Guillain-Barré syndrome affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of new molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations Expect for dermaseptin B2 and its derivative which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 µg/ml , unlike the native B2 and its derivative which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as novel lead structures for the development of potent antiviral agents against Zika virus infections.

9.
Vaccine ; 42(17): 3674-3683, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38749821

ABSTRACT

The Zika virus (ZIKV) is considered a public health problem worldwide due to its association with the development of microcephaly and the Guillain-Barré syndrome. Currently, there is no specific treatment or vaccine approved to combat this disease, and thus, developing safe and effective vaccines is a relevant goal. In this study, a multi-epitope protein called rpZDIII was designed based on a series of ZIKV antigenic sequences, a bacterial carrier, and linkers. The analysis of the predicted 3D structure of the rpZDIII chimeric antigen was performed on the AlphaFold 2 server, and it was produced in E. coli and purified from inclusion bodies, followed by solubilization and refolding processes. The yield achieved for rpZDIII was 11 mg/L in terms of pure soluble recombinant protein per liter of fermentation. rpZDIII was deemed immunogenic since it induced serum IgG and IgM responses in mice upon subcutaneous immunization in a three-dose scheme. Moreover, sera from mice immunized with rpZDIII showed neutralizing activity against ZIKV. Therefore, this study reveals rpZDIII as a promising immunogen for the development of a rationally designed multi-epitope vaccine against ZIKV, and completion of its preclinical evaluation is guaranteed.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral , Zika Virus Infection , Zika Virus , Animals , Zika Virus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Zika Virus Infection/prevention & control , Zika Virus Infection/immunology , Antigens, Viral/immunology , Antigens, Viral/genetics , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Epitopes/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Escherichia coli/genetics , Escherichia coli/metabolism , Immunoglobulin M/immunology , Immunoglobulin M/blood , Mice, Inbred BALB C
10.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38691001

ABSTRACT

Ankyrin repeat and LEM domain-containing 2 (ANKLE2) is a scaffolding protein with established roles in cell division and development, the dysfunction of which is increasingly implicated in human disease. ANKLE2 regulates nuclear envelope disassembly at the onset of mitosis and its reassembly after chromosome segregation. ANKLE2 dysfunction is associated with abnormal nuclear morphology and cell division. It regulates the nuclear envelope by mediating protein-protein interactions with barrier to autointegration factor (BANF1; also known as BAF) and with the kinase and phosphatase that modulate the phosphorylation state of BAF. In brain development, ANKLE2 is crucial for proper asymmetric division of neural progenitor cells. In humans, pathogenic loss-of-function mutations in ANKLE2 are associated with primary congenital microcephaly, a condition in which the brain is not properly developed at birth. ANKLE2 is also linked to other disease pathologies, including congenital Zika syndrome, cancer and tauopathy. Here, we review the molecular roles of ANKLE2 and the recent literature on human diseases caused by its dysfunction.


Subject(s)
Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Animals , Disease , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mutation/genetics
11.
Eur J Med Chem ; 272: 116465, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718623

ABSTRACT

Vector-borne diseases, constituting over 17 % of infectious diseases, are caused by parasites, viruses, and bacteria, and their prevalence is shaped by environmental and social factors. Dengue virus (DENV) and Zika virus (ZIKV), some of the most prevalent infectious agents of this type of diseases, are transmitted by mosquitoes belonging to the genus Aedes. The highest prevalence is observed in tropical regions, inhabited by around 3 billion people. DENV infects millions of people annually and constitutes an additional sanitary challenge due to the circulation of four serotypes, which has complicated vaccine development. ZIKV causes large outbreaks globally and its infection is known to lead to severe neurological diseases, including microcephaly in newborns. Besides, not only mosquito control programs have proved to be not totally effective, but also, no antiviral drugs have been developed so far. The envelope protein (E) is a major component of DENV and ZIKV virion surface. This protein plays a key role during the virus cell entry, constituting an attractive target for the development of antiviral drugs. Our previous studies have identified two pyrimidine analogs (3e and 3h) as inhibitors; however, their activity was found to be hindered by their low water solubility. In this study, we performed a low-throughput antiviral screening, revealing compound 16a as a potent DENV-2 and ZIKV inhibitor (EC50 = 1.4 µM and 2.4 µM, respectively). This work was aimed at designing molecules with improved selectivity and pharmacokinetic properties, thus advancing the antiviral efficacy of compounds for potential therapeutic use.


Subject(s)
Antiviral Agents , Dengue Virus , Drug Discovery , Pyrimidines , Zika Virus , Zika Virus/drug effects , Dengue Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Animals , Molecular Structure , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Virus Internalization/drug effects , Chlorocebus aethiops , Vero Cells
12.
BMC Pediatr ; 24(1): 342, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755525

ABSTRACT

BACKGROUND: Prenatal exposure to the Zika virus can lead to microcephaly and adverse developmental outcomes, even in children without evident birth defects. The social environment plays a crucial role in infant health and developmental trajectories, especially during periods of heightened brain plasticity. The study aimed to assess socioenvironmental factors as predictors of developmental outcomes of 36-month-old children exposed to Zika virus prenatally. STUDY DESIGN: This cross-sectional study included 53 mothers and 55 children enrolled in the Pediatric Outcomes of Prenatal Zika Exposure cohort study in Puerto Rico. The study performs follow-up developmental assessments of children born to mothers with confirmed and probable Zika virus infection during pregnancy. Mothers completed socioenvironmental questionnaires (e.g., Perceived Neighborhood Scale and US Household Food Insecurity Survey). Children's developmental outcomes were assessed with the Bayley Scales of Infant and Toddler Development: Third Edition, the Ages and Stages Questionnaires: Third Edition, the Ages and Stages Questionnaire-Socioemotional: Second Edition, and the Child Adjustment and Parent Efficacy Scale. RESULTS: Linear regression models, adjusting for a child's sex and age and maternal education, revealed that early life exposure to food insecurity and maternal pregnancy stressors were significantly associated with poorer developmental outcomes in Zika virus-exposed children at 36 months of age. Maternal resilience representation of adaptive ability was associated with the preservation of adequate developmental outcomes in children. CONCLUSIONS: Pregnancy and early childhood are critical life periods for ensuring optimal brain development in children. While the mechanisms in the interaction of children with their environment are complex, the risk and protective factors identified in the study are modifiable through public policy and preventive initiatives. Implementation of comprehensive strategies that improve access to social support programs, educational and nutritional interventions, and mental health services during pregnancy and early childhood can enhance the developmental potential of vulnerable children.


Subject(s)
Child Development , Pregnancy Complications, Infectious , Prenatal Exposure Delayed Effects , Social Environment , Zika Virus Infection , Humans , Female , Pregnancy , Cross-Sectional Studies , Puerto Rico , Child, Preschool , Male , Adult , Infant
13.
Pediatr Radiol ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822063

ABSTRACT

Viral infections in low-income countries such as Brazil pose a significant challenge for medical authorities, with epidemics such as Zika virus infection having lasting effects. The increase in microcephaly among newborns has prompted investigations into the association between Zika virus and this congenital syndrome. The severity and prevalence of microcephaly led to the declaration of national and international emergencies. Extensive research has been conducted to understand the teratogenic effects of Zika virus, particularly its impact on neural progenitor cells in the fetal brain. Various pre- and postnatal imaging techniques, such as ultrasound, magnetic resonance imaging (MRI), and postnatal computed tomography (CT), have played crucial roles in diagnosing and monitoring malformations linked to congenital Zika virus infection in the central nervous system (CNS). These modalities can detect brain parenchymal abnormalities, calcifications, cerebral atrophy, and callosal anomalies. Additionally, three-dimensional ultrasound and fetal MRI provide detailed anatomical images, while CT can identify calcifications that are not easily detected by other methods. Despite advancements in imaging, there are still unanswered questions and ongoing challenges in comprehending the long-term effects and developmental impairments in children affected by Zika virus. Radiologists continue to play a crucial role in diagnosing and assisting in the management of these cases.

14.
Trop Med Infect Dis ; 9(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38787038

ABSTRACT

Brazil reported 18,282 suspected congenital Zika syndrome (CZS) cases up to 2018 and accounts for 61.4% of the total reported Zika cases in the Americas in the period. To detect high-risk areas for children with CZS in the city of Rio de Janeiro, we used cluster detection and thematic maps. We analyzed data using a Poisson model in Satscan 10.1.3 software. We also analyzed the records of children with CZS from 2015 to 2016 to describe the clinical and epidemiological maternal and child profile, as well as live births in 2016 and the social development index (SDI) by neighborhood. In 2015 and 2016, the incidence rates of CZS were 8.84 and 46.96 per 100,000 live births in the city, respectively. Severe congenital findings such as microcephaly and brain damage, osteoarticular impairment, ocular abnormalities, and hearing loss were observed in 47 children. The spatial distribution of CZS was concentrated in the north and west zones in heterogeneous neighborhoods. The neighborhoods with the highest occurrence of CZS cases were found to have the worst SDIs. Stascan detected three spatial clusters in the north zone, where the SDI is lower. The clusters presented high relative risks for CZS (7.86, 1.46, and 2.08), although they were not statistically significant. Our findings highlight a higher occurrence of CZS in areas with less favorable socioeconomic conditions.

15.
Curr Top Med Chem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38797894

ABSTRACT

INTRODUCTION: Zika virus (ZIKV) is a flavivirus transmitted through the bites of infected Aedes mosquitoes. These viruses can also be transmitted through sexual contact, vertical transmission, and possibly transfusion. Most cases are asymptomatic, but symptoms can include rash, conjunctivitis, fever, and arthralgia, which are characteristic of other arboviruses. Zika infection can lead to complications such as microcephaly, miscarriage, brain abnormalities, and Guillain-Barré syndrome (GBS). OBJECTIVE: The aim is to determine the inhibitory potential of the algae Kappaphycus alvarezii (K. alvarezii) on ZIKV replication. METHODOLOGY: Cytotoxicity experiments were performed using Vero cells to determine the CC50, and ZIKV replication inhibition assays (ATCC® VR-1839™) were conducted to determine the EC50. The mechanism of action was also studied to assess any synergistic effect with Ribavirin. RESULTS: K. alvarezii demonstrated low toxicity with a CC50 of 423 µg/mL and a potent effect on ZIKV replication with an EC50 of 0.65 µg/mL and a Selectivity Index (SI) of 651, indicating the extract's safety. Virucidal effect assays were carried out to evaluate the possible mechanism of action, and the compound addition time was studied, showing the potential to delay the treatment of infected cells by up to 6 hours. A potential synergistic effect was observed when K. alvarezii extract was combined with suboptimal concentrations of Ribavirin, resulting in 99% inhibition of viral replication. CONCLUSION: Our data demonstrate the significant potential of K. alvarezii extract and highlight the need for further studies to investigate its mechanism of action. We propose this extract as a potential anti-Zika compound.

16.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746241

ABSTRACT

The Zika virus (ZIKV), discovered in Africa in 1947, swiftly spread across continents, causing significant concern due to its recent association with microcephaly in newborns and Guillain-Barré syndrome in adults. Despite a decrease in prevalence, the potential for a resurgence remains, necessitating urgent therapeutic interventions. Like other flaviviruses, ZIKV presents promising drug targets within its replication machinery, notably the NS3 helicase (NS3Hel) protein, which plays critical roles in viral replication. However, a lack of structural information impedes the development of specific inhibitors targeting NS3Hel. Here we applied high-throughput crystallographic fragment screening on ZIKV NS3Hel, which yielded structures that reveal 3D binding poses of 46 fragments at multiple sites of the protein, including 11 unique fragments in the RNA-cleft site. These fragment structures provide templates for direct design of hit compounds and should thus assist the development of novel direct-acting antivirals against ZIKV and related flaviviruses, thus opening a promising avenue for combating future outbreaks.

17.
Sci Total Environ ; 931: 172689, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692315

ABSTRACT

Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences. The investigation begins with the first detection of microcystins in 1994 and highlights pivotal moments, like the 1996 "Caruaru Syndrome" outbreak. This event encouraged research and updated cyanotoxin-monitoring guidelines. The Brazilian drought period of 2015-2016 exacerbated cyanobacterial growth and saxitoxin levels, coinciding with Zika-related microcephaly. This study delves into methods used for cyanotoxin analysis, including ELISA, bioassays, HPLC, and LC-MS. Additionally, we investigated the toxicity of 37 cyanobacterial strains isolated from various Brazilian environments. Extracts were tested against Artemia salina and analyzed by LC-MS. Results revealed toxicity in extracts from 49 % of cyanobacterial strains. LC-MS results were analyzed using GNPS MS/MS molecular networking for comparing experimental spectra with those of cyanotoxin standards against in-house databases and the existing literature. Our research underscores the variability in cyanotoxin production among species and over time, extending beyond microcystins. LC-MS results, interpreted through the GNPS platform, revealed six cyanotoxin groups in Brazilian strains. Yet, compounds present in 75 % of the toxic extracts remained unidentified. Further research is crucial for fully comprehending the impact of potentially harmful organisms on water quality and public health management strategies. The study highlights the urgent need for continuously monitoring cyanobacteria and the cyanotoxin inclusion of management in public health policies.


Subject(s)
Cyanobacteria , Environmental Monitoring , Harmful Algal Bloom , Microcystins , Brazil/epidemiology , Environmental Monitoring/methods , Microcystins/analysis , Bacterial Toxins/analysis , Marine Toxins/analysis
18.
Seizure ; 118: 148-155, 2024 May.
Article in English | MEDLINE | ID: mdl-38704883

ABSTRACT

PURPOSE: This study aimed to identify continuous epileptiform discharges (CEDs) on electroencephalograms (EEG) and to determine their clinical significance in children with congenital Zika syndrome (CZS). METHODS: This prospective cohort study included 75 children diagnosed with CZS born from March 2015 and followed up until September 2018 (age up to 36 months). EEG was performed to detect CEDs up to 24 months old. Data on obstetric, demographic, and clinical signs; cranial computed tomography (CT); ophthalmology examination; anti-seizure medication; growth; and motor development were collected. Fisher's exact test was used to verify the associations between categorical variables, and the T- test was used to compare the mean z-scores of anthropometric measurements between the groups with and without CED. RESULTS: CEDs were identified in 41 (54.67 %) children. The mean age of CEDs identification was 12.24 ± 6.86 months. Bilateral CEDs were shown in 62.89 % of EEGs. CEDs were associated with severe congenital microcephaly, defined by z-score >3 standard deviation of head circumference (HC) below the mean for sex and age (p = 0.025), and worse outcomes, including first seizure before 6 months (p = 0.004), drug-resistant epilepsy (p < 0.001), chorioretinal scarring or mottling (p = 0.002), and severe CT findings (p = 0.002). The CED group had lower mean z-scores of HC up to 24 months of age. CONCLUSION: This is the first description of the prevalence and significance of CEDs that also remains during wakefulness in patients with CZS. New investigations may suggest that it is more appropriate to classify the EEG not as a CED, but as a periodic pattern. Anyway, CEDs may be a marker of neurological severity in children with CSZ.


Subject(s)
Electroencephalography , Zika Virus Infection , Humans , Zika Virus Infection/complications , Zika Virus Infection/physiopathology , Zika Virus Infection/congenital , Female , Male , Infant , Prospective Studies , Child, Preschool , Microcephaly/physiopathology , Microcephaly/diagnostic imaging , Epilepsy/physiopathology , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/physiopathology
19.
SAGE Open Med ; 12: 20503121241229847, 2024.
Article in English | MEDLINE | ID: mdl-38711470

ABSTRACT

Background: Arboviruses are RNA viruses and some have the potential to cause neuroinvasive disease and are a growing threat to global health. Objectives: Our objective is to identify and map all aspects of arbovirus neuroinvasive disease, clarify key concepts, and identify gaps within our knowledge with appropriate future directions related to the improvement of global health. Methods: Sources of Evidence: A scoping review of the literature was conducted using PubMed, Scopus, ScienceDirect, and Hinari. Eligibility Criteria: Original data including epidemiology, risk factors, neurological manifestations, neuro-diagnostics, management, and preventive measures related to neuroinvasive arbovirus infections was obtained. Sources of evidence not reporting on original data, non-English, and not in peer-reviewed journals were removed. Charting Methods: An initial pilot sample of 30 abstracts were reviewed by all authors and a Cohen's kappa of κ = 0.81 (near-perfect agreement) was obtained. Records were manually reviewed by two authors using the Rayyan QCRI software. Results: A total of 171 records were included. A wide array of neurological manifestations can occur most frequently, including parkinsonism, encephalitis/encephalopathy, meningitis, flaccid myelitis, and Guillain-Barré syndrome. Magnetic resonance imaging of the brain often reveals subcortical lesions, sometimes with diffusion restriction consistent with acute ischemia. Vertical transmission of arbovirus is most often secondary to the Zika virus. Neurological manifestations of congenital Zika syndrome, include microcephaly, failure to thrive, intellectual disability, and seizures. Cerebrospinal fluid analysis often shows lymphocytic pleocytosis, elevated albumin, and protein consistent with blood-brain barrier dysfunction. Conclusions: Arbovirus infection with neurological manifestations leads to increased morbidity and mortality. Risk factors for disease include living and traveling in an arbovirus endemic zone, age, pregnancy, and immunosuppressed status. The management of neuroinvasive arbovirus disease is largely supportive and focuses on specific neurological complications. There is a need for therapeutics and currently, management is based on disease prevention and limiting zoonosis.

20.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746305

ABSTRACT

Zika virus (ZIKV) infections cause microcephaly in new-borns and Guillain-Barre syndrome in adults raising a significant global public health concern, yet no vaccines or antiviral drugs have been developed to prevent or treat ZIKV infections. The viral protease NS3 and its co-factor NS2B are essential for the cleavage of the Zika polyprotein precursor into individual structural and non-structural proteins and is therefore an attractive drug target. Generation of a robust crystal system of co-expressed NS2B-NS3 protease has enabled us to perform a crystallographic fragment screening campaign with 1076 fragments. 48 binders with diverse chemical scaffolds were identified in the active site of the protease, with another 6 fragment hits observed in a potential allosteric binding site. Our work provides potential starting points for the development of potent NS2B-NS3 protease inhibitors. Furthermore, we have structurally characterized a potential allosteric binding pocket, identifying opportunities for allosteric inhibitor development.

SELECTION OF CITATIONS
SEARCH DETAIL
...