Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.841
Filtrar
1.
Chemosphere ; 355: 141898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579951

RESUMO

Global warming trend is accelerating. This study proposes a green and economical methane (CH4) control strategy by plant combination in constructed wetlands (CWs). In this study, a single planting of Acorus calamus L. hybrid constructed wetland (HCW-A) and a mixed planting of Acorus calamus L. and Eichhornia crassipes (Mart.) Solms hybrid constructed wetland (HCW-EA) were constructed. The differences in nitrogen removal performance and CH4 emissions between HCW-A and HCW-EA were compared and analyzed. The findings indicated that HCW-EA demonstrated significant improvements over HCW-A, with NH4+-N and TN removal rates increasing by 21.61% and 16.38% respectively, and CH4 emissions decreased by 43.36%. The microbiological analysis results showed that plant combination promoted the enrichment of Proteobacteria, Alphaproteobacteria and Bacillus. More nitrifying bacteria carrying nxrA genes and denitrifying bacteria carrying nirK genes accelerated the nitrogen transformation process. In addition, the absolute abundance ratio of pmoA/mcrA increased, reducing the release of CH4.


Assuntos
Desnitrificação , Áreas Alagadas , Nitrogênio , Plantas , Genes Bacterianos
2.
Environ Geochem Health ; 46(5): 167, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592380

RESUMO

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.


Assuntos
Ecossistema , Áreas Alagadas , Plantas Tolerantes a Sal , RNA Ribossômico 16S , Archaea/genética , Poaceae , Solo , Fungos/genética
3.
J Gastrointest Surg ; 28(4): 494-500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583901

RESUMO

BACKGROUND: Although malnutrition has been linked to worse healthcare outcomes, the broader context of food environments has not been examined relative to surgical outcomes. We sought to define the impact of food environment on postoperative outcomes of patients undergoing resection for colorectal cancer (CRC). METHODS: Patients who underwent surgery for CRC between 2014 and 2020 were identified from the Medicare database. Patient-level data were linked to the United States Department of Agriculture data on food environment. Multivariable regression was used to examine the association between food environment and the likelihood of achieving a textbook outcome (TO). TO was defined as the absence of an extended length of stay (≥75th percentile), postoperative complications, readmission, and mortality within 90 days. RESULTS: A total of 260,813 patients from 3017 counties were included in the study. Patients from unhealthy food environments were more likely to be Black, have a higher Charlson Comorbidity Index, and reside in areas with higher social vulnerability (all P < .01). Patients residing in unhealthy food environments were less likely to achieve a TO than that of patients residing in the healthiest food environments (food swamp: 48.8% vs 52.4%; food desert: 47.9% vs 53.7%; P < .05). On multivariable analysis, individuals residing in the unhealthy food environments had lower odds of achieving a TO than those of patients living in the healthiest food environments (food swamp: OR, 0.86; 95% CI, 0.83-0.90; food desert: OR, 0.79; 95% CI, 0.76-0.82); P < .05). CONCLUSION: The surrounding food environment of patients may serve as a modifiable sociodemographic risk factor that contributes to disparities in postoperative CRC outcomes.


Assuntos
Cirurgia Colorretal , Procedimentos Cirúrgicos do Sistema Digestório , Humanos , Idoso , Estados Unidos/epidemiologia , Desertos Alimentares , Áreas Alagadas , Medicare , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
4.
Environ Monit Assess ; 196(4): 407, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561512

RESUMO

Small mammals have a short lifetime and are strictly associated with their environment. This work aimed to use histopathology to assess the health of Holochilus chacarius in a rice agroecosystem in the Pantanal of Mato Grosso do Sul. During necropsy, fragments of the lung, kidney, skin, liver, and reproductive system of 33 animals were collected and submitted to histological processing. Tissue damages were evaluated as mild, moderate, and severe and arranged in a matrix for further statistical analysis. Furthermore, we used generalized linear models to verify the influence of tissue changes on the body condition, obtained by a regression between body mass and length. In the lungs, we found an intense inflammatory infiltrate associated with anthracosis that had a negative influence on the body's condition. Also, we observed degenerative and inflammatory changes in the liver, kidneys, skin, and reproductive system that ranged from mild to moderate. The histopathological lesions observed in this study may be associated with environmental alterations of anthropic origin such as the exposure to soot from wildfires and heavy metals, evidenced by lesions in the lung, kidney, and liver. The present study provided a histopathological matrix as a new approach that allows to classify and quantify the tissue alterations. Tissue changes when associated with body condition demonstrated to be an effective tool to assess the health of small free-living mammals, showing that these animals can be used as bioindicators of environmental condition.


Assuntos
Oryza , Roedores , Animais , Arvicolinae , Áreas Alagadas , Monitoramento Ambiental , Sigmodontinae
5.
Environ Monit Assess ; 196(5): 432, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581451

RESUMO

The East Kolkata Wetlands (EKWT), designated as a Ramsar Site for its crucial role in sewage water purification, agriculture and pisciculture, faces escalating environmental threats due to rapid urbanisation. Employing the pressure-state-response (PSR) framework and Environmental Risk Assessment (ERA), this study spans three decades to elucidate the evolving dynamics of EKWT. Using Landsat TM and OLI images from 1991, 2001, 2011 and 2021, the research identifies key parameters within the PSR framework. Principal component analysis generates environmental risk maps, revealing a 46% increase in urbanisation, leading to reduced vegetation cover and altered land surface conditions. The spatial analysis, utilizing Getis-Ord Gi* statistics, pinpoints risk hotspots and coldspots in the EKWT region. Correlation analysis underscores a robust relationship between urbanisation, climatic response and environmental risk. Decadal ERA exposes a noteworthy surge in high-risk areas, indicating a deteriorating trend. Quantitative assessments pinpoint environmental risk hotspots, emphasizing the imperative for targeted conservation measures. The study establishes a direct correlation between environmental risk and air quality, underscoring the broader implications of EKWT's degradation. While acknowledging the East Kolkata administration's efforts, the research recognises its limitations and advocates a holistic, multidisciplinary approach for future investigations. Recommendations encompass the establishment of effective institutions, real-time monitoring, public engagement and robust anti-pollution measures. In offering quantitative insights, this study provides an evidence-based foundation for conservation strategies and sustainable management practices essential to safeguard the East Kolkata Wetlands.


Assuntos
Purificação da Água , Áreas Alagadas , Monitoramento Ambiental/métodos , Agricultura , Esgotos , Purificação da Água/métodos
6.
Glob Chang Biol ; 30(4): e17280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613249

RESUMO

Coastal wetlands play an important role in regulating atmospheric carbon dioxide (CO2) concentrations and contribute significantly to climate change mitigation. However, climate change, reclamation, and restoration have been causing substantial changes in coastal wetland areas and carbon exchange in China during recent decades. Here we compiled a carbon flux database consisting of 15 coastal wetland sites to assess the magnitude, patterns, and drivers of carbon fluxes and to compare fluxes among contrasting natural, disturbed, and restored wetlands. The natural coastal wetlands have the average net ecosystem exchange of CO2 (NEE) of -577 g C m-2 year-1, with -821 g C m-2 year-1 for mangrove forests and -430 g C m-2 year-1 for salt marshes. There are pronounced latitudinal patterns for carbon dioxide exchange of natural coastal wetlands: NEE increased whereas gross primary production (GPP) and respiration of ecosystem decreased with increasing latitude. Distinct environmental factors drive annual variations of GPP between mangroves and salt marshes; temperature was the dominant controlling factor in salt marshes, while temperature, precipitation, and solar radiation were co-dominant in mangroves. Meanwhile, both anthropogenic reclamation and restoration had substantial effects on coastal wetland carbon fluxes, and the effect of the anthropogenic perturbation in mangroves was more extensive than that in salt marshes. Furthermore, from 1980 to 2020, anthropogenic reclamation of China's coastal wetlands caused a carbon loss of ~3720 Gg C, while the mangrove restoration project during the period of 2021-2025 may switch restored coastal wetlands from a carbon source to carbon sink with a net carbon gain of 73 Gg C. The comparison of carbon fluxes among these coastal wetlands can improve our understanding of how anthropogenic perturbation can affect the potentials of coastal blue carbon in China, which has implications for informing conservation and restoration strategies and efforts of coastal wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Dióxido de Carbono , Ciclo do Carbono , China
7.
Environ Monit Assess ; 196(5): 451, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613723

RESUMO

As the general population's diet has shifted to reflect current weight-loss trends, there has been an increase in zero-calorie artificial sweetener usage. Sucralose (C12H19Cl3O8), commonly known as Splenda® in the USA, is a primary example of these sweeteners. In recent years, sucralose has been identified as an environmental contaminant that cannot easily be broken down via bacterial decomposition. This study focuses on the impact of sucralose presence on microbial communities in brackish and freshwater systems. Microbial respiration and fluorescence were measured as indicators of microbial activity in sucralose-dosed samples taken from both freshwater and estuarine marsh environments. Results showed a significant difference between microbial concentration and respiration when dosed with varying levels of sucralose. Diatom respiration implied a negative correlation of community abundance with sucralose concentration. The freshwater cyanobacterial respiration increased in the presence of sucralose, implying a positive correlation of community abundance with sucralose concentration. This was in direct contrast to its brackish water counterpart. However, further investigation is necessary to confirm any potential utility of these communities in the breakdown of sucralose in the marsh environment.


Assuntos
Monitoramento Ambiental , Sacarose/análogos & derivados , Áreas Alagadas , Humanos , Edulcorantes/toxicidade , Água Doce , Solo
8.
PLoS One ; 19(4): e0301795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598506

RESUMO

Wetland vegetation and ecology of Lake Abaya in the southern Ethiopia was studied to determine floristic composition, plant community type and vegetation ecology. A total of 102 plots were laid along transects that were set up preferentially across areas where there were rapid changes in vegetation or marked environmental gradients to collect data on estimate of percentage aerial cover of plant species and environmental variables. Vegetation data was analyzed by agglomerative hierarchical cluster analysis using similarity ratio as a resemblance index and Ward's linkage method. Multivariate data analysis was performed using appropriate packages in R version 2.14.0. Canonical Correspondence Analysis (CCA) was used to explore the relationship between the species composition and environmental variables. The environmental data included in the CCA were determined using stepwise backward and forward selection of variables by ANOVA test. Statistical measurement regarding species diversity, richness and evenness of the plant community types was carried out by using Shannon-Wiener diversity indices. A total of 92 plant species belonging to 66 genera and 34 families were identified. Families Poaceae, Asteraceae, Fabaceae, Cyperaceae, Solanaceae, Euphorbiaceae and Amaranthaceae account for about 56.99% of the total proportion. Based on the cluster analysis, five plant community types were identified. The most important factors influencing the plant species composition and pattern of wetland plant communities were water drainage, water depth, land use, slope, altitude, and hydrogeomorphology. Therefore, these factors should be considered in future management and protection under the circumstance of climate change and human activities.


Assuntos
Biodiversidade , Áreas Alagadas , Humanos , Etiópia , Lagos , Plantas , Água
9.
J Environ Manage ; 357: 120715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579465

RESUMO

The effluents from conventional wastewater treatment plants (WWTP), even if accomplishing quality regulations, substantially differ in their characteristics with those of waters in natural environments. Constructed wetlands (CWs) serve as transitional ecosystems within WWTPs, mitigating these differences and restoring natural features before water is poured into the natural environment. Our study focused on an experimental surface-flow CW naturalizing the WWTP effluent in a semiarid area in Eastern Spain. Despite relatively low pollutant concentrations entering the CW, it effectively further reduced settled organic matter and nitrogen. Dissolved organic matter (DOM) reaching the CW was mainly protein-like, yet optical property changes in the DOM indicated increased humification, aromaticity, and stabilization as it flowed through the CW. Flow cytometry analysis revealed that the CW released less abundant but more active bacterial populations than those received. MiSeq Illumina sequencing highlighted changes in the prokaryotic community composition, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria dominating the CW outflow. Functional prediction tools (FaproTax and PICRUSt2) demonstrated a shift towards microbial guilds aligned with those of the natural aquatic environments, increased aerobic chemoheterotrophs, photoautotrophs, and metabolic reactions at higher redox potentials. Enhanced capabilities for degrading plant material correlated well with changes in the DOM pool. Our findings emphasize the role of CWs in releasing biochemically stable DOM and functionally suited microbial populations for natural receiving environments. Consequently, we propose CWs as a naturalization nature-based solution (NBS) in water-scarce regions like the Mediterranean, where reclaimed discharged water can significantly contribute to ecosystem's water resources compared to natural flows.


Assuntos
Águas Residuárias , Áreas Alagadas , Ecossistema , Cidadania , Bactérias , Matéria Orgânica Dissolvida , Região do Mediterrâneo , Eliminação de Resíduos Líquidos
10.
J Environ Manage ; 357: 120776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579468

RESUMO

Hydro-Fluctuation Belt (HFB), a periodically exposed bank area formed by changes in water level fluctuations, is critical for damaging the reservoir wetland landscape and ecological balance. Thus, it is important to explore the mechanism of hydrological conditions on the plant-soil system of the HFB for protection of the reservoir wetland and landscape restoration. Here, we investigated the response of plant community characteristics and soil environment of the HFB of Tonghui River National Wetland Park (China), is a typical reservoir wetland, to the duration of inundation, as well as the correlation between the distribution of dominant plants and soil pH, nutrient contents, and enzyme activity by linear regression and canonical correlation analyses. The results show that as the duration of inundation decreases, the vegetation within the HFB is successional from annual or biennial herbs to perennial herbs and shrubs, with dominant plant species prominent and uneven distribution of species. Soil nutrient contents and enzyme activities of HFB decreased with increasing inundation duration. Dominant species of HFB plant community are related to soil environment, with water content, pH, urease, and available potassium being principle soil environmental factors affecting their distribution. When HFB was inundated for 0-30 days, soil pH was strongly acidic, with available potassium content above 150 mg kg-1 and higher urease activity, distributed with Arundo donax L., Polygonum perfoliatum L., Alternanthera philoxeroides (Mart.) Griseb., and Daucus carota L. communities. When inundated for 30-80 days, soil pH was acidic, with lower available potassium content (50-150 mg kg-1) and urease activity, distributed with Beckmannia syzigachne (Steud.) Fern.+ Polygonum lapathifolium L., Polygonum lapathifolium L., Medicago lupulina L. + Dysphania ambrosioides L. and Leptochloa panicea (Retz.) Ohwi communities. Using the constructed HFB plant-soil correlation model, changes in the wetland soil environment can be quickly judged by the succession of plant dominant species, which provides a simpler method for the monitoring of the soil environment in the reservoir wetland, and is of great significance for the scientific management and reasonable protection of the reservoir-type wetland ecosystem.


Assuntos
Ecossistema , Áreas Alagadas , Solo/química , Urease , Plantas , Água , Poaceae , China , Potássio
11.
Water Sci Technol ; 89(6): 1466-1481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557712

RESUMO

Floating treatment wetlands (FTWs) have the potential to improve the quality of wastewater discharges, yet design basics are unavailable to size these systems. This study investigates the effect of FTWs' coverage ratio and hydraulic retention time on agri-food wastewater treatment. This was studied in a pilot-scale experiment comprising four lagoons (6.5 m3 each) fed with real effluent from an existing tertiary treatment lagoon. An evaluation of FTW of different sizes (L24, L48, and L72 representing 24, 48, and 72% of pilot lagoons surface areas) and a control, L0 (without FTW), was performed over 16 months. Overall, L72 and L48 moderately improved total nitrogen (TN) mass removal compared to L0 (p < 0.05), while L24 exhibited similar TN mass removal (p = 0.196). The highest improvement was observed for L72, exhibiting up to 55% (mean of 13%) greater N mass removal than the control. The net increase in TN removal by FTWs was mainly related to denitrification, promoted by decreasing dissolved oxygen for increasing FTW coverage ratio. Residence time, temperature, and dissolved oxygen were the main parameters driving TN removal by FTWs. Retrofitting existing lagoons with FTW can facilitate N retrieval through plant harvesting, thereby reducing N remobilization from sediment (common in conventional lagoons).


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Eliminação de Resíduos Líquidos , Desnitrificação , Nitrogênio/análise , Poluentes Químicos da Água/análise , Oxigênio
12.
Environ Monit Assess ; 196(5): 419, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570389

RESUMO

Seasonally astatic aquatic habitats are important ecologically, municipally, and agriculturally. Regulatory agencies and conservation organizations have developed various plans for protecting or constructing temporary wetlands, resulting in habitat monitoring requirements, particularly as relates to restoration and constructed habitats. Unfortunately, there has been no effort to develop a unified, consistent method for wetland biological monitoring. This is particularly true for habitats important in a regulatory sense. We conducted macroinvertebrate bioassessment in constructed vernal pools in California, USA, to assess habitat functionality. This tool is modified from aquatic bioassessment; a primary tool of regulatory agencies in measuring habitat health and water quality and should be equally applicable to seasonally astatic wetlands globally.


Assuntos
Ecossistema , Monitoramento Ambiental , Áreas Alagadas , Estações do Ano , Qualidade da Água
13.
Environ Monit Assess ; 196(5): 425, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573498

RESUMO

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.


Assuntos
Carvão Vegetal , Poluentes Ambientais , Áreas Alagadas , Monitoramento Ambiental , Biodegradação Ambiental , Solo , Água
14.
Int. microbiol ; 27(2): 607-614, Abr. 2024. ilus
Artigo em Inglês | IBECS | ID: ibc-ADZ-171

RESUMO

Wetlands are the main natural sources of methane emissions, which make up a significant portion of greenhouse gas emissions. Such wetland patches serve as rich habitats for aerobic methanotrophs. Limited knowledge of methanotrophs from tropical wetlands widens the scope of study from these habitats. In the present study, a freshwater wetland in a tropical region in India was sampled and serially diluted to obtain methanotrophs in culture. This was followed by the isolation of methanotrophs on agarose-containing plates, incubated under methane: air atmosphere. Methanotrophs are difficult to cultivate, and very few cultures of methanotrophs are available from tropical wetlands. Our current study reports the cultivation of a diverse community of methanotrophs from six genera, namely, Methylomonas, Methylococcus, Methylomagnum, Methylocucumis (type I methanotrophs) along with Methylocystis, Methylosinus (type II methanotrophs). A high abundance of methanotrophs (106–1010 methanotrophs/g fresh weight) was observed in the samples. A Methylococcus strain could represent a putative novel species that was also isolated. Cultures of Methylomagnum and Methylocucumis, two newly described type I methanotrophs exclusively found in rice fields, were obtained. A large number of Methylomonas koyamae strains were cultured. Our study is pioneering in the documentation of culturable methanotrophs from a typical tropical wetland patch. The isolated methanotrophs can act as models for studying methanotroph-based methane mitigation from wetland habitats and can be used for various mitigation and valorization applications. (AU)


Assuntos
Áreas Alagadas , Metano , Efeito Estufa , Gases , Ecossistema , Água Doce
15.
Sci Total Environ ; 926: 171699, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508250

RESUMO

Floodbank realignment is a common practice aimed at restoring salt marsh vegetation on previously embanked land. However, experiences indicate that it may take several years before salt marsh vegetation becomes fully established. Various challenges arising from ecogeomorphic feedback mechanisms could pose significant setbacks to vegetation recolonization. The widespread adoption of transplantation techniques for the restoration and rehabilitation of rewilded landscapes has indeed proven to be a valuable tool for accelerating plant development. In the Ria Formosa coastal lagoon (South of Portugal), a pilot plan was implemented, and two salt marsh pioneer species, Spartina maritima (syn. Sporobolus maritimus) and Sarcocornia perennis (syn. Salicornia perennis), were transplanted from a natural salt marsh to a rewilded marsh. Biodegradable 3D porous structures were installed to mimic transplant clumping, aid sedimentation, and enhance the plant's initial adjustment. Ecological, sediment, and hydrodynamic data were collected during the 12-month pilot restoration plan. The environmental profiles of the donor and restoration sites were compared to substantiate the success of the transplants in the rewilded salt marsh. Results show that although plant shoot density decreased after the transplanting, Spartina maritima acclimated well to the new environmental conditions of the restoration site, showing signs of growth and cover increase, whilst Sarcocornia perennis was not able to acclimatize and survive in the restoration site. The failure behind the Sarcocornia perennis acclimation might be related to the bed properties and topographic properties of the restoration site in the rewilded marsh. Major findings contribute to a more comprehensive understanding of how salt marsh pioneering vegetation successfully colonizes disturbed habitats, facilitated using 3D-biodegradable structures.


Assuntos
Chenopodiaceae , Áreas Alagadas , Sedimentos Geológicos/química , Ecossistema , Poaceae
16.
Sci Total Environ ; 926: 171690, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513846

RESUMO

Mangrove shoreline retreat or advance is a natural process in a mangrove delta. However, due to various natural and anthropogenic stressors, mangrove shoreline retreat is the second largest cause of mangrove loss globally. It is important to understand the scale at which mangrove shoreline changes are causing biophysical changes along the mangrove shorelines and, in turn, understand if certain biophysical characteristics can explain the changes along the shoreline. This will help identify the response of mangroves to shoreline changes. Videography and spatial mapping were used to study temporarily and permanently changing mangrove shorelines in the Sundarbans, the largest mangrove forest in the world (~10,000 km2), located in India and Bangladesh. Data was collected along a ~ 239 km shoreline at 54 sites. 36.4 % of all the studied shorelines were experiencing major retreat, 63.8 % and 27.2 % of all (major and minor) retreating areas had 1-25 % and > 25 % dead trees. The biophysical characteristics statistically (P < 0.0001) associated with retreating mangrove shorelines were - cliff-type shoreline profiles, number of dead trees, and absence of stream and grass, with shoreline profiles as the strongest predictor of shoreline retreat. Moreover, 68.7 % and 73 % of historically retreating shorelines had a cliff-type shoreline profile and Excoecaria agallocha as the dominating species, respectively. Moreover, due to the strong correlation between historical changes and current shoreline types, it was concluded that characteristics along the shoreline are partly a product of historical shoreline transitions. Thus, the present status of the shoreline can not only predict the history of the shoreline but can also give insights into the future biophysical changes in the mangrove forests.


Assuntos
Árvores , Áreas Alagadas , Bangladesh , Índia , Previsões , Ecossistema
17.
Sci Total Environ ; 926: 171916, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522536

RESUMO

Dredging wastewater discharge is a significant environmental concern for mariculture near mangrove ecosystems. However, little attention has been paid to its effects on the soil physical-chemical properties and enzyme activities in mangrove habitats. This study compared the soil physical-chemical properties and enzyme activities in the polluted area that received dredging wastewater from a shrimp pond with those in the control area without wastewater to explore the effects of wastewater discharge on the soil physical-chemical properties and enzyme activities. Variations in soil physical-chemical properties and enzyme activities across different tidal flat areas and depths were also examined. The polluted area exhibited lower soil salinity (10.47 ± 0.58 vs. 15.64 ± 0.54) and moisture content (41.85 ± 1.03 % vs. 45.81 ± 1.06 %) than the control area. Wastewater discharge increased soil enzyme activities, (acid phosphatase, protease, and catalase), resulting in higher inorganic nitrogen (13.20 ± 0.00 µg g-1 vs. 11.60 ± 0.03 µg g-1) but lower total nitrogen (0.93 ± 0.01 mg g-1 vs. 1.62 ± 0.11 mg g-1) in the contaminated zone. From the control to polluted area, there was an approximate increase of 0.43 and 0.83 mg g-1 in soil total phosphorus and soluble phosphate, driven by increased acid phosphatase. However, soil humus and organic matter decreased by 0.04 and 1.22 %, respectively, because of wastewater discharge. The impact of wastewater discharge on the soil physical-chemical properties and enzyme activities was most pronounced in the landward and surface soil layers (0-5 cm). The results showed that wastewater discharge altered soil physical-chemical properties and enzyme activities, accumulating soil bioavailable nutrients (inorganic nitrogen and soluble phosphate), but at the cost of reduced soil quality, especially organic matter, further adversely affecting the overall health of mangrove ecosystems. Prioritizing the management of wastewater discharged from mariculture adjacent to mangrove forests is crucial for mangrove conservation.


Assuntos
Ecossistema , Solo , Solo/química , Águas Residuárias , Lagoas , Áreas Alagadas , Fosfatos , Fosfatase Ácida , Nitrogênio/análise
18.
Sci Total Environ ; 926: 171940, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527539

RESUMO

Saltmarsh, a prominent buffer ecosystem, has been identified as an important sink for nitrogen (N) pollutants from marine- and land-based anthropogenic activities. However, how the enriched anthropogenic N impacts saltmarsh sustainability has been neglected due to limited understanding of marsh resilience based on seedling establishment and population dispersal under anthropogenic N inputs. This study combined mesocosm experiments and model simulations to quantify the effects of increased anthropogenic N on the seedling-based vegetation expansion of Spartina alterniflora. The results indicated that seedling survivals, growth rates, and morphological indicators were inhibited by 20.08 %, 37.14 %, and > 35.56 %, respectively, under 1.5 gN/kg anthropogenic N. The sensitivity rate of vegetation expansion was increased by 70 % with 1 gN/kg increased N concentration under the scenario of low seedling density (< 15 m/yr). These findings revealed an important unidentified weakness of the marsh development process to anthropogenic N inputs. Finally, we highlighted the importance of appropriate protection measures to control nutrient pollution in salt marshes. Our study provides new insights for enhancing the resilience and sustainability of saltmarsh ecosystems.


Assuntos
Ecossistema , Resiliência Psicológica , Plântula , Nitrogênio , Áreas Alagadas , Poaceae/fisiologia
19.
Water Sci Technol ; 89(5): 1252-1263, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483496

RESUMO

A biochar from co-pyrolysis of a mixture of sawdust and biological sludge (70/30, w/w), providing a high environmental compatibility in terms of water leachable polycyclic aromatic hydrocarbons and inorganic elements, together with a remarkable surface area (389 m2/g), was integrated into laboratory-scale vertical-flow constructed wetlands (VF-CWs), planted with Phragmites australis and unplanted. Biochar-filled VF-CWs have been tested for 8 months for the refining of effluents from the tertiary clariflocculation stage of a wastewater treatment plant operating in a mixed domestic-industrial textile context, in comparison with systems filled with gravel. VF-CW influents and effluents were monitored for chemical oxygen demand (COD), nitrogen and phosphorus cycles, and absorbance values at 254 and 420 nm, the latter as rapid and reliable screening parameters of the removal of organic micropollutants containing aromatic moieties and/or chromophores. Biochar-based systems provided a statistically significant improvement in COD (Δ = 22%) and ammonia (Δ = 35%) removal, as well as in the reduction of UV-Vis absorbance values (Δ = 32-34% and Δ = 28% for 254 and 420 nm, respectively), compared to gravel-filled microcosms. The higher removal of organic was mainly attributed to the well-known adsorption properties of biochars, while for nitrogen the biological mechanisms seem to play a predominant role.


Assuntos
Carvão Vegetal , Esgotos , Águas Residuárias , Pirólise , Áreas Alagadas , Nitrogênio , Têxteis
20.
Curr Microbiol ; 81(4): 107, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427056

RESUMO

Rhizospheric microbial community of emergent macrophytes plays an important role in nitrogen removal, especially in the eutrophic wetlands. The objective of this study was to identify the differences in anammox bacterial community composition among different emergent macrophytes and investigate revealed the the main factors affecting on the composition, diversity, and abundance of anammox bacterial community. Results showed that the composition, diversity, and abundance of the anammox community were significantly different between the vegetated sediments of three emergent macrophytes and unvegetated sediment. The composition of the anammox bacterial community was different in the vegetated sediments of different emergent macrophytes. Also, the abundance of nitrogen cycle-related functional genes in the vegetated sediments was found to be higher than that in the unvegetated sediment. Canonical correspondence analysis (CCA) and structural equation models analysis (SEM) showed that salinity and pH were the main environmental factors influencing the composition and diversity of the anammox bacterial community and NO2--N indirectly affected anammox bacterial community diversity by affecting TOC. nirK-type denitrifying bacteria abundance had significant effects on the bacterial community composition, diversity, and abundance of anammox bacteria. The community composition of anammox bacteria varies with emergent macrophyte species. The rhizosphere of emergent macrophytes provides a favorable environment and promotes the growth of nitrogen cycling-related microorganisms that likely accelerate nitrogen removal in eutrophic wetlands.


Assuntos
Rizosfera , Áreas Alagadas , Oxidação Anaeróbia da Amônia , Lagos/microbiologia , Bactérias/genética , Ciclo do Nitrogênio , Nitrogênio , Oxirredução , Sedimentos Geológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...