Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.273
Filtrar
1.
Carbohydr Polym ; 332: 121912, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431415

RESUMO

Bacterial-infected wounds present a significant challenge in the medical field, posing a severe threat to public health. Traditional wound dressings have limited efficacy in treating bacterial-infected wounds, and antibiotics suffer from cytotoxicity and drug resistance. Consequently, an urgent requirement exists for developing multifunctional wound dressings capable of providing superior antimicrobial activity and expediting wound repair. In recent years, chitosan-based natural polysaccharide hydrogels have garnered attention for their biocompatibility, antimicrobial properties, and ability to aid in hemostasis. This study presents the development of a multi-functional, bi-dynamic network hydrogel for the treatment of wounds infected with bacteria. The hydrogel consists of a backbone of chitosan grafted with chlorogenic acid (CA-ECS), oxidized pullulan polysaccharides (OP), and zinc ions (Zn2+). The CA-ECS/OP/Zn2+ hydrogel displayed strong adhesion, good injectability, and high mechanical strength and was biodegradable and biocompatible. Furthermore, adding Zn2+ and CA enhanced the hydrogel's mechanical properties and antioxidant and antimicrobial activities. In a rat model of full-thickness skin wounds infected with S. aureus, the CA-ECS/OP/Zn2+ hydrogel demonstrated great anti-inflammatory, angiogenic, and folliculogenic properties, resulting in accelerated wound healing. The CA-ECS/OP/Zn2+ hydrogel has great potential for treating bacterial-infected wounds.


Assuntos
Quitosana , Polifenóis , Animais , Ratos , Hidrogéis , Staphylococcus aureus , Polissacarídeos/farmacologia , Metais , Antibacterianos/farmacologia
2.
PLoS One ; 19(3): e0300485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470886

RESUMO

The wastewater from underground coal gasification (UCG) process has extremely complex composition and high concentrations of toxic and refractory compounds including phenolics, aliphatic and aromatic hydrocarbons, ammonia, cyanides, hazardous metals and metalloids. So, the development of biological processes for treating UCG wastewater poses a serious challenge in the sustainable coal industry. The aim of the study was to develop an innovative and efficient wetland construction technology suitable for a treatment of UCG wastewater using available and low-cost media. During the bioremediation process the toxicity of the raw wastewater decreased significantly between 74%-99%. The toxicity units (TU) ranged from values corresponding to very high acute toxic for raw wastewater to non-toxic for effluents from wetland columns after 60 days of the experiment. The toxicity results correlated with the decrease of some organic and inorganic compounds such as phenols, aromatic hydrocarbons, cyanides, metals and ammonia observed during the bioremediation process. The removal percentage of organic compounds like BTEX, PAHs and phenol was around 99% just after 14 days of treatment. A similar removal rate was indicated for cyanide and metals (Zn, Cr, Cd and Pb). Concluded, in order to effectively assess remediation technologies, it is desirable to consider combination of physicochemical parameters with ecotoxicity measurements. The present findings show that wetland remediation technology can be used to clean-up the heavily contaminated waters from the UCG process. Wetland technology as a nature-based solution has the potential to turn coal gasification wastewater into usable recycled water. It is economically and environmentally alternative treatment method.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carvão Mineral , Amônia , Áreas Alagadas , Fenóis , Metais , Cianetos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473762

RESUMO

Metal-free catalysts based on nitrogen-doped porous carbons were designed and synthesized from mixtures of melamine as nitrogen and carbon sources and calcium citrate as carbon source and porogen system. Considering the physicochemical and textural properties of the prepared carbons, a melamine/citrate ratio of 2:1 was selected to study the effect of the pyrolysis temperature. It was observed that a minimum pyrolysis temperature of 750 °C is required to obtain a carbonaceous structure. However, although there is a decrease in the nitrogen amount at higher pyrolysis temperatures, a gradual development of the porosity is produced from 750 °C to 850 °C. Above that temperature, a deterioration of the carbon porous structure is produced. All the prepared carbon materials, with no need for a further activation treatment, were active in the hydrogenation reaction of 1-chloro-4-nitrobenzene. A full degree of conversion was reached with the most active catalysts obtained from 2:1 melamine/citrate mixtures pyrolyzed at 850 °C and 900 °C, which exhibited a suitable compromise between the N-doping level and developed mesoporosity that facilitates the access of the reactants to the catalytic sites. What is more, all the materials showed 100% selectivity for the hydrogenation of the nitro group to form the corresponding chloro-aniline.


Assuntos
Carbono , Metais , Nitrobenzenos , Hidrogenação , Carbono/química , Nitrogênio/química , Citratos
4.
Molecules ; 29(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474532

RESUMO

Biomacromolecular probes have been extensively employed in the detection of metal ions for their prominent biocompatibility, water solubility, high selectivity, and easy modification of fluorescent groups. In this study, a fluorescent probe FP was constructed. The probe FP exhibited high specificity recognition for Cu2+. With the combination of Cu2+, the probe was subjected to fluorescence quenching. The research suggested that the probe FP carried out the highly sensitive detection of Cu2+ with detection limits of 1.7 nM. The fluorescence quenching of fluorescamine was induced by Cu2+ perhaps due to the PET (photoinduced electron transfer) mechanism. The FP-Cu2+ complex shows weak fluorescence, which is likely due to the PET quenching effect from Cu2+ to fluorescamine fluorophore. Moreover, the probe FP can be employed for imaging Cu2+ in living cells. The new fluorescent probe developed in this study shows the advantages of good biocompatibility and low cytotoxicity. It can be adopted for the targeted detection of Cu2+ in cells, and it has promising applications in the mechanism research and diagnosis of Cu2+-associated diseases.


Assuntos
Cobre , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/farmacologia , Fluorescamina , Metais , Células HeLa , Espectrometria de Fluorescência
5.
Phys Chem Chem Phys ; 26(11): 8919-8931, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426850

RESUMO

Homing endonucleases (HEs) are highly specific DNA cleaving enzymes, with I-PpoI having been suggested to use a single metal to accelerate phosphodiester bond cleavage. Although an I-PpoI mechanism has been proposed based on experimental structural data, no consensus has been reached regarding the roles of the metal or key active site amino acids. This study uses QM cluster and QM/MM calculations to provide atomic-level details of the I-PpoI catalytic mechanism. Minimal QM cluster and large-scale QM/MM models demonstrate that the experimentally-proposed pathway involving direct Mg2+ coordination to the substrate coupled with leaving group protonation through a metal-activated water is not feasible due to an inconducive I-PpoI active site alignment. Despite QM cluster models of varying size uncovering a pathway involving leaving group protonation by a metal-activated water, indirect (water-mediated) metal coordination to the substrate is required to afford this pathway, which renders this mechanism energetically infeasible. Instead, QM cluster models reveal that the preferred pathway involves direct Mg2+-O3' coordination to stabilize the charged substrate and assist leaving group departure, while H98 activates the water nucleophile. These calculations also underscore that both catalytic residues that directly interact with the substrate and secondary amino acids that position or stabilize these residues are required for efficient catalysis. QM/MM calculations on the solvated enzyme-DNA complex verify the preferred mechanism, which is fully consistent with experimental kinetic, structural, and mutational data. The fundamental understanding of the I-PpoI mechanism of action, gained from the present work can be used to further explore potential uses of this enzyme in biotechnology and medicine, and direct future computational investigations of other members of the understudied HE family.


Assuntos
Endonucleases , Metais , Metais/metabolismo , DNA/química , Catálise , Água
6.
Sci Rep ; 14(1): 5421, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443412

RESUMO

In the present study, a novel coordination polymer (CP) based on Ni(II), namely, [Ni(L)(D-CAM)(H2O)]n (1) (H2D-CAM = (1R,3S)-1,2,2-trimethylcyclopentane-1,3-dicarboxylic acid and L = 3,6-bis(benzimidazol-1-yl)pyridazine), has been produced successfully through applying a mixed ligand synthesis method via reacting Ni(NO3)2·6H2O with 3,6-bis(benzimidazol-1-yl)pyridazine ligand in the presence of a carboxylic acid co-ligand. Hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) are representatives of natural polysaccharides and have good biocompatibility. Based on the chemical synthesis method, HA/CMCS hydrogel was successfully prepared. SEM showed that the lyophilized gel presented a typical macroporous structure with three-dimensional connected pores, which had unique advantages as a drug carrier. Using paclitaxel as a drug model, we further synthesized a novel paclitaxel-loaded metal gel and evaluated its therapeutic effect on cervical cancer. Finally, novel drugs from the reinforcement learning simulation are suggested to have better biological activity against ovarian cancer due to low affinity energy and stronger interaction strength towards the protein receptor.


Assuntos
Piridazinas , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Ligantes , Hidrogéis , Ácidos Dicarboxílicos , Ácido Hialurônico , Aprendizado de Máquina , Metais , Paclitaxel
7.
Sci Rep ; 14(1): 5412, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443566

RESUMO

Human enamel is composed mainly of apatite. This mineral of sorption properties is susceptible to chemical changes, which in turn affect its resistance to dissolution. This study aimed to investigate whether metal leakage from orthodontic appliances chemically alters the enamel surface during an in vitro simulated orthodontic treatment. Totally 107 human enamel samples were subjected to the simulation involving metal appliances and cyclic pH fluctuations over a period of 12 months in four complimentary experiments. The average concentrations and distribution of Fe, Cr, Ni, Ti and Cu within the enamel before and after the experiments were examined using ICP‒MS and LA‒ICP‒MS techniques. The samples exposed to the interaction with metal appliances exhibited a significant increase in average Fe, Cr and Ni (Kruskal-Wallis, p < 0.002) content in comparison to the control group. The outer layer, narrow fissures and points of contact with the metal components showed increased concentrations of Fe, Ti, Ni and Cr after simulated treatment, conversely to the enamel sealed with an adhesive system. It has been concluded that metal leakage from orthodontic appliances chemically alters enamel surface and microlesions during experimental in vitro simulated treatment.


Assuntos
Assistência Odontológica , Aparelhos Ortodônticos , Humanos , Apatitas , Simulação por Computador , Metais
8.
Sci Rep ; 14(1): 6397, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493233

RESUMO

Modular hip implants allow intra-operative adjustments for patient-specific customization and targeted replacement of damaged elements without full implant extraction. However, challenges arise from relative micromotions between components, potentially leading to implant failure due to cytotoxic metal debris. In this study magnitude and directions of micromotions at the taper junction were estimated, aiming to understand the effect of variations in head size and neck length. Starting from a reference configuration adhering to the 12/14 taper standard, six additional implant configurations were generated by varying the head size and/or neck length. A musculoskeletal multibody model of a prothesized lower limb was developed to estimate hip contact force and location during a normal walking task. Following the implant assembly, the multibody-derived loads were imposed as boundary conditions in a finite element analysis to compute the taper junction micromotions as the relative slip between the contacting surfaces. Results highlighted the L-size head as the most critical configuration, indicating a 2.81 µm relative slip at the mid-stance phase. The proposed approach enables the investigation of geometric variations in implants under accurate load conditions, providing valuable insights for designing less risky prostheses and informing clinical decision-making processes.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Desenho de Prótese , Fenômenos Mecânicos , Metais , Corrosão
9.
Anal Chim Acta ; 1299: 342418, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499415

RESUMO

BACKGROUND: Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. RESULTS: This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. SIGNIFICANCE AND NOVELTY: In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.


Assuntos
Nanopartículas , Humanos , Análise Espectral/métodos , Nanopartículas/química , Imunoensaio/métodos , Lasers , Metais
10.
Environ Monit Assess ; 196(4): 379, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499718

RESUMO

Airborne metals and organic pollutants are linked to severe human health impacts, i.e. affecting the nervous system and being associated with cancer. Airborne metals and polycyclic aromatic hydrocarbons (PAHs) in urban environments are derived from diverse sources, including combustion and industrial and vehicular emissions, posing a threat to air quality and subsequently human health. A lichen biomonitoring approach was used to assess spatial variability of airborne metals and PAHs, identify potential pollution sources and assess human health risks across the City of Manchester (UK). Metal concentrations recorded in lichen samples were highest within the city centre area and along the major road network, and lichen PAH profiles were dominated by 4-ring PAHs (189.82 ng g-1 in Xanthoria parietina), with 5- and 6-ring PAHs also contributing to the overall PAH profile. Cluster analysis and pollution index factor (PIF) calculations for lichen-derived metal concentrations suggested deteriorated air quality being primarily linked to vehicular emissions. Comparably, PAH diagnostic ratios identified vehicular sources as a primary cause of PAH pollution across Manchester. However, local more complex sources (e.g. industrial emissions) were further identified. Human health risk assessment found a "moderate" risk for adults and children by airborne potential harmful element (PHEs) concentrations, whereas PAH exposure in Manchester is potentially linked to 1455 (ILCR = 1.45 × 10-3) cancer cases (in 1,000,000). Findings of this study indicate that an easy-to-use lichen biomonitoring approach can aid to identify hotspots of impaired air quality and potential human health impacts by airborne metals and PAHs across an urban environment, particularly at locations that are not continuously covered by (non-)automated air quality measurement programmes.


Assuntos
Poluentes Atmosféricos , Líquens , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Monitoramento Biológico , Monitoramento Ambiental , Metais/análise , Reino Unido , Medição de Risco
11.
Aquat Toxicol ; 269: 106882, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442506

RESUMO

This study delves into the intricate interplay between ocean acidification (OA), metal bioaccumulation, and cellular responses using mussels (Mytilus galloprovincialis) as bioindicators. For this purpose, environmentally realistic concentrations of isotopically labelled metals (Cd, Cu, Ag, Ce) were added to investigate whether the OA increase would modify metal bioaccumulation and induce adverse effects at the cellular level. The study reveals that while certain elements like Cd and Ag might remain unaffected by OA, the bioavailability of Cu and Ce could potentially escalate, leading to amplified accumulation in marine organisms. The present findings highlight a significant rise in Ce concentrations within different mussel organs under elevated pCO2 conditions, accompanied by an increased isotopic fractionation of Ce (140/142Ce), suggesting a heightened potential for metal accumulation under OA. The results suggested that OA influenced metal accumulation in the gills of mussels. Conversely, metal accumulation in the digestive gland was unaffected by OA. The exposure to both trace metals and OA affects the biochemical responses of M. galloprovincialis, leading to increased metabolic capacity, changes in energy reserves, and alterations in oxidative stress markers, but the specific effects on other biomarkers (e.g., lipid peroxidation, some enzymatic responses or acetylcholinesterase activity) were not uniform, suggesting complex interactions between the stressors and the biochemical pathways in the mussels.


Assuntos
Mytilus , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/toxicidade , Oligoelementos/metabolismo , Cádmio/metabolismo , Acetilcolinesterase/metabolismo , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Água do Mar , Poluentes Químicos da Água/toxicidade , Metais/metabolismo , Biomarcadores/metabolismo
12.
Waste Manag ; 178: 385-394, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442668

RESUMO

The standing pouch, a packaging material made of multiple layers of plastic and metal, presents a significant challenge for full recycling. Gasification shows promise as a method to recover aluminum from this type of waste and convert it into energy. This study aims to evaluate the efficiency of gasification in treating aluminum-containing plastic packages, and recovering aluminum while identifying the optimal combinations of temperature and equivalence ratio (ER) to achieve the best outcomes. The study achieved a conversion rate of 43.06 wt% to 69.42 wt% of the original waste mass into syngas, with aluminum recovery rates ranging from 35.2 % to 65.3 %. Temperature and ER alterations affected the product distribution, aluminum recovery rate, and aluminum partitioning in the products. The results indicated that the combination of 700 °C, ER = 0.4 would provide the largest amount of syngas about 69.42 %, which is the main product of the gasification process, and therefore, this combination is the most optimal for syngas-yielding purposes. Under the reclaiming aluminum is more prioritized, the combination of 800 °C, ER = 0.6 would be the most optimal condition, the majority of Al in fuel was found in char and fly ash were 67.5 % and 4.81 %, respectively. The study focused on the partitioning of aluminum during the gasification process, which was observed to mainly exist in the form of Al2O3(s), with gaseous species including AlCl3(g), AlH(g), and Al2O(g) due to their medium volatility. As the ER increased, the amount of O2 also increased, leading to more Al2O3(s) formation. In conclusion, this research provides a foundation for further exploration of gasification as a means of energy conversion and metal recovery.


Assuntos
Eliminação de Resíduos , Eliminação de Resíduos/métodos , Alumínio , Gases , Temperatura , Metais
13.
J Contemp Dent Pract ; 25(1): 41-51, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514430

RESUMO

AIM: The study aims to correlate the frictional forces (FF) of four different types of commercially available ceramic brackets to their surface topography. MATERIALS AND METHODS: Two monocrystalline (MC) brackets (CLEAR™, Adanta, Germany; Inspire ICE™, Ormco, USA), one polycrystalline (PC) bracket (Symetri Clear™, Ormco, USA), one clear hybrid esthetic bracket (DISCREET™, Adanta, Germany), and a stainless-steel (SS) bracket (Victory™, 3M Unitek, USA) served as control. Both static friction (SF) and kinetic friction (KF) were recorded during sliding using an Instron universal machine in dry settings. The bracket slot surface topography was evaluated. A scanning electron microscope (SEM) and a profilometer machine were used for assessment before and after sliding. RESULTS: Frictional forces values during sliding were as follows in descending order; Inspire ICE™, CLEAR™, DISCREET™, Symetri Clear™, and, lastly, Victory™. Also, DISCREET™ scored the highest in surface roughness (Sa) values followed by Symetri Clear™. None of the correlations were statistically significant. CONCLUSION: Frictional forces produced during sliding were not always directly related to surface roughness. Monocrystalline ceramic brackets appeared to have the greatest FF and a low surface roughness. Furthermore, DISCREET™ scored a very low frictional value comparable to metal brackets yet showed the highest surface roughness. Metal brackets exhibited the greatest surface smoothness before sliding and the least SF. CLINICAL SIGNIFICANCE: Predicting the FFs produced during sliding mechanics would help the practitioner while choosing the bracket system to be used, and while planning the treatment mechanics, how much force to deliver, and how much tooth movement to expect. How to cite this article: AlBadr AH, Talic NF. Correlating Frictional Forces Generated by Different Bracket Types during Sliding and Surface Topography Using Scanning Electron Microscopy and Optical Profilometer. J Contemp Dent Pract 2024;25(1):41-51.


Assuntos
Braquetes Ortodônticos , Microscopia Eletrônica de Varredura , Fricção , Fios Ortodônticos , Desenho de Aparelho Ortodôntico , Análise do Estresse Dentário , Estética Dentária , Metais , Aço Inoxidável/química , Teste de Materiais , Propriedades de Superfície
14.
Se Pu ; 42(3): 264-274, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503703

RESUMO

Phenolic endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and disrupt normal cell functions upon entering a living organism, leading to reproductive and developmental toxicity. Therefore, the development of a rapid and efficient analytical method for detecting phenolic EDCs in environmental waters is crucial. Owing to the low concentration of phenolic EDCs in environmental water, appropriate sample pretreatment methods are necessary to remove interferences caused by the sample matrix and enrich the target analytes before instrumental analysis. Dispersive solid-phase extraction (DSPE) has gained considerable attention as a simple and rapid sample pretreatment method for environmental-sample analysis. In this method, an adsorbent material is uniformly dispersed in a sample solution and the target analytes are extracted through processes such as vortexing. Compared with traditional solid-phase extraction (SPE), DSPE increases the contact area between the adsorbent and sample solution, reduces the required amounts of adsorbent and organic solvents, and improves the extraction efficiency. The adsorbent material plays a critical role in DSPE because it determines the extraction efficiency of the method. Metal-organic frameworks (MOFs) are porous framework materials composed of metal clusters and multifunctional organic ligands. They possess many excellent properties such as tunable pore sizes, large surface areas, and good thermal and chemical stability, rendering them ideal adsorbent materials for sample pretreatment. MOF-derived porous carbon materials obtained through high-temperature carbonization not only increase the density of MOF materials for better separation but also retain the advantages of a large surface area, highly ordered porous structure, and high porosity. In this study, a porous carbon material derived from an MOF, named as University of Oslo-66-carbon (UiO-66-C), was synthesized using a solvothermal method and applied as an adsorbent to enrich four phenolic EDCs (bisphenol A, 4-tert-octylphenol, 4-nonylphenol, and nonylphenol) in water. A method combining DSPE with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established to analyze these phenolic EDCs in water. The UiO-66-C dosage, pH of water sample, adsorption time, eluent type and volume, elution time, and ion strength were optimized. Gradient elution was performed using methanol-water as the mobile phase. The target analytes were separated on an ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 µm), and multiple reaction monitoring (MRM) was conducted in negative electrospray ionization mode. The method exhibited a linear correlation within the range of 0.5-100 µg/L for the four phenolic EDCs. The limits of detection (LODs) and quantification (LOQs) of the four phenolic EDCs were 0.01-0.13 µg/L and 0.03-0.42 µg/L, respectively. The precision of the method was evaluated through intra- and inter-day relative standard deviations (RSDs), with values ranging from 1.5% to 10.6% and from 6.1% to 13.2%, respectively. When applied to the detection of phenolic EDCs in tap and surface water, the spiked recoveries of the four phenolic EDCs were 77.1%-116.6%. Trace levels of 4-nonylphenol and nonylphenol were detected in surface water at levels of 1.38 and 0.26 µg/L, respectively. The proposed method exhibits good accuracy and precision; thus, it provides a new rapid, efficient, and sensitive approach for the detection of phenolic EDCs in environmental water.


Assuntos
Estruturas Metalorgânicas , Fenóis , Ácidos Ftálicos , Espectrometria de Massas em Tandem , Água , Cromatografia Líquida de Alta Pressão , Porosidade , Cromatografia Líquida , Esqueleto , Metais , Extração em Fase Sólida
15.
J Colloid Interface Sci ; 663: 856-868, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447400

RESUMO

Mitochondrial dysfunction and metal ion imbalance are recognized as pathological hallmarks of Alzheimer's Disease (AD), leading to deposition of ß-amyloid (Aß) thereby and inducing neurotoxicity, activating apoptosis, eliciting oxidative stress, and ultimately leading to cognitive impairment. In this study, the red blood cell membrane (RBC) was used as a vehicle for encapsulating carbon quantum dots (CQD) and polydopamine (PDA), creating a nanocomposite (PDA-CQD/RBC). This nanocomposite was combined with near-infrared light (NIR) for AD treatment. The RBC offers anti-immunorecognition properties to evade immune clearance, PDA exhibits enzyme-mimicking activity to mitigate oxidative stress damage, and CQD acts as a chelating agent for metal ions (Cu2+), effectively preventing Cu2+-mediated aggregation of Aß. Furthermore, the local heating induced by near-infrared laser irradiation can dismantle the formed Aß fibers and enhance the blood-brain barrier's permeability. Both in vitro and animal experiments have shown that PDA-CQD/RBC, in combination with NIR, mitigates neuroinflammation, and ameliorates behavioral deficits in mice. This approach targets multiple pathological pathways, surpassing the limitations of single-target treatments and enhancing therapeutic efficacy while decelerating disease progression.


Assuntos
Doença de Alzheimer , Indóis , Polímeros , Pontos Quânticos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/patologia , Peptídeos beta-Amiloides , Metais , Raios Infravermelhos , Carbono/farmacologia
16.
Micron ; 180: 103614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457947

RESUMO

In this manuscript, we explore the potential of studying metal residues in cut marks generated by copper and bronze knives. The method was developed in the forensic sciences for use with modern metals in order to identify microscopic particles of metal tools on bone surfaces. However, the study of residues in archaeological materials can be challenging due to the ways in which the bone remains may have been manipulated, both in the past and in more recent times. Using a scanning electron microscope (SEM), we detected microscopic fragments of bronze and copper knives along with contamination both inside and outside of the cut marks made by those knives. Copper and bronze residues were identified embedded in the bone inside the incisions and, in two cases, they left greenish stains caused by metal oxidation. In contrast, modern contamination of undetermined origin was found unattached to the bone and had a chemical composition not compatible with that of the knives. The amount of residue was influenced by the quantity of soft tissue between the bone and the knife during the butchering tasks. Bone cooking does not seem to influence the preservation of the residues. We anticipate that the approach used in this first exploratory study will emerge as a promising method for identifying the use of metal tools in archaeological bone remains.


Assuntos
Cobre , Comportamento de Utilização de Ferramentas , Microscopia , Metais/química , Osso e Ossos
17.
Protein Sci ; 33(4): e4962, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501507

RESUMO

Insulin is commonly used to treat diabetes and undergoes aggregation at the site of repeated injections in diabetic patients. Moreover, aggregation is also observed during its industrial production and transport and should be avoided to preserve its bioavailability to correctly adjust glucose levels in diabetic patients. However, monitoring the effect of various parameters (pH, protein concentration, metal ions, etc.) on the insulin aggregation and oligomerization state is very challenging. In this work, we have applied a novel Surface Plasmon Resonance (SPR)-based experimental approach to insulin solutions at various experimental conditions, monitoring how its diffusion coefficient is affected by pH and the presence of metal ions (copper and zinc) with unprecedented sensitivity, precision, and reproducibility. The reported SPR method, hereby applied to a protein for the first time, besides giving insight into the insulin oligomerization and aggregation phenomena, proved to be very robust for determining the diffusion coefficient of any biomolecule. A theoretical background is given together with the software description, specially designed to fit the experimental data. This new way of applying SPR represents an innovation in the bio-sensing field and expanding the potentiality of commonly used SPR instruments well over the canonical investigation of biomolecular interactions.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Humanos , Ressonância de Plasmônio de Superfície/métodos , Insulina/química , Reprodutibilidade dos Testes , Metais , Íons , Técnicas Biossensoriais/métodos
18.
Acc Chem Res ; 57(6): 933-944, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501206

RESUMO

ConspectusNuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.


Assuntos
Complexos de Coordenação , Medicina Nuclear , Humanos , Compostos Radiofarmacêuticos/química , Ácidos de Lewis , Complexos de Coordenação/química , Ligantes , Distribuição Tecidual , Radioisótopos/química , Quelantes/química , Metais , Íons
19.
Sci Rep ; 14(1): 5806, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461203

RESUMO

Due to the non-degradable and persistent nature of metal ions in the environment, they are released into water bodies, where they accumulate in fish. In order to assess pollution in fish, the enzyme, glucose 6-phosphate dehydrogenase (G6PD), has been employed as a biomarker due to sensitivity to various ions. This study investigates the kinetic properties of the G6PD enzyme in yellow catfish (Pelteobagrus fulvidraco), and analyzes the effects of these metal ions on the G6PD enzyme activity in the ovarian cell line (CCO) of channel catfish (Ictalurus punctatus). IC50 values and inhibition types of G6PD were determined in the metal ions Cu2+, Al3+, Zn2+, and Cd2+. While, the inhibition types of Cu2+ and Al3+ were the competitive inhibition, Zn2+ and Cd2+ were the linear mixed noncompetitive and linear mixed competitive, respectively. In vitro experiments revealed an inverse correlation between G6PD activity and metal ion concentration, mRNA levels and enzyme activity of G6PD increased at the lower metal ion concentration and decreased at the higher concentration. Our findings suggest that metal ions pose a significant threat to G6PD activity even at low concentrations, potentially playing a crucial role in the toxicity mechanism of metal ion pollution. This information contributes to the development of a biomonitoring tool for assessing metal ion contamination in aquatic species.


Assuntos
Cádmio , Peixes-Gato , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Metais/farmacologia , Metais/metabolismo , Glucosefosfato Desidrogenase/genética , Peixes-Gato/fisiologia , Íons/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo
20.
Anal Chim Acta ; 1298: 342382, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462338

RESUMO

BACKGROUND: Surface immobilization of DNA is the foundation of a broad range of applications in biosensing and specific DNA extraction. Polydopamine (PDA) coatings can serve as intermediate layers to immobilize amino- or thiol-labelled molecules, including DNA, onto various materials through Michael addition and/or Schiff base reactions. However, the conjugation efficiency is limited by electrostatic repulsion between negatively charged DNA and PDA. Recently, it has been reported that polyvalent metal ions (such as Mg2+ and Ca2+) can mediate the adsorption of DNA on PDA surfaces. Inspired by this, in this work we aimed to exploit polyvalent metal ions to facilitate the conjugation of DNA on PDA. RESULTS: Mg2+ was used to promote the conjugation of amino-terminated DNA complementary to ochratoxin A (OTA) aptamer (cDNA-NH2) on PDA-coated magnetic nanoparticles (Fe3O4@PDA). After the reaction, the unlinked cDNA-NH2 adsorbed on Fe3O4@PDA mediated by Mg2+ was removed with EDTA. In the presence of 20 mM Mg2+, the amount of covalently linked cDNA-NH2 increased approximately 11-fold compared to that in the absence of Mg2+. The resulting Fe3O4@PDA@cDNA conjugates exhibited superior hybridization capacity towards OTA aptamers, minimal nonspecific adsorption, and excellent chemical stability. The conjugates combined with fluorophore-labelled aptamers were employed for OTA detection, achieving a limit of detection (LOD) of 2.77 ng mL-1. To demonstrate versatility, this conjugation method was extended to Ca2+-promoted conjugation of cDNA-NH2 on Fe3O4@PDA nanoparticles and Mg2+-promoted conjugation of cDNA-NH2 on PDA-coated 96-well plates. SIGNIFICANCE: The conjugation efficiency of DNA on PDA was significantly improved with the assistance of polyvalent metal ions (Mg2+ and Ca2+), providing a facile and efficient method for DNA immobilization. Due to the substrate-independent adhesion property of PDA, this method demonstrates versatility in DNA surface modification and holds great potential for applications in target extraction, biosensing, and other fields.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Indóis , Ocratoxinas , Polímeros , DNA Complementar , Metais , Aptâmeros de Nucleotídeos/química , DNA , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...