Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.253
Filtrar
1.
Drug Dev Res ; 85(3): e22183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628078

RESUMO

One of the worst long-term health issues of the past few decades is Alzheimer's disease (AD). Unfortunately, there are currently insufficient choices for treating and caring for AD, which makes it a popular subject for drug development research. Studies on the development of drugs for AD have primarily concentrated on the use of multitarget directed ligands. Following this strategy, we designed new ChE inhibitors with additional antioxidant and metal chelator effects. In this research, eight novel N'-(quinolin-4-ylmethylene)propanehydrazide derivatives were synthesized and characterized. We then evaluated the inhibition potency of all the final compounds for cholinesterase enzymes. Among them, 4e (IC50 acetylcholinesterase [AChE] = 0.69 µM and butyrylcholinesterase [BChE]= 26.00 µM) and 4h (IC50's AChE= 7.04 µM and BChE= 16.06 µM) were found to be the most potent AChE and BChE inhibitors, respectively.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Relação Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Simulação de Acoplamento Molecular
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612460

RESUMO

In this study, binary amorphous solid dispersions (ASDs, fisetin-Eudragit®) and ternary amorphous solid inclusions (ASIs, fisetin-Eudragit®-HP-ß-cyclodextrin) of fisetin (FIS) were prepared by the mechanochemical method without solvent. The amorphous nature of FIS in ASDs and ASIs was confirmed using XRPD (X-ray powder diffraction). DSC (Differential scanning calorimetry) confirmed full miscibility of multicomponent delivery systems. FT-IR (Fourier-transform infrared analysis) confirmed interactions that stabilize FIS's amorphous state and identified the functional groups involved. The study culminated in evaluating the impact of amorphization on water solubility and conducting in vitro antioxidant assays: 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-ABTS, 2,2-diphenyl-1-picrylhydrazyl-DPPH, Cupric Reducing Antioxidant Capacity-CUPRAC, and Ferric Reducing Antioxidant Power-FRAP and in vitro neuroprotective assays: inhibition of acetylcholinesterase-AChE and butyrylcholinesterase-BChE. In addition, molecular docking allowed for the determination of possible bonds and interactions between FIS and the mentioned above enzymes. The best preparation turned out to be ASI_30_EPO (ASD fisetin-Eudragit® containing 30% FIS in combination with HP-ß-cyclodextrin), which showed an improvement in apparent solubility (126.5 ± 0.1 µg∙mL-1) and antioxidant properties (ABTS: IC50 = 10.25 µg∙mL-1, DPPH: IC50 = 27.69 µg∙mL-1, CUPRAC: IC0.5 = 9.52 µg∙mL-1, FRAP: IC0.5 = 8.56 µg∙mL-1) and neuroprotective properties (inhibition AChE: 39.91%, and BChE: 42.62%).


Assuntos
Adenoma , Benzotiazóis , Flavonóis , Ácidos Polimetacrílicos , Ácidos Sulfônicos , beta-Ciclodextrinas , Humanos , Acetilcolinesterase , Antioxidantes/farmacologia , Butirilcolinesterase , Simulação de Acoplamento Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Eur Rev Med Pharmacol Sci ; 28(6): 2522-2537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567612

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is identified by neuropathological symptoms, and there is now no effective treatment for the condition. A lack of the brain neurotransmitter acetylcholine has been related to the etiology of Alzheimer's disease. Acetylcholinesterase is an enzyme that breaks down acetylcholine to an inactive form and causes the death of cholinergic neurons. Conventional treatments were used but had less effectiveness. Therefore, there is a crucial need to identify alternative compounds with potential anti-cholinesterase agents and minimal undesirable effects. MATERIALS AND METHODS: Fluoroquinolones and benzimidazole-benzothiazole derivatives offer antimicrobial, anti-inflammatory, anti-oxidant, anti-diabetic, and anti-Alzheimer activities. To enhance the chemical portfolio of cholinesterase inhibitors, a variety of fluoroquinolones and benzimidazole-benzothiazole compounds were evaluated against acetylcholinesterase (AChE) butyrylcholinesterase (BChE) enzymes. For this purpose, molecular docking and adsorption, distribution, metabolism, excretion, and toxicology ADMET models were used for in-silico studies for both AChE and BChE enzymes to investigate possible binding mechanisms and drug-likeness of the compounds. The inhibitory effect of docked heterocyclic compounds was also verified in vitro against AChE and BChE enzymes. Fluoroquinolones (Z, Z3, Z4, Z6, Z8, Z12, Z15, and Z9) and benzimidazole-benzothiazole compounds (TBIS-16, TBAF-1 to 9) passed through the AChE inhibition assay and their IC50 values were calculated. RESULTS: The compound 1-ethyl-6-fluoro-7-(4-(2-(4-nitrophenylamino)-2-oxoethyl)piperazin-1-yl) -4-oxo-1,4 di-hydroquinoline-3-carboxylic acid and 2-((1H-benzo[d]imidazol-2-yl)methyl)-N'-(3-bromobenzyl)-4-hydroxy-2H-thiochromene-3-carbohydrazide 1,1-dioxide (Z-9 and TBAF-6) showed the lowest IC50 values against AChE/BChE (0.37±0.02/2.93±0.03 µM and 0.638±0.001/1.31±0.01 µM, respectively) than the standard drug, donepezil (3.9±0.01/4.9±0.05 µM). During the in-vivo investigation, behavioral trials were performed to analyze the neuroprotective impact of Z-9 and TBAF-6 compounds on AD mouse models. The groups treated with Z-9 and TBAF-6 compounds had better cognitive behavior than the standard drug. CONCLUSIONS: This study found that Z-9 (Fluoroquinolones) and TBAF-6 (benzimidazole-benzothiazole) compounds improve behavioral and biochemical parameters, thus treating neurodegenerative disorders effectively.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Camundongos , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Acetilcolina , Simulação de Acoplamento Molecular , Benzotiazóis/uso terapêutico , Benzimidazóis/uso terapêutico , Fluoroquinolonas/uso terapêutico , Relação Estrutura-Atividade
4.
AANA J ; 92(2): 139-143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564210

RESUMO

Administration of succinylcholine to patients with a variant in the butyrylcholinesterase (BChE) gene increases the risk of anesthesia emergence prior to recovery from neuromuscular blockade (NMB). Application of quantitative neuromuscular monitoring (NMM) can identify residual NMB. We present two patients with abnormal BChE gene variants. In the first case, quantitative monitoring was applied too late to prevent awareness, but allowed diagnosis and prevented admission to the intensive care unit. In the second case, monitoring was applied prior to NMB, which enabled early diagnosis and prevented premature awakening from anesthesia. These cases illustrate the importance of quantitative NMM, even in short cases and with short-acting depolarizing agents such as succinylcholine. The clinical implications of this report include a more consistent use of NMM to identify and manage patients with undiagnosed abnormal BChE and to prevent premature anesthesia emergence.


Assuntos
Anestesia , Butirilcolinesterase , Humanos , Butirilcolinesterase/genética , Monitoração Neuromuscular , Succinilcolina , Diagnóstico Precoce
5.
BMC Neurol ; 24(1): 116, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594621

RESUMO

BACKGROUND: The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS: Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS: In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION: These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION: NCT03186989 since June 14, 2017.


Assuntos
Doença de Alzheimer , Humanos , Criança , Doença de Alzheimer/líquido cefalorraquidiano , Apolipoproteína E4/genética , Butirilcolinesterase/genética , Fenótipo , Peptídeos beta-Amiloides , Apolipoproteínas E/genética
6.
Eur J Med Chem ; 270: 116353, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579622

RESUMO

Due to the putative role of butyrylcholinesterase (BChE) in regulation of acetylcholine levels and functions in the late stages of the Alzheimer's disease (AD), the potential of selective inhibitors (BChEIs) has been envisaged as an alternative to administration of acetylcholinesterase inhibitors (AChEIs). Starting from our recent findings, herein the synthesis and in vitro evaluation of cholinesterase (ChE) inhibition of a novel series of some twenty 3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one derivatives, bearing at the indole nitrogen diverse alkyl-bridged 4-arylalkylpiperazin-1-yl chains, are reported. The length of the spacers, as well as the type of arylalkyl group affected the enzyme inhibition potency and BChE/AChE selectivity. Two compounds, namely 14c (IC50 = 163 nM) and 14d (IC50 = 65 nM), bearing at the nitrogen atom in position 6 a n-pentyl- or n-heptyl-bridged 4-phenethylpiperazin-1-yl chains, respectively, proved to be highly potent mixed-type inhibitors of both equine and human BChE isoforms, showing more than two order magnitude of selectivity over AChE. The study of binding kinetics through surface plasmon resonance (SPR) highlighted differences in their BChE residence times (8 and 47 s for 14c and 14d, respectively). Moreover, 14c and 14d proved to hit other mechanisms known to trigger neurodegeneration underlying AD and other CNS disorders. Unlike 14c, compound 14d proved also capable of inhibiting by more than 60% the in vitro self-induced aggregation of neurotoxic amyloid-ß (Aß) peptide at 100 µM concentration. On the other hand, 14c was slightly better than 14d in counteracting, at 1 and 10 µM concentration, glutamate excitotoxicity, due to over-excitation of NMDA receptors, and hydrogen peroxide-induced oxidative stress assessed in neuroblastoma cell line SH-SY5Y. This paper is dedicated to Prof. Marcello Ferappi, former dean of the Faculty of Pharmacy of the University of Bari, in the occasion of his 90th birthday.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Animais , Cavalos , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Linhagem Celular Tumoral , Nitrogênio , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
7.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611753

RESUMO

The fruits of Cornus officinalis are used not only as a popular health food to tonify the liver and kidney, but also as staple materials to treat dementia and other age-related diseases. The pharmacological function of C. officinalis fruits with or without seeds is controversial for treating some symptoms in a few herbal prescriptions. However, the related metabolite and pharmacological information between its pericarps and seeds are largely deficient. Here, comparative metabolomics analysis between C. officinalis pericarps and seeds were conducted using an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, and therapeutic effects were also evaluated using several in vitro bioactivity arrays (antioxidant activity, α-glucosidase and cholinesterase inhibitory activities, and cell inhibitory properties). A total of 499 secondary metabolites were identified. Thereinto, 77 metabolites were determined as key differential metabolites between C. officinalis pericarps and seeds, and the flavonoid biosynthesis pathway was identified as the most significantly different pathway. Further, 47 metabolites were determined as potential bioactive constituents. In summary, C. officinalis seeds, which demonstrated higher contents in total phenolics, stronger in vitro antioxidant activities, better α-glucosidase and butyrylcholinesterase inhibitory activities, and stronger anticancer activities, exhibited considerable potential for food and health fields. This work provided insight into the metabolites and bioactivities of C. officinalis pericarps and seeds, contributing to their precise development and utilization.


Assuntos
Cornus , Frutas , Butirilcolinesterase , alfa-Glucosidases , Sementes , Compostos Fitoquímicos/farmacologia
8.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611900

RESUMO

Triazoles and triazolium salts are very common subunits in the structures of various drugs. Medicaments with a characteristic 1,2,3-triazole core are also being developed to treat neurodegenerative disorders associated with cholinesterase enzyme activity. Several naphtho- and thienobenzo-triazoles from our previous research emerged as being particularly promising in that sense. For this reason, in this research, new naphtho- and thienobenzo-triazoles 23-34, as well as 1,2,3-triazolium salts 44-51, were synthesized and tested. Triazolium salts 44-46 showed excellent activity while salts 47 and 49 showed very good inhibition toward both butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes. In contrast, neutral photoproducts were shown to be selective towards BChE but with very good inhibition potential as molecules 24-27. The representative of newly prepared compounds, 45 and 50, were stable in aqueous solution and revealed intriguing fluorimetric properties, characterized by a strong Stokes shift of >160 nm. Despite their condensed polycyclic structure shaped similarly to well-known DNA-intercalator ethidium bromide, the studied compounds did not show any interaction with ds-DNA, likely due to the unfavorable steric hindrance of substituents. However, the studied dyes bind proteins, particularly showing very diverse inhibition properties toward AChE and BChE. In contrast, neutral photoproducts were shown to be selective towards a certain enzyme but with moderate inhibition potential. The molecular docking of the best-performing candidates to cholinesterases' active sites identified cation-π interactions as the most responsible for the stability of the enzyme-ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the compounds synthesized have been performed.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase , Simulação de Acoplamento Molecular , Sais , Complexos Multienzimáticos , Triazóis/farmacologia
9.
Eur J Med Chem ; 268: 116289, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452730

RESUMO

Most recently, worldwide interest in butyrylcholinesterase (BChE) as a potential target for treating Alzheimer's disease (AD) has increased. In this study, the previously obtained selective BChE inhibitors with benzimidazole-oxadiazole scaffold were further structurally modified to increase their aqueous solubility and pharmacokinetic (PK) characteristics. S16-1029 showed improved solubility (3280 µM, upgraded by 14 times) and PK parameters, including plasma exposure (AUC0-inf = 1729.95 ng/mL*h, upgraded by 2.6 times) and oral bioavailability (Fpo = 48.18%, upgraded by 2 times). S16-1029 also displayed weak or no inhibition against Cytochrome P450 (CYP450) and human ether a-go-go related gene (hERG) potassium channel. In vivo experiments on tissue distribution revealed that S16-1029 could cross the blood-brain barrier (BBB) and reach the central nervous system (CNS). In vivo cognitive improvement efficacy and good in vitro target inhibitory activity (eqBChE IC50 = 11.35 ± 4.84 nM, hBChE IC50 = 48.1 ± 11.4 nM) were also assured. The neuroprotective effects against several AD pathology characteristics allowed S16-1029 to successfully protect the CNS of progressed AD patients. According to the findings of this study, altering molecular planarity might be a viable strategy for improving the drug-like property of CNS-treating drugs.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Solubilidade , Inibidores da Colinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Cognição , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Estrutura Molecular
10.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474561

RESUMO

Berberis species have a long history of use in traditional Chinese medicine, Ayurvedic medicine, and Western herbal medicine. The aim of this study was the quantification of the main isoquinoline alkaloids in extracts obtained from various Berberis species by HPLC, in vitro and in silico determination of anti-cholinesterase activity, and in vitro and in vivo investigations of the cytotoxic activity of the investigated plant extracts and alkaloid standards. In particular, Berberis species whose activity had not been previously investigated were selected for the study. In the most investigated Berberis extracts, a high content of berberine and palmatine was determined. Alkaloid standards and most of the investigated plant extracts exhibit significant anti-cholinesterase activity. Molecular docking results confirmed that both alkaloids are more favourable for forming complexes with acetylcholinesterase compared to butyrylcholinesterase. The kinetic results obtained by HPLC-DAD indicated that berberine noncompetitively inhibited acetylcholinesterase, while butyrylcholinesterase was inhibited in a mixed mode. In turn, palmatine exhibited a mixed inhibition of acetylcholinesterase. The cytotoxic activity of berberine and palmatine standards and plant extracts were investigated against the human melanoma cell line (A375). The highest cytotoxicity was determined for extract obtained from Berberis pruinosa cortex. The cytotoxic properties of the extract were also determined in the in vivo investigations using the Danio rerio larvae xenograft model. The obtained results confirmed a significant effect of the Berberis pruinosa cortex extract on the number of cancer cells in a living organism. Our results showed that extracts obtained from Berberis species, especially the Berberis pruinosa cortex extract, can be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of neurodegenerative diseases and human melanoma.


Assuntos
Alcaloides , Antineoplásicos , Berberina , Berberis , Melanoma , Humanos , Berberina/farmacologia , Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Extratos Vegetais/farmacologia
11.
Int J Biol Macromol ; 265(Pt 2): 131018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518928

RESUMO

As a "silent threat," Alzheimer's disease (AD) is quickly rising to the top of the list of costly and troublesome diseases facing humanity. It is growing to be one of the most troublesome and expensive conditions, with annual health care costs higher than those of cancer and comparable to those of cardiovascular disorders. One of the main pathogenic characteristics of AD is the deficiency of the neurotransmitter acetylcholine (ACh) which plays a vital role in memory, learning, and attention. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play a crucial role in hydrolyzing ACh. Consequently, a frequent therapy approach for AD is the suppression of AChE and BChE to improve cholinergic neurotransmission and reduce cognitive symptoms. The accumulation of amyloid plaques (Aß) is a primary factor contributing to neurodegenerative diseases, particularly AD. Glycogen synthase kinase-3ß (GSK3-ß) is regarded as a pivotal player in the pathophysiology of AD since dysregulation of this kinase affects all major hallmarks of the disease, such as tau phosphorylation, Aß aggregation, memory, neurogenesis, and synaptic function. One of the most challenging and risky issues in modern medicinal chemistry is the urgent and ongoing need for the study and development of effective therapeutic candidates for the treatment of AD. A significant class of heterocyclic molecules that can target the complex and multifactorial pathogenesis of AD are fused thiophene derivatives. The goal of the current review is to demonstrate the advancements made in fused thiophene derivatives' anti-AD activity. It also covers their mechanisms of action and studies of the structure-activity relationships in addition to the compilation of significant synthetic routes for fused thiophene derivatives with anti-AD potential. This review is intended to stimulate new ideas in the search for more rationale designs of derivatives based on fused thiophene, hoping to be more potent in treating AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Butirilcolinesterase , Acetilcolinesterase , Quinase 3 da Glicogênio Sintase/uso terapêutico , Monoaminoxidase , Acetilcolina , Peptídeos beta-Amiloides , Glicogênio Sintase Quinase 3 beta
12.
BMC Complement Med Ther ; 24(1): 134, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539199

RESUMO

BACKGROUND: Recent reports have highlighted the significance of plant bioactive components in drug development targeting neurodegenerative disorders such as Alzheimer's disease (AD). Thus, the current study assessed antioxidant activity and enzyme inhibitory activity of the aqueous extract of Talinum triangulare leave (AETt) as well as molecular docking/simulation of the identified phytonutrients against human cholinesterase activities. METHODS: In vitro assays were carried out to assess the 2,2- azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) cation radicals and cholinesterase inhibitory activities of AETt using standard protocols. High performance liquid chromatography coupled with diode-array detection (HPLC-DAD) was employed to identify compounds in AETt. Also, for computational analysis, identified bioactive compounds from AETt were docked using Schrodinger's GLIDE against human cholinesterase obtained from the protein data bank ( https://www.rcsb.org/ ). RESULTS: The results revealed that AETt exhibited a significant concentration-dependent inhibition against ABTS cation radicals (IC50 = 308.26 ± 4.36 µg/ml) with butylated hydroxytoluene (BHT) as the reference. Similarly, AETt demonstrated a significant inhibition against acetylcholinesterase (AChE, IC50 = 326.49 ± 2.01 µg/ml) and butyrylcholinesterase (BChE, IC50 = 219.86 ± 4.13 µg/ml) activities with galanthamine as the control. Molecular docking and simulation analyses revealed rutin and quercetin as potential hits from AETt, having showed strong binding energies for both the AChE and BChE. In addition, these findings were substantiated by analyses, including radius of gyration, root mean square fluctuation, root mean square deviation, as well as mode similarity and principal component analyses. CONCLUSION: Overall, this study offers valuable insights into the interactions and dynamics of protein-ligand complexes, offering a basis for further drug development targeting these proteins in AD.


Assuntos
Doença de Alzheimer , Benzotiazóis , Inibidores da Colinesterase , Ácidos Sulfônicos , Tetra-Hidronaftalenos , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Antioxidantes/análise , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Doença de Alzheimer/tratamento farmacológico , Cátions
13.
Arh Hig Rada Toksikol ; 75(1): 76-80, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548375

RESUMO

Glyphosate has remained the leading herbicide on the global market to date, despite the continuous debate between consumers, scientific community, and regulatory agencies over its carcinogenicity, genotoxicity, environmental persistence, and the role in the development of neurodegenerative disorders. Chemically, glyphosate belongs to a large family of organophosphorus pesticides, which exert a neurotoxic effect by inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes of the cholinergic system essential for maintaining neurotransmission. Although research shows that glyphosate is a weak cholinesterase inhibitor in fish and mammals compared to other OP compounds, no conclusive data exist concerning the inhibition of human AChE and BChE. In our study we analysed its inhibitory potency on human AChE and BChE, by establishing its IC50 and reversible inhibition in terms of dissociation inhibition constants. Glyphosate concentration of 40 mmol/L caused near total inhibition of enzyme activity (approx. 10 % activity remaining). Inhibition dissociation constants (K i) of glyphosate-AChE and -BChE complexes were 28.4±2.7 mmol/L and 19.3±1.8 mmol/L, respectively. In conclusion, glyphosate shows a slight binding preference for BChE but exhibits inhibition only in a high concentration range. Our results are in line with studies reporting that its neurotoxic effect is not primarily linked to the cholinergic system.


Assuntos
Butirilcolinesterase , Praguicidas , Animais , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , 60658 , Compostos Organofosforados , Praguicidas/toxicidade , Inibidores da Colinesterase/toxicidade , Exposição Ambiental , Mamíferos/metabolismo
14.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446233

RESUMO

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Assuntos
Reativadores da Colinesterase , Compostos de Pralidoxima , Taurina/análogos & derivados , Ratos , Humanos , Animais , Reativadores da Colinesterase/farmacologia , Trimedoxima/farmacologia , Butirilcolinesterase , Acetilcolinesterase , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Fósforo , Oxigênio
15.
Future Med Chem ; 16(7): 623-645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470247

RESUMO

Background: In Alzheimer's disease, butyrylcholinesterase (BuChE) activity gradually increases, while acetylcholinesterase (AChE) activity decreases or remains unchanged. Dual inhibitors have important roles in regulation of synaptic acetylcholine levels and progression of Alzheimer's disease. Methods: 1-(Thiomorpholin-4-ylmethyl)/benzyl-5-trifluoromethoxy-2-indolinones (6-7) were synthesized. AChE and BuChE inhibitory effects were investigated with Ellman's method. Molecular docking studies were performed for analyzing the possible binding interactions at active sites. Results: Compound 6g was the strongest inhibitor against both AChE (Ki = 0.35 µM) and BuChE (Ki = 0.53 µM). It showed higher inhibitory effects than both donepezil and galantamine. Moreover, compound 7m had a higher inhibitory effect than galantamine and the effect was comparable to that of donepezil against both AChE (Ki = 0.69 µM) and BuChE (Ki = 0.95 µM). Conclusion: The benzyl substitution compared with 1-(thiomorpholin-4-ylmethyl) group significantly increased both AChE and BuChE inhibitory effects.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Donepezila , Galantamina , Simulação de Acoplamento Molecular , Butirilcolinesterase , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Oxindóis
16.
Methods Appl Fluoresc ; 12(2)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38428023

RESUMO

Forsythoside E is one secondary metabolite ofForsythia suspensa(Thunb.) Vahl. In the study, the interactions between forsythoside E and two types of cholinesterases, acetylcholinesterase and butyrylcholinesterase were investigated in the different conditions. Forsythoside E increased the fluorescence intensity of acetylcholinesterase but quenched the fluorescence of butyrylcholinesterase. Aß25-35used in the study may not form complexes with cholinesterases, and did not affect the interaction between forsythoside E and cholinesterases. The charged quaternary group of AsCh interacted with the 'anionic' subsite in acetylcholinesterase, which did not affect the interaction between forsythoside E and acetylcholinesterase. The enhancement rate of forsythoside E to acetylcholinesterase fluorescence from high to low was acid solution (pH 6.4), neutral solution (pH 7.4) and alkaline solution (pH 8.0), while the reduction rate of forsythoside E to butyrylcholinesterase fluorescence was in reverse order. Metal ions may interact with cholinesterases, and increased the effects of forsythoside E to cholinesterases fluorescence, in order that Fe3+was the highest, followed by Cu2+, and Mg2+. A forsythoside E-butyrylcholinesterase complex at stoichiometric ratio of 1:1 was spontaneously formed, and the static quenching was the main quenching mode in the process of forsythoside E binding with butyrylcholinesterase. TheKvalues of two complexes were pretty much the same, suggesting that the interaction between cholinesterases and forsythoside E was almost unaffected by acid-base environment and metal ions. Thennumbers of two cholinesterases approximately equaled to one, indicating that there was only one site on each cholinesterase applicable for forsythoside E to bind to.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Fluorescência , Íons
17.
ACS Chem Neurosci ; 15(6): 1135-1156, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38453668

RESUMO

For the potential therapy of Alzheimer's disease (AD), butyrylcholinesterase (BChE) has gradually gained worldwide interest in the progression of AD. This study used a pharmacophore-based virtual screening (VS) approach to identify Z32439948 as a new BChE inhibitor. Aiding by molecular docking and molecular dynamics, essential binding information was disclosed. Specifically, a subpocket was found and structure-guided design of a series of novel compounds was conducted. Derivatives were evaluated in vitro for cholinesterase inhibition and physicochemical properties (BBB, log P, and solubility). The investigation involved docking, molecular dynamics, enzyme kinetics, and surface plasmon resonance as well. The study highlighted compounds 27a (hBChE IC50 = 0.078 ± 0.03 µM) and (R)-37a (hBChE IC50 = 0.005 ± 0.001 µM) as the top-ranked BChE inhibitors. These compounds showed anti-inflammatory activity and no apparent cytotoxicity against the human neuroblastoma (SH-SY5Y) and mouse microglia (BV2) cell lines. The most active compounds exhibited the ability to improve cognition in both scopolamine- and Aß1-42 peptide-induced cognitive deficit models. They can be promising lead compounds with potential implications for treating the late stage of AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Estrutura Molecular , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/química , Linhagem Celular Tumoral , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade
18.
Chem Biol Drug Des ; 103(3): e14506, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38480508

RESUMO

A series of new betulin, lupeol, erythrodiol, and oleanolic acid phosphoryloxy- and furoyloxy-derivatives has been synthesized and their structure was confirmed by NMR spectroscopy. Synthesized compounds were subjected to Ellman's assays to determine their ability to inhibit the enzymes AChE and BChE. Among them, diethoxyphosphoryloxy-oleanolic acid inhibited BChE with a value of 99%, thereby acting as a mixed-type inhibitor holding very low Ki values of Ki = 6.59 nM and Ki ' = 1.97 nM, respectively.


Assuntos
Ácido Oleanólico , Triterpenos , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Ácido Oleanólico/farmacologia , Triterpenos/farmacologia , Triterpenos/química , Relação Estrutura-Atividade
19.
Biomed Pharmacother ; 173: 116399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492439

RESUMO

The search for novel drugs to address the medical needs of Alzheimer's disease (AD) is an ongoing process relying on the discovery of disease-modifying agents. Given the complexity of the disease, such an aim can be pursued by developing so-called multi-target directed ligands (MTDLs) that will impact the disease pathophysiology more comprehensively. Herewith, we contemplated the therapeutic efficacy of an amiridine drug acting as a cholinesterase inhibitor by converting it into a novel class of novel MTDLs. Applying the linking approach, we have paired amiridine as a core building block with memantine/adamantylamine, trolox, and substituted benzothiazole moieties to generate novel MTDLs endowed with additional properties like N-methyl-d-aspartate (NMDA) receptor affinity, antioxidant capacity, and anti-amyloid properties, respectively. The top-ranked amiridine-based compound 5d was also inspected by in silico to reveal the butyrylcholinesterase binding differences with its close structural analogue 5b. Our study provides insight into the discovery of novel amiridine-based drugs by broadening their target-engaged profile from cholinesterase inhibitors towards MTDLs with potential implications in AD therapy.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Aminoquinolinas/uso terapêutico , Acetilcolinesterase/metabolismo , Ligantes
20.
Drug Dev Res ; 85(2): e22161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445811

RESUMO

In this study, a series of novel benzyloxybenzene substituted (S)-α-amino acid methyl esters and their amide derivatives were synthesized and evaluated for their inhibitory actions against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase A (MAO-A), and monoamine oxidase B (MAO-B). The synthetic strategy was based on starting from benzyl bromide (5) and 4-hydroxybenzaldehyde (6). The reaction of 5 and 6 in the presence of K2 CO3 gave benzyloxybenzaldehyde 7. Benzyloxybenzene substituted (S)-α-amino acid methyl esters 11, 12, 13, (±)-19, and (±)-20 were obtained from the reaction of  L-amino acid methyl esters with benzyloxybenzaldehyde (7) followed by in situ reduction with NaBH4 . The reaction of (S)-11, (S)-12, 13, (±)-19, and (±)-20 with excess ammonia gave amides (S)-14, (S)-15, 16, (±)-21, and (±)-22. The in vitro inhibitory activities of compounds against MAO-A, MAO-B, AChE, and BChE were investigated. Within the α-amino acid methyl ester series, 13 (21.32 ± 0.338 µM) showed selectivity by inhibiting the MAO-B better than MAO-A. 13 emerged as the most active member of this series, exhibiting a 12-fold selectivity for MAO-B. 14 (4.501 ± 0.295 µM) demonstrated a pronounced selectivity for MAO-A over MAO-B, with a selectivity ratio of 110-fold. In addition, it was determined that compound 15 (95.65 ± 3.09 µM) had high selectivity for BChE inhibition. 21 was demonstrated the most potent inhibition (18.36 ± 1.36 µM) against AChE.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Amidas/farmacologia , Aminoácidos/farmacologia , Ésteres , Monoaminoxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...