Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.759
Filtrar
1.
Int J Med Sci ; 21(5): 795-808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616999

RESUMO

Background: Inducible co-stimulator (ICOS) shows great potential in the regulation of innate and adaptive immunity. However, previous studies of ICOS have often been limited to one or two levels. Methods: Using the data from the online database, the immunohistochemistry, and enzyme-linked immunosorbent assays, we investigated the role of ICOS / PD-L1 on patients with NSCLC at the mRNA, protein, and serum levels. Results: Our data revealed that unlike most solid tumors, the mRNA expression of ICOS was down-regulated in NSCLC. In addition, our data also showed that mRNA expression levels in ICOS are negatively associated with poor clinicopathologic grading but positively associated with better prognostic outcomes and higher Tregs infiltration level. Immunohistochemistry showed that ICOS correlated negatively with the T stage; while PD-L1 levels correlated positively with the N stage and FOXP3 levels. Serological biomarker analysis showed that patients with NSCLC had lower sICOS levels, which increased significantly post-surgery, and combined sICOS and sPD-L1 diagnosis improved efficacy and accuracy of disease diagnosis. Conclusion: Our findings support that ICOS suggests lower pathological staging and better prognosis. ICOS is a potential diagnostic and prognostic biomarker for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Prognóstico , Multiômica , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , RNA Mensageiro/genética , Biomarcadores , Proteína Coestimuladora de Linfócitos T Induzíveis/genética
2.
Front Immunol ; 15: 1359029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617841

RESUMO

Serving as a pivotal immunotherapeutic approach against tumors, anti-PD-1/PD-L1 therapy amplifies the immune cells' capability to eliminate tumors by obstructing the interaction between PD-1 and PD-L1. Research indicates that immune checkpoint inhibitors are effective when a patient's gut harbors unique beneficial bacteria. As such, it has further been revealed that the gut microbiome influences tumor development and the efficacy of cancer treatments, with metabolites produced by the microbiome playing a regulatory role in the antitumor efficacy of Immune checkpoint inhibitors(ICBs). This article discusses the mechanism of anti-PD-1 immunotherapy and the role of intestinal flora in immune regulation. This review focuses on the modulation of intestinal flora in the context of PD-1 immunotherapy, which may offer a new avenue for combination therapy in tumor immunotherapy.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/uso terapêutico , Ligantes , Imunoterapia , Neoplasias/terapia
3.
Oncoimmunology ; 13(1): 2338558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623463

RESUMO

T cell-based immunotherapies for solid tumors have not achieved the clinical success observed in hematological malignancies, partially due to the immunosuppressive effect promoted by the tumor microenvironment, where PD-L1 and TGF-ß play a pivotal role. However, durable responses to immune checkpoint inhibitors remain limited to a minority of patients, while TGF-ß inhibitors have not reached the market yet. Here, we describe a bispecific antibody for dual blockade of PD-L1 and TFG-ß, termed AxF (scFv)2, under the premise that combination with T cell redirecting strategies would improve clinical benefit. The AxF (scFv)2 antibody was well expressed in mammalian and yeast cells, bound both targets and inhibited dose-dependently the corresponding signaling pathways in luminescence-based cellular reporter systems. Moreover, combined treatment with trispecific T-cell engagers (TriTE) or CAR-T cells significantly boosted T cell activation status and cytotoxic response in breast, lung and colorectal (CRC) cancer models. Importantly, the combination of an EpCAMxCD3×EGFR TriTE with the AxF (scFv)2 delayed CRC tumor growth in vivo and significantly enhanced survival compared to monotherapy with the trispecific antibody. In summary, we demonstrated the feasibility of concomitant blockade of PD-L1 and TGF-ß by a single molecule, as well as its therapeutic potential in combination with different T cell redirecting agents to overcome tumor microenvironment-mediated immunosuppression.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias Colorretais , Animais , Humanos , Linfócitos T , Fator de Crescimento Transformador beta , Antígeno B7-H1 , Antineoplásicos/farmacologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Mamíferos , Microambiente Tumoral
4.
J Pathol Clin Res ; 10(2): e356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38602501

RESUMO

Anaplastic thyroid carcinoma (ATC) is the most advanced and aggressive thyroid cancer, and poorly differentiated thyroid carcinoma (PDTC) lacks anaplastic histology but has lost architectural and cytologic differentiation. Only a few studies have focused on the genetic relationship between the two advanced carcinomas and coexisting differentiated thyroid carcinomas (DTCs). In the present study, we investigated clinicopathologic features and genetic profiles in 57 ATC and PDTC samples, among which 33 cases had concomitant DTC components or DTC history. We performed immunohistochemistry for BRAF V600E, p53, and PD-L1 expression, Sanger sequencing for TERT promoter and RAS mutations, and fluorescence in situ hybridization for ALK and RET rearrangements. We found that ATCs and PDTCs shared similar gene alterations to their coexisting DTCs, and most DTCs were aggressive subtypes harboring frequent TERT promoter mutations. A significantly higher proportion of ATCs expressed p53 and PD-L1, and a lower proportion expressed PAX-8 and TTF-1, than the coexisting DTCs. Our findings provide more reliable evidence that ATCs and PDTCs are derived from DTCs.


Assuntos
Adenocarcinoma , Síndrome de Ehlers-Danlos , Prolina/análogos & derivados , Tiocarbamatos , Neoplasias da Glândula Tireoide , Humanos , Antígeno B7-H1 , Hibridização in Situ Fluorescente , Proteína Supressora de Tumor p53/genética , Neoplasias da Glândula Tireoide/genética
5.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612483

RESUMO

Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the progression of MASL to Metabolic Dysfunction-Associated Steatohepatitis and the development of hepatocellular carcinoma. In the liver, several parenchymal, nonparenchymal, and immune cells maintain immunological homeostasis, and different regulatory pathways balance the activation of the innate and adaptative immune system. PD-1/PD-L1 signaling acts, in the maintenance of the balance between the immune responses and the tissue immune homeostasis, promoting self-tolerance through the modulation of activated T cells. Recently, PD-1 has received much attention for its roles in inducing an exhausted T cells phenotype, promoting the tumor escape from immune responses. Indeed, in MASLD, the excessive fat accumulation dysregulates the immune system, increasing cytotoxic lymphocytes and decreasing their cytolytic activity. In this context, T cells exacerbate liver damage and promote tumor progression. The aim of this review is to illustrate the main pathogenetic mechanisms by which the immune system promotes the progression of MASLD and the transition to HCC, as well as to discuss the possible therapeutic applications of PD-1/PD-L1 target therapy to activate T cells and reinvigorate immune surveillance against cancer.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Biologia
6.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612546

RESUMO

The unsatisfactory efficacy of immunotherapy for colorectal cancer (CRC) remains a major challenge for clinicians and patients. The tumor microenvironment may promote CRC progression by upregulating the expression of hypoxia-inducing factor (HIF) and PD-L1. Therefore, this study explored the expression and correlation of HIF-1α and PD-L1 in the CRC microenvironment. The expression and correlation of HIF-1α and PD-L1 in CRC were analyzed using bioinformatics and Western blotting (WB). The hypoxia and inflammation of the CRC microenvironment were established in the CT26 cell line. CT26 cells were stimulated with two hypoxia mimics, CoCl2 and DFO, which were used to induce the hypoxic environment. Western blotting was used to assess the expression and correlation of HIF-1α and PD-L1 in the hypoxic environment.LPS stimulated CT26 cells to induce the inflammatory environment. WB and bioinformatics were used to assess the expression and correlation of TLR4, HIF-1α, and PD-L1 in the inflammatory environment. Furthermore, the impact of curcumin on the inflammatory environment established by LPS-stimulated CT26 cells was demonstrated through MTT, Transwell, molecular docking, network pharmacology and Western blotting assays. In this study, we found that the HIF-1α/PD-L1 pathway was activated in the hypoxic and inflammatory environment and promoted immune escape in CRC. Meanwhile, curcumin suppressed tumor immune escape by inhibiting the TLR4/HIF-1α/PD-L1 pathway in the inflammatory environment of CRC. These results suggest that combination therapy based on the HIF-1α/PD-L1 pathway can be a promising therapeutic option and that curcumin can be used as a potent immunomodulatory agent in clinical practice.


Assuntos
Neoplasias Colorretais , Curcumina , Humanos , Microambiente Tumoral , Antígeno B7-H1/genética , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like , Hipóxia
7.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612630

RESUMO

Immune checkpoint inhibitors (ICIs), including anti-programmed cell death 1 ligand 1 (PD-L1) antibodies, are significantly changing treatment strategies for human malignant diseases, including oral cancer. Cancer cells usually escape from the immune system and acquire proliferative capacity and invasive/metastatic potential. We have focused on the two immune checkpoints, PD-1/PD-L1 and CD47/SIRPα, in the tumor microenvironment of oral squamous cell carcinoma (OSCC), performed a retrospective analysis of the expression of seven immune-related factors (PD-L1, PD-1, CD4, CD8, CD47, CD56 and CD11c), and examined their correlation with clinicopathological status. As a result, there were no significant findings relating to seven immune-related factors and several clinicopathological statuses. However, the immune checkpoint-related factors (PD-1, PD-L1, CD47) were highly expressed in non-keratinized epithelium-originated tumors when compared to those in keratinized epithelium-originated tumors. It is of interest that immunoediting via immune checkpoint-related factors was facilitated in non-keratinized sites. Several researchers reported that the keratinization of oral mucosal epithelia affected the immune response, but our present finding is the first study to show a difference in tumor immunity in the originating epithelium of OSCC, keratinized or non-keratinized. Tumor immunity, an immune escape status of OSCC, might be different in the originating epithelium, keratinized or non-keratinized.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Antígeno B7-H1 , Antígeno CD47 , Receptor de Morte Celular Programada 1 , Estudos Retrospectivos , Epitélio , Microambiente Tumoral
8.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612724

RESUMO

PD-L1 is one of the two programmed cell death 1 (PD-1) ligands and a part of an immune checkpoint system (PD-1/PD-L1) with widespread clinical application. The aim of this study was to investigate PD-L1 expression and its association with clinicopathological and prognostic significance in non-clear cell renal cell carcinoma (non-ccRCC) patients. A total of 41 papillary (pRCC) and 20 chromophobe (chRCC) RCC tumors were examined for PD-L1 expression by immunohistochemistry in the cancer cells and tumor-infiltrating mononuclear cells (TIMCs). PD-L1 positivity was detected in 36.6% pRCC and 85.0% chRCC cancer cells, while PD-L1 positivity was observed in 73.2% pRCC and 50.0% chRCC TIMCs. PD-L1 positivity in both pRCC and chRCC tumor cells was not correlated with any of the examined clinicopathological features, while PD-L1 positivity in TIMCs was associated with the age of patients with pRCC. During follow-up, the death was documented among 6 patients with pRCC. Papillary RCC patients with PD-L1-positive tumor cells were significantly associated with an increased risk of death compared with patients with PD-L1-negative cancer cells. A similar trend was observed when comparing PD-L1 expression in TIMCs. However, no differences in overall survival for PD-L1-positive pRCC patients with compared to PD-L1-negative patients were observed in tumor cells or TIMCs.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Antígeno B7-H1/genética , Receptor de Morte Celular Programada 1 , Leucócitos , Fatores de Transcrição , Neoplasias Renais/genética
9.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612902

RESUMO

Many tumors have well-defined vulnerabilities, thus potentially allowing highly specific and effective treatment. There is a spectrum of actionable genetic alterations which are shared across various tumor types and, therefore, can be targeted by a given drug irrespective of tumor histology. Several agnostic drug-target matches have already been approved for clinical use, e.g., immune therapy for tumors with microsatellite instability (MSI) and/or high tumor mutation burden (TMB), NTRK1-3 and RET inhibitors for cancers carrying rearrangements in these kinases, and dabrafenib plus trametinib for BRAF V600E mutated malignancies. Multiple lines of evidence suggest that this histology-independent approach is also reasonable for tumors carrying ALK and ROS1 translocations, biallelic BRCA1/2 inactivation and/or homologous recombination deficiency (HRD), strong HER2 amplification/overexpression coupled with the absence of other MAPK pathway-activating mutations, etc. On the other hand, some well-known targets are not agnostic: for example, PD-L1 expression is predictive for the efficacy of PD-L1/PD1 inhibitors only in some but not all cancer types. Unfortunately, the individual probability of finding a druggable target in a given tumor is relatively low, even with the use of comprehensive next-generation sequencing (NGS) assays. Nevertheless, the rapidly growing utilization of NGS will significantly increase the number of patients with highly unusual or exceptionally rare tumor-target combinations. Clinical trials may provide only a framework for treatment attitudes, while the decisions for individual patients usually require case-by-case consideration of the probability of deriving benefit from agnostic versus standard therapy, drug availability, associated costs, and other circumstances. The existing format of data dissemination may not be optimal for agnostic cancer medicine, as conventional scientific journals are understandably biased towards the publication of positive findings and usually discourage the submission of case reports. Despite all the limitations and concerns, histology-independent drug-target matching is certainly feasible and, therefore, will be increasingly utilized in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antígeno B7-H1 , Proteína BRCA1 , Proteínas Tirosina Quinases , Proteína BRCA2 , Proteínas Proto-Oncogênicas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética
10.
Cancer Med ; 13(7): e7195, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613207

RESUMO

OBJECTIVE: Immune tolerance and evasion play a critical role in virus-driven malignancies. However, the phenotype and clinical significance of programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, in aggressive acquired immunodeficiency syndrome (AIDS)-related non-Hodgkin lymphoma (AR-NHL) remain poorly understood, particularly in the Epstein-Barr virus (EBV)-positive subset. METHODS: We used in situ hybridization with EBV-encoded RNA (EBER) to assess the EBV status. We performed immunohistochemistry and flow cytometry analysis to evaluate components of the PD-1/PD-L1/L2 pathway in a multi-institutional cohort of 58 patients with AR-NHL and compared EBV-positive and EBV-negative cases. RESULTS: The prevalence of EBV+ in AR-NHL was 56.9% and was associated with a marked increase in the expression of PD-1/PD-L1/PD-L2 in malignant cells. Patients with AR-NHLs who tested positive for both EBER and PD-1 exhibited lower survival rates compared to those negative for these markers (47.4% vs. 93.8%, p = 0.004). Similarly, patients positive for both EBER and PD-L1 also demonstrated poorer survival (56.5% vs. 93.8%, p = 0.043). Importantly, PD-1 tissue-expression demonstrated independent prognostic significance for overall survival in multivariate analysis and was correlated to elevated levels of LDH (r = 0.313, p = 0.031), increased PD-1+ Tregs (p = 0.006), and robust expression of EBER (r = 0.541, p < 0.001) and PD-L1 (r = 0.354, p = 0.014) expression. CONCLUSIONS: These data emphasize the importance of PD-1-mediated immune evasion in the complex landscape of immune oncology in AR-NHL co-infected with EBV, and contribute to the diagnostic classification and possible definition of immunotherapeutic strategies for this unique subgroup.


Assuntos
Síndrome de Imunodeficiência Adquirida , Infecções por Vírus Epstein-Barr , Linfoma não Hodgkin , Humanos , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/genética , Infecções por Vírus Epstein-Barr/complicações , Prognóstico , Herpesvirus Humano 4/genética
11.
Cell Biochem Funct ; 42(3): e4010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613217

RESUMO

Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-ß1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-ß1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-ß1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-ß1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-ß1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-ß1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-ß1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.


Assuntos
Células-Tronco Mesenquimais , Neoplasias do Colo do Útero , Feminino , Humanos , Antígeno B7-H1 , Adenosina/farmacologia , Fator de Crescimento Transformador beta1 , Microambiente Tumoral
12.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604811

RESUMO

BACKGROUND: The use and approval of immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) depends on PD-L1 expression in the tumor tissue. Nevertheless, PD-L1 often fails to predict response to treatment. One possible explanation could be a change in PD-L1 expression during the course of the disease and the neglect of reassessment. The purpose of this study was a longitudinal analysis of PD-L1 expression in patients with relapsed NSCLC. METHODS: We retrospectively analyzed PD-L1 expression in patients with early-stage NSCLC and subsequent relapse in preoperative samples, matched surgical specimens and biopsy samples of disease recurrence. Ventana PD-L1 (SP263) immunohistochemistry assay was used for all samples. PD-L1 expression was scored based on clinically relevant groups (0%, 1%-49%, and ≥50%). The primary endpoint was the change in PD-L1 score group between preoperative samples, matched surgical specimens and relapsed tumor tissue. RESULTS: 395 consecutive patients with stages I-III NSCLC and 136 (34%) patients with a subsequent relapse were identified. For 87 patients at least two specimens for comparison of PD-L1 expression between early stage and relapsed disease were available. In 72 cases, a longitudinal analysis between preoperative biopsy, the surgically resected specimen and biopsy of disease recurrence was feasible. When comparing preoperative and matched surgical specimens, a treatment-relevant conversion of PD-L1 expression group was found in 25 patients (34.7%). Neoadjuvant treatment showed no significant effect on PD-L1 alteration (p=0.39). In 32 (36.8%) out of 87 cases, a change in PD-L1 group was observed when biopsies of disease relapse were compared with early-stage disease. Adjuvant treatment was not significantly associated with a change in PD-L1 expression (p=0.53). 39 patients (54.2%) showed at least 1 change into a different PD-L1 score group during the course of disease. 14 patients (19.4%) changed the PD-L1 score group twice, 5 (6.9%) of them being found in all different score groups. CONCLUSION: PD-L1 expression shows dynamic changes during the course of disease. There is an urgent need for consensus guidelines to define a PD-L1 testing strategy including time points of reassessment, the number of biopsies to be obtained and judgment of surgical specimens.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno B7-H1/metabolismo , Estudos Retrospectivos , Recidiva Local de Neoplasia , Recidiva
13.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604814

RESUMO

BACKGROUND: Immunotherapy with checkpoint inhibitors, especially those targeting programmed death receptor 1 (PD-1)/PD-1 ligand (PD-L1), is increasingly recognized as a highly promising therapeutic modality for malignancies. Nevertheless, the efficiency of immune checkpoint blockade therapy in treating glioblastoma (GBM) is constrained. Hence, it is imperative to expand our comprehension of the molecular mechanisms behind GBM immune escape (IE). METHODS: Protein chip analysis was performed to screen aberrantly expressed OMA1 protein in PD-1 inhibitor sensitive or resistant GBM. Herein, public databases and bioinformatics analysis were employed to investigate the OMA1 and PD-L1 relation. Then, this predicted relation was verified in primary GBM cell lines through distinct experimental methods. To investigate the molecular mechanism behind OMA1 in immunosuppression, a series of experimental methods were employed, including Western blotting, co-immunoprecipitation (Co-IP), mass spectrometry (MS), immunofluorescence, immunohistochemistry, and qRT-PCR. RESULTS: Our findings revealed that OMA1 competitively binds to HSPA9 to induce mitophagy and mediates the IE of GBM. Data from TCGA indicated a significant correlation between OMA1 and immunosuppression. OMA1 promoted PD-L1 levels in primary cells from patients with GBM. Next, the results of Co-IP and MS conducted on GBM primary cells revealed that OMA1 interacts with HSPA9 and induces mitophagy. OMA1 promoted not only cGAS-STING activity by increasing mitochondrial DNA release but also PD-L1 transcription by activating cGAS-STING. Eventually, OMA1 has been found to induce immune evasion in GBM through its regulation of PD-1 binding and PD-L1 mediated T cell cytotoxicity. CONCLUSIONS: The OMA1/HSPA9/cGAS/PD-L1 axis is elucidated in our study as a newly identified immune therapeutic target in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Mitofagia , Nucleotidiltransferases , Proteínas de Choque Térmico HSP70 , Proteínas Mitocondriais
14.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604815

RESUMO

BACKGROUND: Checkpoint inhibitors targeting the programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway are effective therapies in a range of immunogenic cancer types. Blocking this pathway with an oral therapy could benefit patients through greater convenience, particularly in combination regimens, and allow flexible management of immune-mediated toxicities. METHODS: PD-L1 binding activity was assessed in engineered dimerization and primary cell target occupancy assays. Preclinical antitumor activity was evaluated in ex vivo and in vivo human PD-L1-expressing tumor models. Human safety, tolerability, pharmacokinetics, and biomarker activity were evaluated in an open-label, multicenter, sequential dose-escalation study in patients with advanced solid tumors. Biomarkers evaluated included target occupancy, flow cytometric immunophenotyping, plasma cytokine measurements, and T-cell receptor sequencing. RESULTS: GS-4224 binding caused dimerization of PD-L1, blocking its interaction with PD-1 and leading to reversal of T-cell inhibition and increased tumor killing in vitro and in vivo. The potency of GS-4224 was dependent on the density of cell surface PD-L1, with binding being most potent on PD-L1-high cells. In a phase 1 dose-escalation study in patients with advanced solid tumors, treatment was well tolerated at doses of 400-1,500 mg once daily. Administration of GS-4224 was associated with a dose-dependent increase in plasma GS-4224 exposure and reduction in free PD-L1 on peripheral blood T cells, an increase in Ki67 among the PD-1-positive T-cell subsets, and elevated plasma cytokines and chemokines. CONCLUSIONS: GS-4224 is a novel, orally bioavailable small molecule inhibitor of PD-L1. GS-4224 showed evidence of expected on-target biomarker activity, including engagement of PD-L1 and induction of immune-related pharmacodynamic responses consistent with PD-L1 blockade. TRIAL REGISTRATION NUMBER: NCT04049617.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Neoplasias/tratamento farmacológico , Linfócitos T/metabolismo
15.
Front Immunol ; 15: 1359532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605944

RESUMO

Immunotherapy has revolutionized cancer treatment, with the anti-PD-1/PD-L1 axis therapy demonstrating significant clinical efficacy across various tumor types. However, it should be noted that this therapy is not universally effective for all PD-L1-positive patients, highlighting the need to expedite research on the second ligand of PD-1, known as Programmed Cell Death Receptor Ligand 2 (PD-L2). As an immune checkpoint molecule, PD-L2 was reported to be associated with patient's prognosis and plays a pivotal role in cancer cell immune escape. An in-depth understanding of the regulatory process of PD-L2 expression may stratify patients to benefit from anti-PD-1 immunotherapy. Our review focuses on exploring PD-L2 expression in different tumors, its correlation with prognosis, regulatory factors, and the interplay between PD-L2 and tumor treatment, which may provide a notable avenue in developing immune combination therapy and improving the clinical efficacy of anti-PD-1 therapies.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Ligantes , Neoplasias/terapia , Prognóstico , Apoptose
16.
Front Immunol ; 15: 1321813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605964

RESUMO

Background: Recently, anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immunotherapy offers promising results for advanced biliary tract cancer (BTC). However, patients show highly heterogeneous responses to treatment, and predictive biomarkers are lacking. We performed a systematic review and meta-analysis to assess the potential of PD-L1 expression as a biomarker for treatment response and survival in patients with BTC undergoing anti-PD-1/PD-L1 therapy. Methods: We conducted a comprehensive systematic literature search through June 2023, utilizing the PubMed, EMBASE, and Cochrane Library databases. The outcomes of interest included objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) according to PD-L1 expression. Subgroup analyses and meta-regression were performed to identify possible sources of heterogeneity. Results: A total of 30 studies was included in the final analysis. Pooled analysis showed no significant differences in ORR (odds ratio [OR], 1.56; 95% confidence intervals [CIs], 0.94-2.56) and DCR (OR, 1.84; 95% CIs, 0.88-3.82) between PD-L1 (+) and PD-L1 (-) patients. In contrast, survival analysis showed improved PFS (hazard ratio [HR], 0.54, 95% CIs, 0.41-0.71) and OS (HR, 0.58; 95% CI, 0.47-0.72) among PD-L1 (+) patients compared to PD-L1 (-) patients. Sensitivity analysis excluding retrospective studies showed no significant differences with the primary results. Furthermore, meta-regression demonstrated that drug target (PD-1 vs. PD-L1), presence of additional intervention (monotherapy vs. combination therapy), and PD-L1 cut-off level (1% vs. ≥5%) significantly affected the predictive value of PD-L1 expression. Conclusion: PD-L1 expression might be a helpful biomarker for predicting PFS and OS in patients with BTC undergoing anti-PD-1/PD-L1 therapy. The predictive value of PD-L1 expression can be significantly influenced by diagnostic or treatment variables. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023434114.


Assuntos
Neoplasias do Sistema Biliar , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Ligantes , Estudos Retrospectivos , Neoplasias do Sistema Biliar/tratamento farmacológico
17.
BMC Cancer ; 24(1): 459, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609887

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) represents a common and heterogeneous malignancy of the oral cavity, pharynx and larynx. Surgery and radio(chemo)therapy are the standard treatment options and also have great influence on the composition of the tumor microenvironment and immune cell functions. However, the impact of radio(chemo)therapy on the distribution and characteristics of circulating monocyte subsets in HNSCC are not fully understood. METHODS: Expression patterns of adhesion molecules and chemokine receptors CD11a (integrin-α L; LFA-1), CD11b (integrin-α M; Mac-1), CD11c (integrin-α X), CX3CR1 (CX3CL1 receptor) and checkpoint molecule PD-L1 (programmed cell death ligand-1) were investigated upon radio(chemo)therapeutic treatment using flow cytometry. Furthermore, comprehensive analysis of plasma cytokines was performed before and after treatment using ELISA measurements. RESULTS: Our data reveal a partial recovery of circulating monocytes in HNSCC patients upon radio(chemo)therapeutic treatment, with differential effects of the individual therapy regimen. PD-L1 expression on non-classical monocytes significantly correlates with the individual plasma levels of chemokine CXCL11 (C-X-C motif chemokine 11). CONCLUSIONS: Further comprehensive investigations on larger patient cohorts are required to elucidate the meaningfulness of peripheral blood monocyte subsets and chemokine CXCL11 as potential bioliquid indicators in HNSCC with regard to therapy response and the individual immunological situation.


Assuntos
Neoplasias de Cabeça e Pescoço , Monócitos , Humanos , Antígeno B7-H1 , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Quimiocina CXCL11 , Neoplasias de Cabeça e Pescoço/terapia , Microambiente Tumoral
18.
Eur J Med Res ; 29(1): 230, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609977

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a promising interventional treatment approach that contributes to antitumor immunity. It has been reported that PDT can enhance the effectiveness of immune checkpoint inhibitors (ICIs), but its mechanism is yet unclear. Herein, we implemented bioinformatics analysis to detect common pathways and potential biomarkers in non-small cell lung cancer (NSCLC), PDT, and NSCLC immunotherapy to investigate potential links between PDT, immunotherapy and NSCLC, and their clinical impact. METHODS: Differentially expressed genes in NSCLC- and NSCLC immunotherapy-related data in the GEO database were intersected with PDT-related genes in the GeneCards database to obtain candidate genes and shared pathways. Enrichment analysis and protein-protein interaction were established to identify key genes in functionally enriched pathways. The expression profiles and the prognostic significance of key genes were depicted. RESULTS: Bioinformatics analysis showed that HIF-1α was screened as a prognostic gene in hypoxia, HIF-1, and PD-L1-related signaling pathways, which was associated with clinical response in NSCLC patients after PDT and immunotherapy. In vivo experiments showed that PDT could inhibit tumor growth and upregulate HIF-1α and PD-L1 expressions in NSCLC tissues with a positive correlation, which might influence the blocking activity of ICIs on the HIF-1, and PD-L1-related signaling pathways. CONCLUSIONS: PDT might improve the clinical response of ICIs by upregulating tumor HIF-1α and PD-L1 expressions in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Relevância Clínica , Antígeno B7-H1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
19.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580333

RESUMO

BACKGROUND: The programmed cell death protein-1 (PD-1)/programmed death receptor ligand 1 (PD-L1) axis critically facilitates cancer cells' immune evasion. Antibody therapeutics targeting the PD-1/PD-L1 axis have shown remarkable efficacy in various tumors. Immuno-positron emission tomography (ImmunoPET) imaging of PD-L1 expression may help reshape solid tumors' immunotherapy landscape. METHODS: By immunizing an alpaca with recombinant human PD-L1, three clones of the variable domain of the heavy chain of heavy-chain only antibody (VHH) were screened, and RW102 with high binding affinity was selected for further studies. ABDRW102, a VHH derivative, was further engineered by fusing RW102 with the albumin binder ABD035. Based on the two targeting vectors, four PD-L1-specific tracers ([68Ga]Ga-NOTA-RW102, [68Ga]Ga-NOTA-ABDRW102, [64Cu]Cu-NOTA-ABDRW102, and [89Zr]Zr-DFO-ABDRW102) with different circulation times were developed. The diagnostic efficacies were thoroughly evaluated in preclinical solid tumor models, followed by a first-in-human translational investigation of [68Ga]Ga-NOTA-RW102 in patients with non-small cell lung cancer (NSCLC). RESULTS: While RW102 has a high binding affinity to PD-L1 with an excellent KD value of 15.29 pM, ABDRW102 simultaneously binds to human PD-L1 and human serum albumin with an excellent KD value of 3.71 pM and 3.38 pM, respectively. Radiotracers derived from RW102 and ABDRW102 have different in vivo circulation times. In preclinical studies, [68Ga]Ga-NOTA-RW102 immunoPET imaging allowed same-day annotation of differential PD-L1 expression with specificity, while [64Cu]Cu-NOTA-ABDRW102 and [89Zr]Zr-DFO-ABDRW102 enabled longitudinal visualization of PD-L1. More importantly, a pilot clinical trial shows the safety and diagnostic value of [68Ga]Ga-NOTA-RW102 immunoPET imaging in patients with NSCLCs and its potential to predict immune-related adverse effects following PD-L1-targeted immunotherapies. CONCLUSIONS: We developed and validated a series of PD-L1-targeted tracers. Initial preclinical and clinical evidence indicates that immunoPET imaging with [68Ga]Ga-NOTA-RW102 holds promise in visualizing differential PD-L1 expression, selecting patients for PD-L1-targeted immunotherapies, and monitoring immune-related adverse effects in patients receiving PD-L1-targeted treatments. TRIAL REGISTRATION NUMBER: NCT06165874.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Compostos Heterocíclicos com 1 Anel , Neoplasias Pulmonares , Anticorpos de Domínio Único , Humanos , Antígeno B7-H1/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Radioisótopos de Gálio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Receptor de Morte Celular Programada 1 , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico
20.
Nat Commun ; 15(1): 2853, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565883

RESUMO

Aberrant glycosylation is a crucial strategy employed by cancer cells to evade cellular immunity. However, it's unclear whether homologous recombination (HR) status-dependent glycosylation can be therapeutically explored. Here, we show that the inhibition of branched N-glycans sensitizes HR-proficient, but not HR-deficient, epithelial ovarian cancers (EOCs) to immune checkpoint blockade (ICB). In contrast to fucosylation whose inhibition sensitizes EOCs to anti-PD-L1 immunotherapy regardless of HR-status, we observe an enrichment of branched N-glycans on HR-proficient compared to HR-deficient EOCs. Mechanistically, BRCA1/2 transcriptionally promotes the expression of MGAT5, the enzyme responsible for catalyzing branched N-glycans. The branched N-glycans on HR-proficient tumors augment their resistance to anti-PD-L1 by enhancing its binding with PD-1 on CD8+ T cells. In orthotopic, syngeneic EOC models in female mice, inhibiting branched N-glycans using 2-Deoxy-D-glucose sensitizes HR-proficient, but not HR-deficient EOCs, to anti-PD-L1. These findings indicate branched N-glycans as promising therapeutic targets whose inhibition sensitizes HR-proficient EOCs to ICB by overcoming immune evasion.


Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Proteína BRCA1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Glicosilação , Proteína BRCA2/metabolismo , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Antígeno B7-H1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...