Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.544
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1538072

RESUMO

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Assuntos
Óleos Voláteis/química , Extratos Vegetais/química , Antioxidantes/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Flores/química , Equador , Antioxidantes/farmacologia
2.
Sci Rep ; 14(1): 8133, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584186

RESUMO

In weeds, disturbance has been found to affect life history traits and mediate trophic interactions. In urban landscapes, mowing is an important disturbance, and we previously showed that continuous mowing leads to enhanced fitness and defense traits in Solanum elaeagnifolium, Silverleaf Nightshade (SLN). However, most studies have been focused on foliar defenses, ignoring floral defenses. In this study we examined whether continuous mowing affected floral defenses in SLN using mowed and unmowed populations in South Texas, their native range. We found flowers of mowed SLN plants larger but lighter than unmowed plants. Additionally, flowers on plants that were mowed frequently were both heavier and larger. Mowed plants had higher spine density and consequently unmowed flowers had higher herbivore damage. Additionally, early instar Manduca sexta fed on mowed flower-based artificial diets showed no difference in mass than the control and unmowed; however, later instars caterpillars on unmowed diets gained significantly more mass than the mowed treatment and control. Mowed plants had higher spine density which may shed light on why unmowed flowers experienced higher herbivore damage. We found caterpillars fed on high mowing frequency diets were heavier than those on low mowing frequency diets. Collectively, we show that mowing compromises floral traits and enhances plant defenses against herbivores and should be accounted for in management.


Assuntos
Manduca , Solanum , Animais , Plantas Daninhas , Flores , Herbivoria
3.
Planta ; 259(5): 116, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592549

RESUMO

MAIN CONCLUSION: Differentially expressed microRNAs were found associated with the development of chasmogamous and cleistogamous flowers in Viola prionantha, revealing potential roles of microRNAs in the developmental evolution of dimorphic flowers. In Viola prionantha, chasmogamous (CH) flowers are induced by short daylight, while cleistogamous (CL) flowers are triggered by long daylight. How environmental factors and microRNAs (miRNAs) affect dimorphic flower formation remains unknown. In this study, small RNA sequencing was performed on CH and CL floral buds at different developmental stages in V. prionantha, differentially expressed miRNAs (DEmiRNAs) were identified, and their target genes were predicted. In CL flowers, Viola prionantha miR393 (vpr-miR393a/b) and vpr-miRN3366 were highly expressed, while in CH flowers, vpr-miRN2005, vpr-miR172e-2, vpr-miR166m-3, vpr-miR396f-2, and vpr-miR482d-2 were highly expressed. In the auxin-activated signaling pathway, vpr-miR393a/b and vpr-miRN2005 could target Vpr-TIR1/AFB and Vpr-ARF2, respectively, and other DEmiRNAs could target genes involved in the regulation of transcription, e.g., Vpr-AP2-7. Moreover, Vpr-UFO and Vpr-YAB5, the main regulators in petal and stamen development, were co-expressed with Vpr-TIR1/AFB and Vpr-ARF2 and showed lower expression in CL flowers than in CH flowers. Some V. prionantha genes relating to the stress/defense responses were co-expressed with Vpr-TIR1/AFB, Vpr-ARF2, and Vpr-AP2-7 and highly expressed in CL flowers. Therefore, in V. prionantha, CH-CL flower development may be regulated by the identified DEmiRNAs and their target genes, thus providing the first insight into the formation of dimorphic flowers in Viola.


Assuntos
MicroRNAs , Viola , Flores/genética , MicroRNAs/genética , Reprodução , Análise de Sequência de RNA
4.
Proc Natl Acad Sci U S A ; 121(15): e2321975121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557190

RESUMO

Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Redes Reguladoras de Genes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas
5.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559447

RESUMO

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Assuntos
Althaea , Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Animais , Ratos , Óxido de Zinco/química , Quitosana/química , Althaea/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Anti-Inflamatórios/farmacologia , Inflamação , Flores , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Science ; 384(6691): 124-130, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574141

RESUMO

Cleistogamy is a type of self-pollination that relies on the formation of a stigma-enclosing floral structure. We identify three homeodomain-leucine zipper IV (HD-Zip IV) genes that coordinately promote the formation of interlocking trichomes at the anther margin to unite neighboring anthers, generating a closed anther cone and cleistogamy (flower morphology necessitating strict self-pollination). These HD-Zip IV genes also control style length by regulating the transition from cell division to endoreduplication. The expression of these HD-Zip IV genes and their downstream gene, Style 2.1, was sequentially modified to shape the cleistogamy morphology during tomato evolution and domestication. Our results provide insights into the molecular basis of cleistogamy in modern tomato and suggest targets for improving fruit set and preventing pollen contamination in genetically modified crops.


Assuntos
Proteínas de Homeodomínio , Solanum lycopersicum , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Solanum lycopersicum/genética , Polinização , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/metabolismo , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Nat Commun ; 15(1): 2912, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575617

RESUMO

Morphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types. Here we combine quantitative live imaging at cellular resolution with genetics, and chemical treatments to understand the formation of Arabidopsis thaliana female reproductive organ (gynoecium). We show that, contrary to other aerial organs, gynoecium shape is determined by two orthogonal, time-shifted differentiation gradients. An early mediolateral gradient controls valve morphogenesis while a late, longitudinal gradient regulates style differentiation. Local, tissue-dependent action of these gradients serves to fine-tune the common developmental program governing organ morphogenesis to ensure the specialized function of the gynoecium.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Frutas/metabolismo , Flores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Morfogênese , Regulação da Expressão Gênica de Plantas
8.
Proc Biol Sci ; 291(2020): 20232941, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593850

RESUMO

Invasive flowering plants can disrupt plant-pollinator networks. This is well documented where invasives occur amongst native plants; however, the potential for 'spillover' effects of invasives that form stands in adjacent habitats are less well understood. Here we quantify the impact of two invasive Australian species, Acacia saligna and Acacia longifolia, on the plant-pollinator networks in fynbos habitats in South Africa. We compared networks from replicate 1 ha plots of native vegetation (n = 21) that were subjected to three treatments: (1) at least 400 m from flowering Acacia; (2) adjacent to flowering Acacia, or (3) adjacent to flowering Acacia where all Acacia flowers were manually removed. We found that native flowers adjacent to stands of flowering Acacia received significantly more insect visits, especially from beetles and Apis mellifera capensis, and that visitation was more generalized. We also recorded visitation to, and the seed set of, three native flowering species and found that two received more insect visits, but produced fewer seeds, when adjacent to flowering Acacia. Our research shows that 'spillover' effects of invasive Acacia can lead to significant changes in visitation and seed production of native co-flowering species in neighbouring habitats-a factor to be considered when managing invaded landscapes.


Assuntos
Acacia , Polinização , Animais , Austrália , Plantas , Sementes , Insetos , Flores , Espécies Introduzidas
9.
Methods Mol Biol ; 2795: 227-238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594542

RESUMO

In plants, complex signaling networks monitor and respond to environmental cues to determine the optimal time for the transition from the vegetative to reproductive phase. Understanding these networks requires robust tools to examine the levels and subcellular localization of key factors. The florigen FLOWERING LOCUS T (FT) is a crucial regulator of flowering time and occurs in soluble and membrane-bound forms. At low ambient temperatures, the ratio of these forms of FT undergoes a significant shift, which leads to a delay in the onset of flowering. To investigate these changes in FT localization, epitope-tagged FT protein can be isolated from plants by subcellular fractionation and its localization examined by immunoblot analysis of the resulting fractions. However, the highly abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) can interfere with methods to detect and characterize low-abundance proteins such as FT. In this chapter, we present a method for analyzing the ratio of HA-tagged FT (HA:FT) in different subcellular fractions while mitigating the interference from RuBisCO by using protamine sulfate (PS) to deplete RuBisCO during protein purification, thereby enhancing HA:FT detection in fractionated samples.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Florígeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
10.
Sci Rep ; 14(1): 8102, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582921

RESUMO

Lung cancer is a major public health issue and heavy burden in China and worldwide due to its high incidence and mortality without effective treatment. It's imperative to develop new treatments to overcome drug resistance. Natural products from food source, given their wide-ranging and long-term benefits, have been increasingly used in tumor prevention and treatment. This study revealed that Hibiscus manihot L. flower extract (HML) suppressed the proliferation and migration of A549 cells in a dose and time dependent manner and disrupting cell cycle progression. HML markedly enhanced the accumulation of ROS, stimulated the dissipation of mitochondrial membrane potential (MMP) and that facilitated mitophagy through the loss of mitochondrial function. In addition, HML induced apoptosis by activation of the PTEN-P53 pathway and inhibition of ATG5/7-dependent autophagy induced by PINK1-mediated mitophagy in A549 cells. Moreover, HML exert anticancer effects together with 5-FU through synergistic effect. Taken together, HML may serve as a potential tumor prevention and adjuvant treatment for its functional attributes.


Assuntos
Hibiscus , Neoplasias Pulmonares , Manihot , Humanos , Células A549 , Hibiscus/metabolismo , Manihot/metabolismo , Autofagia , Neoplasias Pulmonares/patologia , Flores/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo
11.
Ann Bot ; 133(2): 225-260, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597914

RESUMO

BACKGROUND: The Chloranthaceae comprise four extant genera (Hedyosmum, Ascarina, Chloranthus and Sarcandra), all with simple flowers. Molecular phylogenetics indicates that the Chloranthaceae diverged very early in angiosperm evolution, although how they are related to eudicots, magnoliids, monocots and Ceratophyllum is uncertain. Fossil pollen similar to that of Ascarina and Hedyosmum has long been recognized in the Early Cretaceous, but over the last four decades evidence of extinct Chloranthaceae based on other types of fossils has expanded dramatically and contributes significantly to understanding the evolution of the family. SCOPE: Studies of fossils from the Cretaceous, especially mesofossils of Early Cretaceous age from Portugal and eastern North America, recognized diverse flowers, fruits, seeds, staminate inflorescences and stamens of extinct chloranthoids. These early chloranthoids include forms related to extant Hedyosmum and also to the Ascarina, Chloranthus and Sarcandra clade. In the Late Cretaceous there are several occurrences of distinctive fossil androecia related to extant Chloranthus. The rich and still expanding Cretaceous record of Chloranthaceae contrasts with a very sparse Cenozoic record, emphasizing that the four extant genera are likely to be relictual, although speciation within the genera might have occurred in relatively recent times. In this study, we describe three new genera of Early Cretaceous chloranthoids and summarize current knowledge on the extinct diversity of the group. CONCLUSIONS: The evolutionary lineage that includes extant Chloranthaceae is diverse and abundantly represented in Early Cretaceous mesofossil floras that provide some of the earliest evidence of angiosperm reproductive structures. Extinct chloranthoids, some of which are clearly in the Chloranthaceae crown group, fill some of the morphological gaps that currently separate the extant genera, help to illuminate how some of the unusual features of extant Chloranthaceae evolved and suggest that Chloranthaceae are of disproportionate importance for a more refined understanding of ecology and phylogeny of early angiosperm diversification.


Assuntos
Frutas , Magnoliopsida , Sementes , Ecologia , Flores , Fósseis , Magnoliopsida/genética
12.
Zootaxa ; 5404(1): 236-257, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38480399

RESUMO

The genus Actenosigynes includes two species, A. fulvoniger (Michener, 1989) and A. mantiqueirensis Silveira, 2009, both oligolectic on flowers of Blumenbachia (Loasaceae) in southern Brazil. We describe a third species, Actenosigynes silveirai Siriani-Oliveira, sp. n., and provide additional evidence to the suspected narrow host-plant specificity between bees of this genus and Loasaceae. This new species was only recorded to collect resources on flowers of Aosa, a genus closely related to Blumenbachia in the subfamily Loasoideae. We illustrate female and male specimens of the three species to offer a complete summary of the morphological variation within this modestly sized genus of Neopasiphaeinae, including photographs of male genitalia and associated metasomal sterna. Moreover, we provide an identification key for the three species of Actenosigynes and the first phylogenetic and dating estimate for these taxa. The genus diversified in southern South America during the Miocene-Pliocene, following a more ancient divergence associated with the orogenic events that separated its sister-genus, Torocolletes, west of the Andes. We dedicate this newly described species to Fernando A. Silveira for his contributions to research on Brazilian bee taxonomy and biology.


Assuntos
Himenópteros , Magnoliopsida , Masculino , Abelhas , Animais , Filogenia , Flores
13.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473738

RESUMO

MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.


Assuntos
Proteínas de Domínio MADS , Solanum lycopersicum , Proteínas de Domínio MADS/genética , Flores/genética , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo
14.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473825

RESUMO

Flower color is an important trait for the ornamental value of colored rapeseed (Brassica napus L.), as the plant is becoming more popular. However, the color fading of red petals of rapeseed is a problem for its utilization. Unfortunately, the mechanism for the process of color fading in rapeseed is unknown. In the current study, a red flower line, Zhehuhong, was used as plant material to analyze the alterations in its morphological and physiological characteristics, including pigment and phytohormone content, 2 d before flowering (T1), at flowering (T2), and 2 d after flowering (T3). Further, metabolomics and transcriptomics analyses were also performed to reveal the molecular regulation of petal fading. The results show that epidermal cells changed from spherical and tightly arranged to totally collapsed from T1 to T3, according to both paraffin section and scanning electron microscope observation. The pH value and all pigment content except flavonoids decreased significantly during petal fading. The anthocyanin content was reduced by 60.3% at T3 compared to T1. The content of three phytohormones, 1-aminocyclopropanecarboxylic acid, melatonin, and salicylic acid, increased significantly by 2.2, 1.1, and 30.3 times, respectively, from T1 to T3. However, auxin, abscisic acid, and jasmonic acid content decreased from T1 to T3. The result of metabolomics analysis shows that the content of six detected anthocyanin components (cyanidin, peonidin, pelargonidin, delphinidin, petunidin, and malvidin) and their derivatives mainly exhibited a decreasing trend, which was in accordance with the trend of decreasing anthocyanin. Transcriptomics analysis showed downregulation of genes involved in flavonol, flavonoid, and anthocyanin biosynthesis. Furthermore, genes regulating anthocyanin biosynthesis were preferentially expressed at early stages, indicating that the degradation of anthocyanin is the main issue during color fading. The corresponding gene-encoding phytohormone biosynthesis and signaling, JASMONATE-ZIM-DOMAIN PROTEIN, was deactivated to repress anthocyanin biosynthesis, resulting in fading petal color. The results clearly suggest that anthocyanin degradation and phytohormone regulation play essential roles in petal color fading in rapeseed, which is a useful insight for the breeding of colored rapeseed.


Assuntos
Brassica napus , Brassica rapa , Ciclopentanos , Oxilipinas , Reguladores de Crescimento de Plantas , Antocianinas , Multiômica , Melhoramento Vegetal , Flavonoides , Flores , Regulação da Expressão Gênica de Plantas , Cor
15.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474210

RESUMO

Malus sieversii is considered the ancestor of the modern cultivated apple, with a high value for apple tolerance breeding. Despite studies on the temperature adaptability of M. sieversii carried out at a physiological response and the genome level, information on the proteome changes of M. sieversii during dormancy is limited, especially about the M. sieversii subtypes. In this study, a DIA-based approach was employed to screen and identify differential proteins involved in three overwintering periods of flower buds in two M. sieversii subtypes (Malus sieversii f. luteolus, GL; Malus sieversii f. aromaticus, HC) with different overwintering adaptabilities. The proteomic analysis revealed that the number of the down-regulated differential expression proteins (DEPs) was obviously higher than that of the up-regulated DEPs in the HC vs. GL groups, especially at the dormancy stage and dormancy-release stage. Through functional classification of those DEPs, the majority of the DEPs in the HC vs. GL groups were associated with protein processing in the endoplasmic reticulum, oxidative phosphorylation, starch and sucrose metabolism and ribosomes. Through WGCNA analysis, tricarboxylic acid cycle and pyruvate metabolism were highly correlated with the overwintering stages; oxidative phosphorylation and starch and sucrose metabolism were highly correlated with the Malus sieversii subtypes. This result suggests that the down-regulation of DEPs, which are predominantly enriched in these pathways, could potentially contribute to the lower cold tolerance observed in HC during overwintering stage.


Assuntos
Malus , Malus/genética , Proteômica , Melhoramento Vegetal , Flores/genética , Sacarose/metabolismo , Amido/metabolismo
16.
Curr Biol ; 34(5): R189-R190, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471443

RESUMO

The world-renowned pollination system of the long-spurred orchid Angraecum sesquipedale Thouars and the long-tongued hawkmoth Xanthopan praedicta (Rothschild & Jordan, 1903), from Madagascar, is the best-known example of the predictive power of evolutionary ecology1,2, yet its actual degree of specialisation remains poorly described due to the incompleteness of the pollination record of X. praedicta. Here, we describe another species from Madagascar, an angraecoid orchid distantly related to the genus Angraecum Bory, that has evolved these extreme adaptations to a single pollinator after a pollinator shift. It bears the longest spur of any flowering plant, relative to flower diameter, reaching 33 cm. The discovery of a species with such an exceptionally long spur is a rare event, the most recent dating to 19653. This novelty is described here as Solenangis impraedicta (Figure 1A-F) and discussed in a phylogenetic framework. Its conservation status is assessed as Endangered.


Assuntos
Lepidópteros , Orchidaceae , Animais , Polinização , Filogenia , Madagáscar , Evolução Biológica , Flores
17.
Curr Biol ; 34(5): R181-R183, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471441

RESUMO

Scharman and Lenhard introduce heterostyly, a phenomenon where individuals in a plant population produce flowers with more than one morphologically distinct form.


Assuntos
Flores , Plantas , Humanos , Flores/anatomia & histologia
18.
BMC Plant Biol ; 24(1): 188, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486139

RESUMO

BACKGROUND: Proper flowering time is important for the growth and development of plants, and both too early and too late flowering impose strong negative influences on plant adaptation and seed yield. Thus, it is vitally important to study the mechanism underlying flowering time control in plants. In a previous study by the authors, genome-wide association analysis was used to screen the candidate gene SISTER OF FCA (SSF) that regulates FLOWERING LOCUS C (FLC), a central gene encoding a flowering suppressor in Arabidopsis thaliana. RESULTS: SSF physically interacts with Protein arginine methyltransferase 5 (PRMT5, SKB1). Subcellular co-localization analysis showed that SSF and SKB1 interact in the nucleus. Genetically, SSF and SKB1 exist in the same regulatory pathway that controls FLC expression. Furthermore, RNA-sequencing analysis showed that both SSF and SKB1 regulate certain common pathways. CONCLUSIONS: This study shows that PRMT5 interacts with SSF, thus controlling FLC expression and facilitating flowering time control.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo
19.
BMC Complement Med Ther ; 24(1): 129, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521901

RESUMO

BACKGROUND: The potent antiplasmodial activity of 1-hydroxy-5,6,7-trimethoxyxanthone (HTX), isolated from Mammea siamensis T. Anders. flowers, has previously been demonstrated in vitro. However, its in vivo activity has not been reported. Therefore, this study aimed to investigate the antimalarial activity and acute toxicity of HTX in a mouse model and to evaluate the pharmacokinetic profile of HTX following a single intraperitoneal administration. METHODS: The in vivo antimalarial activity of HTX was evaluated using a 4-day suppressive test. Mice were intraperitoneally injected with Plasmodium berghei ANKA strain and given HTX daily for 4 days. To detect acute toxicity, mice received a single dose of HTX and were observed for 14 days. Additionally, the biochemical parameters of the liver and kidney functions as well as the histopathology of liver and kidney tissues were examined. HTX pharmacokinetics after intraperitoneal administration was also investigated in a mouse model. Liquid chromatography triple quadrupole mass spectrometry was used to quantify plasma HTX and calculate pharmacokinetic parameters with the PKSolver software. RESULTS: HTX at 10 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 74.26%. Mice treated with 3 mg/kg HTX showed 46.88% suppression, whereas mice treated with 1 mg/kg displayed 34.56% suppression. Additionally, no symptoms of acute toxicity were observed in the HTX-treated groups. There were no significant alterations in the biochemical parameters of the liver and kidney functions and no histological changes in liver or kidney tissues. Following intraperitoneal HTX administration, the pharmacokinetic profile exhibited a maximum concentration (Cmax) of 94.02 ng/mL, time to attain Cmax (Tmax) of 0.5 h, mean resident time of 14.80 h, and elimination half-life of 13.88 h. CONCLUSIONS: HTX has in vivo antimalarial properties against P. berghei infection. Acute toxicity studies of HTX did not show behavioral changes or mortality. The median lethal dose was greater than 50 mg/kg body weight. Pharmacokinetic studies showed that HTX has a long elimination half-life; hence, shortening the duration of malaria treatment may be required to minimize toxicity.


Assuntos
Antimaláricos , Malária , Mammea , Camundongos , Animais , Antimaláricos/toxicidade , Extratos Vegetais/toxicidade , Malária/tratamento farmacológico , Flores , Peso Corporal
20.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528464

RESUMO

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Assuntos
Arabidopsis , Sapindaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Folhas de Planta/metabolismo , Sapindaceae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...