Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.560
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612797

RESUMO

Carbon (C) and nitrogen (N) metabolisms participate in N source-regulated secondary metabolism in medicinal plants, but the specific mechanisms involved remain to be investigated. By using nitrate (NN), ammonium (AN), urea (UN), and glycine (GN), respectively, as sole N sources, we found that N sources remarkably affected the contents of diterpenoid lactone components along with C and N metabolisms reprograming in Andrographis paniculata, as compared to NN, the other three N sources raised the levels of 14-deoxyandrographolide, andrographolide, dehydroandrographolide (except UN), and neoandrographolide (except AN) with a prominent accumulation of farnesyl pyrophosphate (FPP). These N sources also raised the photosynthetic rate and the levels of fructose and/or sucrose but reduced the activities of phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoenolpyruvate carboxylase (PEPC) and pyruvate dehydrogenase (PDH). Conversely, phosphoenolpyruvate carboxykinase (PEPCK) and malate enzyme (ME) activities were upregulated. Simultaneously, citrate, cis-aconitate and isocitrate levels declined, and N assimilation was inhibited. These results indicated that AN, UN and GN reduced the metabolic flow of carbohydrates from glycolysis into the TCA cycle and downstream N assimilation. Furthermore, they enhanced arginine and GABA metabolism, which increased C replenishment of the TCA cycle, and increased ethylene and salicylic acid (SA) levels. Thus, we proposed that the N sources reprogrammed C and N metabolism, attenuating the competition of N assimilation for C, and promoting the synthesis and accumulation of andrographolide through plant hormone signaling. To obtain a higher production of andrographolide in A. paniculata, AN fertilizer is recommended in its N management.


Assuntos
Andrographis paniculata , Diterpenos , Extratos Vegetais , Carbono , Plântula
2.
J Am Chem Soc ; 146(15): 10393-10406, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569115

RESUMO

Covalent chemistry coupled with activity-based protein profiling (ABPP) offers a versatile way to discover ligands for proteins in native biological systems. Here, we describe a set of stereo- and regiochemically defined spirocycle acrylamides and the analysis of these electrophilic "stereoprobes" in human cancer cells by cysteine-directed ABPP. Despite showing attenuated reactivity compared to structurally related azetidine acrylamide stereoprobes, the spirocycle acrylamides preferentially liganded specific cysteines on diverse protein classes. One compound termed ZL-12A promoted the degradation of the TFIIH helicase ERCC3. Interestingly, ZL-12A reacts with the same cysteine (C342) in ERCC3 as the natural product triptolide, which did not lead to ERCC3 degradation but instead causes collateral loss of RNA polymerases. ZL-12A and triptolide cross-antagonized one another's protein degradation profiles. Finally, we provide evidence that the antihypertension drug spironolactone─previously found to promote ERCC3 degradation through an enigmatic mechanism─also reacts with ERCC3_C342. Our findings thus describe monofunctional degraders of ERCC3 and highlight how covalent ligands targeting the same cysteine can produce strikingly different functional outcomes.


Assuntos
Acrilamida , Diterpenos , Fenantrenos , Humanos , Cisteína/química , Proteômica , Compostos de Epóxi
3.
J Agric Food Chem ; 72(15): 8704-8714, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572931

RESUMO

Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.


Assuntos
Diterpenos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Abietanos , Acetilcoenzima A/metabolismo , NADP/metabolismo , Diterpenos/metabolismo , Engenharia Metabólica/métodos
4.
J Exp Clin Cancer Res ; 43(1): 97, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561833

RESUMO

BACKGROUND: CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success. METHODS: We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function. RESULTS: Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays. CONCLUSIONS: This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression.


Assuntos
Neoplasias Ósseas , Diterpenos , Osteossarcoma , Humanos , Proteína Quinase C-alfa/metabolismo , Antígenos B7/genética , Antígenos B7/metabolismo , Osteossarcoma/metabolismo , Neoplasias Ósseas/patologia , Linfócitos T , Citocinas/metabolismo , Linhagem Celular Tumoral
5.
J Org Chem ; 89(8): 5741-5745, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38568052

RESUMO

The skeletal transformations of diterpenoid forskolin were achieved by employing an oxidative rearrangement strategy. A library of 36 forskolin analogues with structural diversity was effectively generated. Computational analysis shows that 12 CTD compounds with unique scaffolds and ring systems were produced during the course of this work.


Assuntos
Diterpenos , Terpenos , Terpenos/química , Colforsina/química , Diterpenos/química , Extratos Vegetais , Estresse Oxidativo
6.
Food Chem Toxicol ; 187: 114634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582344

RESUMO

The purpose of this study is to determine the effects of grayanotoxin in mad honey on ovarian tissue folliculogenesis in terms of cell death and nitric oxide expression. Three groups of 18 female Sprague-Dawley rats were formed. The first group received mad honey (80 mg/kg), the second group received normal honey (80 mg/kg), and the third group was the control. The first and second groups received normal and mad honey by oral gavage for 30 days before being sacrificed under anesthesia. Caspase 3 immunostaining showed a moderate to strong response, particularly in the mad honey group. In the mad honey group, immunostaining for caspase 8 and caspase 9 revealed a moderate immunoreaction in the granulosa cells of the Graaf follicles. The majority of Graaf follicles exhibited TUNEL positive in the mad honey group. The iNOS immunoreaction revealed a high level of expression in the mad honey group. In all three groups, eNOS immunostaining showed weak reactivity. According to the findings of apoptotic and nitric oxide marker expression, it was determined that mad honey may result in an increase in follicular atresia in ovarian follicles when compared to normal honey and control groups.


Assuntos
Diterpenos , Mel , Ovário , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Óxido Nítrico , Atresia Folicular , Estresse Oxidativo , Apoptose , Células da Granulosa
7.
Biochem Pharmacol ; 223: 116194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583812

RESUMO

Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.


Assuntos
Compostos de Anilina , Diterpenos , Tiofenos , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Tiorredoxina Redutase 1 , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico
8.
Int Ophthalmol ; 44(1): 168, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573375

RESUMO

PURPOSE: To investigate the change in tear production associated with general anesthesia and the protective effect of vitamin A palmitate eye gel on the ocular surface during general anesthesia. METHODS: This double-blind, randomized clinical trial included patients undergoing non-ophthalmic surgery under general anesthesia who randomly received vitamin A palmitate eye gel and taping for one eye (Group A, n = 60) or taping alone for the other eye (Group B, n = 60). Symptom assessment in dry eye (SANDE) score, tear film break-up time (TBUT), corneal fluorescein staining (CFS) score, and Schirmer tear test I (STT-1) were analyzed under a hand-held slit lamp before anesthesia (T0), 0.5 h postoperatively (T1), and 24 h postoperatively (T2). RESULTS: At 0.5 h postoperatively, an increase in CFS score was observed in both groups (P < 0.05 in Group A and P < 0.01 in Group B), and the participants in Group A had less corneal abrasions than those in Group B. STT-1 significantly increased in Group A (P < 0.05), while it significantly decreased in Group B (P < 0.001). The changes between the two groups were statistically significant (P < 0.001). At 24 h postoperatively, both CFS score and STT-1 almost returned to baseline levels in the two groups. In both groups, the SANDE score and TBUT showed little change at 0.5 h and 24 h postoperatively (all P > 0.05). CONCLUSION: Vitamin A palmitate eye gel effectively protected the ocular surface and aqueous supplementation during general anesthesia. TRIAL REGISTRATION: This study was registered in the Chinese Clinical Trial Registry (ChiCTR2100052140) on 20/10/2021.


Assuntos
Diterpenos , Olho , Humanos , Anestesia Geral , Ésteres de Retinil , Géis
9.
Immun Inflamm Dis ; 12(4): e1249, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629726

RESUMO

BACKGROUND: Sepsis is perceived as lethal tissue damage and significantly increases mortality in combination with acute kidney injury (AKI). M2 macrophages play important roles in the secretion of anti-inflammatory and tissue repair mediators. We aimed to study the role of Dehydroandrographolide (Deh) in sepsis-associated AKI in vitro and in vivo through lipopolysaccharide (LPS)-induced macrophages model and cecal ligation and puncture-induced AKI mice model, and to reveal the mechanism related to M2 macrophage polarization. METHODS: Enzyme-linked immunosorbent assay kits were used to assess the levels of inflammatory factors. Expression of markers related to M1 macrophages and M2 macrophages were analyzed. Additionally, dual specificity phosphatase 3 (DUSP3) expression was tested. Cell apoptosis was evaluated by flow cytometry analysis and terminal-deoxynucleotidyl transferase-mediated nick end labeling staining. Moreover, renal histological assessment was performed by using hematoxylin and eosin staining. RESULTS: Deh reduced inflammation of THP-1-derived macrophages exposed to LPS. Besides, Deh induced the polarization of M1 macrophages to M2 and downregulated DUSP3 expression in THP-1-derived macrophages under LPS conditions. Further, DUSP3 overexpression reversed the impacts of Deh on the inflammation and M2 macrophages polarization of THP-1-derived macrophages stimulated by LPS. Additionally, human proximal tubular epithelial cells (HK-2) in the condition medium from DUSP3-overexpressed THP-1-derived macrophages treated with LPS and Deh displayed decreased viability and increased apoptosis and inflammation. The in vivo results suggested that Deh improved the renal function, ameliorated pathological injury, induced the polarization of M1 macrophages to M2, suppressed inflammation and apoptosis, and downregulated DUSP3 expression in sepsis-induced mice. CONCLUSION: Deh facilitated M2 macrophage polarization by downregulating DUSP3 to inhibit septic AKI.


Assuntos
Injúria Renal Aguda , Diterpenos , Sepse , Humanos , Camundongos , Animais , Fosfatase 3 de Especificidade Dupla/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Sepse/complicações , Sepse/tratamento farmacológico
10.
PLoS One ; 19(4): e0299920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630658

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. However, the HCC treatment is still challenging. Herein, we aimed to reveal the anti-tumor effect of Jolkinolide B in HCC cell lines Huh-7 and SK-Hep-1. The results showed that Jolkinolide B inhibited the migration, invasion, and epithelial-to-mesenchymal transition(EMT) of HCC cells. In addition, Jolkinolide B induced HCC cell apoptosis by upregulating Bax and downregulating BCL-2 expressions. Furthermore, we demonstrated that Jolkinolide B inactivated the ß-catenin signaling and reduced Musashi-2 expression. Finally, we revealed that Musashi-2 overexpression reversed the Jolkinolide B-induced anti-HCC effect. Overall, we proved that Jolkinolide B is a potential candidate for treating HCC.


Assuntos
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Diterpenos/farmacologia , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
11.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611928

RESUMO

Diterpenes represent one of the most diverse and structurally complex families of natural products. Among the myriad of diterpenoids, grayanane diterpenes are particularly notable. These terpenes are characterized by their unique 5/7/6/5 tetracyclic system and are exclusive to the Ericaceae family of plants. Renowned for their complex structures and broad spectrum of bioactivities, grayanane diterpenes have become a primary focus in extensive phytochemical and pharmacological research. Recent studies, spanning from 2018 to January 2024, have reported a series of new grayanane diterpenes with unprecedented carbon skeletons. These compounds exhibit various biological properties, including analgesic, antifeedant, anti-inflammatory, and inhibition of protein tyrosine phosphatase 1B (PTP1B). This paper delves into the discovery of 193 newly identified grayanoids, representing 15 distinct carbon skeletons within the Ericaceae family. The study of grayanane diterpenes is not only a deep dive into the complexities of natural product chemistry but also an investigation into potential therapeutic applications. Their unique structures and diverse biological actions make them promising candidates for drug discovery and medicinal applications. The review encompasses their occurrence, distribution, structural features, and biological activities, providing invaluable insights for future pharmacological explorations and research.


Assuntos
Produtos Biológicos , Diterpenos , Ericaceae , Diterpenos/farmacologia , Terpenos , Produtos Biológicos/farmacologia , Carbono
12.
PLoS One ; 19(4): e0294932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603666

RESUMO

An important dietary source of physiologically active compounds, coffee also contains phenolic acids, diterpenes, and caffeine. According to a certain study, some coffee secondary metabolites may advantageously modify a number of anti-cancer defense systems. This research looked at a few coffee chemical structures in terms of edge locating numbers or edge metric size to better understand the mechanics of coffee molecules. Additionally, this research includes graph theoretical properties of coffee chemical structures. The chemicals found in coffee, such as caffeine, diterpene or cafestol, kahweol, chlorogenic, caffeic, gallotannins, and ellagitannins, are especially examined in these publications.


Assuntos
Diterpenos , Neoplasias , Humanos , Café/química , Cafeína , Dieta
13.
Physiol Plant ; 176(2): e14277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566271

RESUMO

In order to maintain the dynamic physiological balance, plants are compelled to adjust their energy metabolism and signal transduction to cope with the abiotic stresses caused by complex and changeable environments. The diterpenoid natural compound and secondary metabolites, sclareol, derived from Salvia sclarea, has gained significant attention owing to its economic value as a spice material and diverse physiological activities. Here, we focused on the roles and regulatory mechanisms of the sclareol diterpene synthase gene SsdTPS in the resistance of S. sclarea to abiotic stresses. Our results suggested that abiotic stresses could induce the response and upregulation of SsdTPS expression and isoprenoid pathway in S. sclarea. Ectopic expression of SsdTPS conferred drought tolerance in transgenic Arabidopsis, compared with wild-type. Overexpression of SsdTPS enhanced the transcription of ABA signal transduction synthetic regulators and induced the positive feedback upregulating key regulatory genes in the MEP pathway, thereby promoting the increase of ABA content and improving drought tolerance in transgenic plants. In addition, SsdTPS-overexpressed transgenic Arabidopsis improved the responses of stomatal regulatory genes and ROS scavenging enzyme activities and gene expression to drought stress. This promoted the stomatal closure and ROS reduction, thus enhancing water retention capacity and reducing oxidative stress damage. These findings unveil the potentially positive role of SsdTPS in orchestrating multiple regulatory mechanisms and maintaining homeostasis for improved abiotic stress resistance in S. sclarea, providing a novel insight into strategies for promoting drought resistance and cultivating highly tolerant plants.


Assuntos
Arabidopsis , Diterpenos , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Retroalimentação , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Terpenos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia
14.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474596

RESUMO

Euphorbia is a large genus of the Euphorbiaceae family. Around 250 species of the Euphorbia genus have been studied chemically and pharmacologically; different compounds have been isolated from these species, especially diterpenes and triterpenes. Several reports show that several species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as abietanes, ingenanes, and lathyranes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-cancer activity. In this review, we included compounds isolated from species of the Euphorbia genus with anti-inflammatory or cytotoxic effects published from 2018 to September 2023. The databases used for this review were Science Direct, Scopus, PubMed, Springer, and Google Scholar, using the keywords Euphorbia with anti-inflammatory or cytotoxic activity. In this review, 68 studies were collected and analyzed regarding the anti-inflammatory and anti-cancer activities of 264 compounds obtained from 36 species of the Euphorbia genus. The compounds included in this review are terpenes (95%), of which 68% are diterpenes, especially of the types ingenanes, abietanes, and triterpenes (approximately 15%).


Assuntos
Antineoplásicos , Diterpenos , Euphorbia , Triterpenos , Euphorbia/química , Abietanos , Estrutura Molecular , Diterpenos/química , Triterpenos/química , Anti-Inflamatórios
15.
Acta Cir Bras ; 39: e391424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511762

RESUMO

PURPOSE: XinJiaCongRongTuSiZiWan (XJCRTSZW) is a traditional Chinese medicine compound for invigorating the kidney, nourishing blood, and promoting blood circulation. This study aimed to explore the effect of XJCRTSZW on triptolide (TP)-induced oxidative stress injury. METHODS: Adult female Sprague-Dawley rats and human ovarian granulosa cell lines were treated with TP and XJCRTSZW. Hematoxylin and eosin staining, enzyme-linked immunosorbent assay, flow cytometry, CCK-8, JC-1 staining, transmission electron microscopy, reverse transcription-quantitative polymerase chain reaction, and Western blotting were performed in this study. RESULTS: XJCRTSZW treatment observably ameliorated the TP-induced pathological symptoms. Furthermore, XJCRTSZW treatment observably enhanced the TP-induced reduction of estradiol, anti-Mullerian hormone, progesterone, superoxide dismutase, ATP content, mitochondrial membrane potential, p62, and Hsp60 mRNA, and protein levels in vivo and in vitro (p < 0.05). However, TP-induced elevation of follicle stimulating hormone and luteinizing hormone concentrations, malondialdehyde levels, reactive oxygen species levels, apoptosis rate, mitophagy, and the mRNA and protein expressions of LC3-II/LC3-I, PTEN-induced kinase 1 (PINK1), and Parkin were decreased (p < 0.05). In addition, XJCRTSZW treatment markedly increased cell viability in vitro (p < 0.05). CONCLUSIONS: XJCRTSZW protects TP-induced rats from oxidative stress injury via the mitophagy-mediated PINK1/Parkin pathway.


Assuntos
Diterpenos , Mitocôndrias , Mitofagia , Fenantrenos , Adulto , Ratos , Feminino , Humanos , Animais , Ratos Sprague-Dawley , Estresse Oxidativo , Ubiquitina-Proteína Ligases , Transdução de Sinais , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Compostos de Epóxi
16.
Molecules ; 29(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542863

RESUMO

From the aerial parts of Salvia carranzae Zamudio and Bedolla, three new icetexane-type diterpenoids were isolated. Their structures were established through spectroscopic methods and named the following: salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-deoxo-20-deoxy-salvicarranzanolide (3). In addition, the known icetexane-type diterpenoids, 6,7,11,14-tetrahydro-7-oxo-icetexone (4), iso-icetexone (5), 19-deoxo-iso-icetexone (6), icetexone (7), 19-deoxo-icetexone (8) and 7α-acetoxy-6,7-dihydroicetexone (9), were also isolated, along with the abietanes sessein (10) and ferruginol (11). α-Tocopherol was also identified. Compounds 5, 6 and 8 were tested for their antiproliferative activity using the sulforhodamine B assay on six cancer and one normal human cell lines. Diterpenoids 5 and 6 showed noteworthy antiproliferative activity, exhibiting an IC50 (µM) = 0.43 ± 0.01 and 1.34 ± 0.04, respectively, for U251 (glioblastoma), an IC50 (µM) = 0.45 ± 0.01 and 1.29 ± 0.06 for K5621 (myelogenous leukemia), 0.84 ± 0.07 and 1.03 ± 0.10 for HCT-15 (colon cancer), and 0.73 ± 0.06 and 0.95 ± 0.09 for SKLU-1 (lung adenocarcinoma) cell lines. On the other hand, the phytotoxicity of compounds 5-7 and 9-10 was evaluated on seed germination and root growth in some weeds such as Medicago sativa, Panicum miliaceum, Amaranthus hypochondriacus and Trifolium pratense as models. While compounds 5 and 10 exhibited a moderate inhibitory effect on the root growth of A. hypochondriacus and T. pratense at 100 ppm, the diterpenoids 6, 7 and 9 were ineffective in all the plant models. Taxonomic positions based on the chemical profiles found are also discussed.


Assuntos
Alcaloides , Diterpenos , Neoplasias Pulmonares , Salvia , Humanos , Abietanos/farmacologia , Abietanos/química , Salvia/química , Diterpenos/farmacologia , Diterpenos/química , Linhagem Celular Tumoral , Estrutura Molecular
17.
Life Sci ; 345: 122592, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554947

RESUMO

Osteoporosis, characterized by bone metabolism disruption leading to gradual bone loss and increased fracture susceptibility, is linked to the excessive activation of osteoclasts. Pseudolaric acid B (PAB), identified as an NF-κB signaling inhibitor crucial for osteoclastogenesis, is explored here for its protective effects in osteoporosis. Noncytotoxic PAB's impact on osteoclast differentiation was assessed through cell viability and osteoclast formation assays, with subsequent testing of osteoclast function via bone resorption assays. Quantitative real-time polymerase chain reaction evaluated PAB's genetic-level impact on osteoclastogenesis. Network pharmacology, western blot, and luciferase reporter gene assays were employed to elucidate PAB's regulatory mechanism. In an in vivo model of osteoporosis induced by ovariectomy (OVX) in mice, micro-CT, H&E staining, and TRAP staining facilitated histomorphometry analysis, while flow cytometry verified macrophage polarization. PAB demonstrated inhibitory effects on osteoclast formation and bone resorption in BMM and RAW264.7 cells, suppressing osteoclast-specific genes. Bioinformatic analysis, western blot, and luciferase assay results indicated PAB's inhibition of IκBα phosphorylation in the NF-κB signaling pathway and ERK in MAPKs, elucidating its mechanism. In vivo experiments confirmed PAB's attenuation of osteoporosis by reducing osteoclast formation in OVX mice. PAB further facilitated macrophage conversion from M1 to M2 and suppressed IL-1ß, TNF-α, and IL-6 synthesis. In conclusion, PAB prevents osteoporosis by inhibiting RANKL-induced osteoclastogenesis through NF-κB and ERK signaling pathway suppression, coupled with macrophage polarization. These findings indicate the potential therapeutic role of PAB in osteoporosis.


Assuntos
Reabsorção Óssea , Diterpenos , Osteoporose , Feminino , Camundongos , Animais , Humanos , Osteoclastos , NF-kappa B/metabolismo , Diferenciação Celular , Transdução de Sinais , Macrófagos/metabolismo , Reabsorção Óssea/metabolismo , Osteogênese , Osteoporose/metabolismo , Luciferases/metabolismo , Ligante RANK/metabolismo , Ovariectomia
18.
Arch Oral Biol ; 162: 105940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479277

RESUMO

OBJECTIVE: Pseudolaric acid B (PAB) is a novel diterpenoid derived from the traditional Chinese medicinal herb Cortex pseudolaricis that exerts anticancer, anti-inflammatory, and immunomodulatory properties. While the anticancer potential of PAB has been studied, its effects on metastasis have not been well-studied. This study aims to determine the inhibitory effects of PAB on HSC-3 human tongue squamous cell carcinoma (TSCC) cell line. DESIGN: Cell viability and soft agar colony formation assays were conducted to assess cellular proliferation and in vitro tumorigenic capacity of TSCC cells, respectively. Additionally, wound healing, transwell migration, and invasion assays were conducted to monitor the aggressive behavior of TSCC cells. Furthermore, Western blotting analysis was conducted to reveal the signaling pathways involved in the modulation of epithelial-mesenchymal transition (EMT). RESULTS: The migratory and invasive capacities of HSC-3 cells were suppressed by PAB irrespective of their proliferation states. PAB's effects on EMT involved upregulation of E-cadherin expression and downregulation of Twist; these were concomitantly accompanied by downregulated phosphorylation of epidermal growth factor receptor (EGFR). CONCLUSIONS: PAB suppresses human TSCC in vitro by regulating Twist/E-cadherin through the EGFR signaling pathway. PAB may have potential as a candidate antimetastatic drug for TSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Diterpenos , Neoplasias da Língua , Humanos , Neoplasias da Língua/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Diterpenos/farmacologia , Proliferação de Células , Língua/patologia , Receptores ErbB/metabolismo , Caderinas/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica
19.
Vopr Pitan ; 93(1): 92-102, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38555613

RESUMO

The influence of a stress factor, widespread in modern conditions, on the vitamin status has not been studied enough. At the same time, the negative stress impact can be aggravated against the background of unhealthy nutrition, which in turn affects the vitamin status of the organism. In this regard, the goal of the research was to evaluate the effect of chronic restrict stress on the vitamin supply in rats fed a diet with adequate and increased content of fat, sugar and cholesterol. Material and methods. The experiment was carried out on 37 growing male Wistar rats (initial body weight of 45±5 g) divided into 4 groups. Animals of the 1st (control) and the 2nd groups received a complete semi-synthetic diet (CSSD) (20% protein, 10% fat, 58% carbohydrates in the form of starch, 384 kcal/100 g) for 92 days. The levels of all vitamins and mineral elements in the rats' diets were adequate for growing rats. Rats of the 3rd and the 4th groups were fed a high-calorie, high-fat high-carbohydrate diet (HFHCD) (20% protein, 28% fat, 2% cholesterol, 18% carbohydrates in the form of starch, 20% sucrose, 511 kcal/100 g). Animals of groups 2 and 4 were subjected to daily 90-minute immobilization. The concentration of vitamins A (retinol and retinol palmitate) and E (α-tocopherol) in the blood serum and liver were determined by high-performance liquid chromatography, vitamins B1 and B2 in the liver and urine, as well as riboflavin in the blood serum and 4-pyridoxic acid (4-PA) in urine were determined by fluorimetric methods. Biochemical parameters of blood serum were determined on a biochemical analyzer; the total content of fat, triglycerides (TG) and cholesterol (CH) was determined in the liver. Results. Replacing CSSD with HFHCD, both under restraint stress and without, was accompanied by an increase in liver weight by 1.8-2.0 fold, in its fat content by 2.6-3.3 fold, cholesterol by 32.6-35.3 fold and TG - by 33.0-57.6 fold (p=<0.001). An increase in alanine aminotransferase (ALT) activity by 1.7-2.0 fold (p=<0.01), in low-density lipoprotein (LDL) cholesterol level by 5.4 fold (p=<0.05) and the atherogenic coefficient by 2.5 fold (p<0.01) as well as a decrease in creatinine and urea level (p=<0.05) in blood serum were revealed. Immobilization was accompanied by a decrease in body weight, liver and liver fat in rats fed both CSSD and HFHCD (p<0.05), but didn't affect the blood serum biochemical parameters, with the exception of an increase in ALT activity. If the activity of alkaline phosphatase (ALP) did not change during immobilization of rats fed the CSSD, then in animals fed the high-calorie diet it decreased by 37.5% (p=<0.05 from the control) under its increase against the background of restrict stress by 78.7% (p=<0.01) compared to the indicator of rats of the 3rd group. Immobilization of rats treated with CSSD was accompanied by an increase in both absolute serum α-tocopherol level and concentration correlated with the level of cholesterol and triglycerides by 26.0-57.5% (p<0.05), with a simultaneous decrease in its content in the liver per 1 g of wet tissue by 22.1% (p=0.041) relative to the indicators of intact animals. Immobilization reduced the level of retinol palmitate in the liver by 2.3 times (p<0.01), but did not affect retinol level in the blood serum. At the same time, indicators of B vitamin status (the content of vitamins B1 and B2 in the liver per 1 g of wet tissue and per organ, blood serum riboflavin level, urinary excretion of riboflavin and 4-PA) did not change, with the exception of thiamine urinary excretion, which reduced compared to the control by 38.8%. In rats fed HFHCD, immobilization had no additional effect on the supply with vitamins A and E. The content of vitamins B1 and B2 in the liver in terms of the whole organ was reduced by 14.0-26.7% relative to the indicator in animals of the 3rd group, not subjected to chronic stress, only due to differences in liver weight in animals of these groups. Conclusion. The data obtained indicate that chronic stress has a negative effect on the vitamin status of the body, worsening the supply with vitamins A, E and B1, and substantiate the feasibility of studying the mechanisms of this effect in order to develop effective vitamin complexes for the treatment and prevention of diseases caused by long-term stress.


Assuntos
Diterpenos , Ésteres de Retinil , Vitamina A , Complexo Vitamínico B , Ratos , Masculino , Animais , alfa-Tocoferol , Ratos Wistar , Tiamina , Riboflavina , Complexo Vitamínico B/metabolismo , Triglicerídeos/metabolismo , Fígado/metabolismo , Vitamina K/metabolismo , Dieta , Colesterol , Carboidratos , Peso Corporal , Amido/metabolismo
20.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542285

RESUMO

Chemical investigation of the ethyl acetate (EtOAc) extract from a marine-derived actinomycete, Streptomyces griseorubens, resulted in the discovery of five new labdane-type diterpenoids: chlorolabdans A-C (1-3), epoxylabdans A and B (4 and 5), along with one known analog (6). The structures of the new compounds were determined by spectroscopic analysis (HR-ESIMS, 1D, and 2D NMR) and by comparing their experimental data with those in the literature. The new compounds were evaluated for their antimicrobial activity, and 2 displayed significant activity against Gram-positive bacteria, with minimum inhibitory concentration (MIC) values ranging from 4 to 8 µg/mL. Additionally, 1, 2, and 4 were tested for their cytotoxicity against seven blood cancer cell lines by CellTiter-Glo (CTG) assay and six solid cancer cell lines by sulforhodamine B (SRB) assay; 1, 2, and 4 exhibited cytotoxic activities against some blood cancer cell lines, with concentration causing 50% cell growth inhibition (IC50) values ranging from 1.2 to 22.5 µM.


Assuntos
Anti-Infecciosos , Antineoplásicos , Diterpenos , Neoplasias Hematológicas , Neoplasias , Streptomyces , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Diterpenos/química , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...