Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.385
Filtrar
1.
Zootaxa ; 5419(1): 85-111, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38480336

RESUMO

Siphonostomatoida (Copepoda) consists of 40 families of symbionts infecting vertebrates (17 families) and invertebrates (23 families) found mostly in marine habitats. In 2004, a list was compiled of all the reported families, genera and species symbiotic with marine fish in Southern African waters. Since this was done 20 years ago, it is necessary to re-evaluate the progress made in 20 years regarding our knowledge of the diversity of marine siphonostomatoids. To assess the current knowledge, the 2004 list was updated with reports published since 2004 as well as with new host and locality records including species with changes in taxonomy. Additionally, species collected but unreported as well as species previously reported but with new hosts and/or localities were also added. Currently reports include 16 families, 75 genera and 234 species. However, amongst these are reports of only two families (3 species) infecting invertebrates. Even though the report includes 71 additional species it still compares poorly with the about 2 274 accepted species, especially regarding species infecting invertebrates. Considering South Africas wealth in possible marine host species, examination of more hosts (especially marine teleosts and invertebrates) will definitely result in an increase in the current knowledge about the biodiversity of marine siphonostomatoids off Southern Africa.


Assuntos
Copépodes , Animais , Biodiversidade , Invertebrados , África Austral , Vertebrados
2.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474250

RESUMO

Smiliogastrinae are recognized for their high nutritional and ornamental value. In this study, we employed high-throughput sequencing technology to acquire the complete mitochondrial genome sequences of Dawkinsia filamentosa and Pethia nigrofasciata. The gene composition and arrangement order in these species were similar to those of typical vertebrates, comprising 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 non-coding region. The mitochondrial genomes of D. filamentosa and P. nigrofasciata measure 16,598 and 16,948 bp, respectively. Both D. filamentosa and P. nigrofasciata exhibit a significant preference for AT bases and an anti-G bias. Notably, the AT and GC skew values of the ND6 gene fluctuated markedly, suggesting that the selection and mutation pressures on this gene may differ from those affecting other genes. Phylogenetic analysis, based on the complete mitochondrial genomes of 23 Cyprinidae fishes, revealed that D. filamentosa is closely related to the sister group comprising Dawkinsia denisonii and Sahyadria chalakkudiensis. Similarly, P. nigrofasciata forms a sister group with Pethia ticto and Pethia stoliczkana.


Assuntos
Cyprinidae , Genoma Mitocondrial , Animais , Filogenia , DNA Mitocondrial/genética , Vertebrados/genética , RNA de Transferência/genética , Cyprinidae/genética , Genes Mitocondriais
3.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441487

RESUMO

Ascidian embryos have been studied since the birth of experimental embryology at the end of the 19th century. They represent textbook examples of mosaic development characterized by a fast development with very few cells and invariant cleavage patterns and lineages. Ascidians belong to tunicates, the vertebrate sister group, and their study is essential to shed light on the emergence of vertebrates. Importantly, deciphering developmental gene regulatory networks has been carried out mostly in two of the three ascidian orders, Phlebobranchia and Stolidobranchia. To infer ancestral developmental programs in ascidians, it is thus essential to carry out molecular embryology in the third ascidian order, the Aplousobranchia. Here, we present genomic resources for the colonial aplousobranch Clavelina lepadiformis: a transcriptome produced from various embryonic stages, and an annotated genome. The assembly consists of 184 contigs making a total of 233.6 Mb with a N50 of 8.5 Mb and a L50 of 11. The 32,318 predicted genes capture 96.3% of BUSCO orthologs. We further show that these resources are suitable to study developmental gene expression and regulation in a comparative framework within ascidians. Additionally, they will prove valuable for evolutionary and ecological studies.


Assuntos
Urocordados , Animais , Urocordados/genética , Vertebrados/genética , Genoma , Genômica , Evolução Biológica
4.
Glob Chang Biol ; 30(3): e17253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519878

RESUMO

Vertebrate species worldwide are currently facing significant declines in many populations. Although we have gained substantial knowledge about the direct threats that affect individual species, these threats only represent a fraction of the broader vertebrate threat profile, which is also shaped by species interactions. For example, threats faced by prey species can jeopardize the survival of their predators due to food resource scarcity. Yet, indirect threats arising from species interactions have received limited investigation thus far. In this study, we investigate the indirect consequences of anthropogenic threats on biodiversity in the context of European vertebrate food webs. We integrated data on trophic interactions among over 800 terrestrial vertebrates, along with their associated human-induced threats. We quantified and mapped the vulnerability of various components of the food web, including species, interactions, and trophic groups to six major threats: pollution, agricultural intensification, climate change, direct exploitation, urbanization, and invasive alien species and diseases. Direct exploitation and agricultural intensification were two major threats for terrestrial vertebrate food webs: affecting 34% and 31% of species, respectively, they threaten 85% and 69% of interactions in Europe. By integrating network ecology with threat impact assessments, our study contributes to a better understanding of the magnitude of anthropogenic impacts on biodiversity.


Assuntos
Cadeia Alimentar , Vertebrados , Animais , Humanos , Ecologia , Biodiversidade , Espécies Introduzidas , Europa (Continente) , Ecossistema
5.
Surg Radiol Anat ; 46(3): 285-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478075

RESUMO

Intracranial arterial anatomy is lacking for most mammalian and non-mammalian model species, especially concerning the origin of the basilar artery (BA). Enhancing the knowledge of this anatomy can improve animal models and help understanding anatomical variations in humans. We have studied encephalic arteries in three different species of birds and eight different species of mammals using formalin-fixed brains injected with arterial red latex. Our results and literature analysis indicate that, for all vertebrates, the internal carotid artery (ICA) supplies the brain and divides into two branches: a cranial and a caudal branch. The difference between vertebrates lies in the caudal branch of the ICA. For non-mammalian, the caudal branch is the origin of the BA, and the vertebral artery (VA) is not involved in brain supply. For mammals, the VA supplies encephalic arteries in two different ways. In the first type of organization, mostly found in ungulates, the carotid rete mirabile supplies the encephalic arteries, the caudal branch is the origin of the BA, and the VA is indirectly involved in carotid rete mirabile blood supply. The second type of encephalic artery organization for mammals is the same as in humans. The caudal branch of the ICA serves as the posterior communicating artery, and the BA originates from both VAs. We believe that knowledge of comparative anatomy of encephalic arteries contributes to a better understanding of animal models applicable to surgical or radiological techniques. It improves the understanding of rare encephalic variations that may be present in humans.


Assuntos
Artéria Basilar , Encéfalo , Animais , Humanos , Artéria Basilar/anatomia & histologia , Encéfalo/anatomia & histologia , Artérias Carótidas/anatomia & histologia , Vertebrados , Mamíferos , Artéria Carótida Interna/anatomia & histologia , Artérias Cerebrais/anatomia & histologia
6.
Evol Dev ; 26(2): e12474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425004

RESUMO

The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.


Assuntos
Peixes , Telencéfalo , Animais , Larva , Telencéfalo/anatomia & histologia , Vertebrados , Morfogênese
7.
Ecol Appl ; 34(2): e2946, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38303165

RESUMO

Detecting declines and quantifying extinction risk of long-lived, highly fecund vertebrates, including fishes, reptiles, and amphibians, can be challenging. In addition to the false notion that large clutches always buffer against population declines, the imperiled status of long-lived species can often be masked by extinction debt, wherein adults persist on the landscape for several years after populations cease to be viable. Here we develop a demographic model for the eastern hellbender (Cryptobranchus alleganiensis), an imperiled aquatic salamander with paternal care. We examined the individual and interactive effects of three of the leading threats hypothesized to contribute to the species' demise: habitat loss due to siltation, high rates of nest failure, and excess adult mortality caused by fishing and harvest. We parameterized the model using data on their life history and reproductive ecology to model the fates of individual nests and address multiple sources of density-dependent mortality under both deterministic and stochastic environmental conditions. Our model suggests that high rates of nest failure observed in the field are sufficient to drive hellbender populations toward a geriatric age distribution and eventually to localized extinction but that this process takes decades. Moreover, the combination of limited nest site availability due to siltation, nest failure, and stochastic adult mortality can interact to increase the likelihood and pace of extinction, which was particularly evident under stochastic scenarios. Density dependence in larval survival and recruitment can severely hamper a population's ability to recover from declines. Our model helps to identify tipping points beyond which extinction becomes certain and management interventions become necessary. Our approach can be generalized to understand the interactive effects of various threats to the extinction risk of other long-lived vertebrates. As we face unprecedented rates of environmental change, holistic approaches incorporating multiple concurrent threats and their impacts on different aspects of life history will be necessary to proactively conserve long-lived species.


Assuntos
Extinção Biológica , Vertebrados , Animais , Ecossistema , Anfíbios , Urodelos
8.
Nat Commun ; 15(1): 1538, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378737

RESUMO

Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.


Assuntos
Cordados , Petromyzon , Animais , Petromyzon/genética , Tretinoína/metabolismo , Vertebrados/genética , Rombencéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
9.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324384

RESUMO

There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Fenótipo , Vertebrados , Mamíferos
10.
Dev Comp Immunol ; 154: 105147, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325501

RESUMO

Diseases caused by pathogens contribute to molecular adaptations in host immunity. Variety of viral pathogens challenging animal immunity can drive positive selection diversifying receptors recognising the infections. However, whether distinct virus sensing systems differ across animals in their evolutionary modes remains unclear. Our review provides a comparative overview of natural selection shaping molecular evolution in vertebrate viral-binding pattern recognition receptors (PRRs). Despite prevailing negative selection arising from the functional constraints, multiple lines of evidence now suggest diversifying selection in the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and oligoadenylate synthetases (OASs). In several cases, location of the positively selected sites in the ligand-binding regions suggests effects on viral detection although experimental support is lacking. Unfortunately, in most other PRR families including the AIM2-like receptor family, C-type lectin receptors (CLRs), and cyclic GMP-AMP synthetase studies characterising their molecular evolution are rare, preventing comparative insight. We indicate shared characteristics of the viral sensor evolution and highlight priorities for future research.


Assuntos
Imunidade Inata , Receptores de Reconhecimento de Padrão , Animais , Receptores de Reconhecimento de Padrão/genética , Evolução Molecular , Vertebrados , Seleção Genética
11.
Nat Commun ; 15(1): 1101, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424441

RESUMO

Human-driven extinction threatens entire lineages across the Tree of Life. Here we assess the conservation status of jawed vertebrate evolutionary history, using three policy-relevant approaches. First, we calculate an index of threat to overall evolutionary history, showing that we expect to lose 86-150 billion years (11-19%) of jawed vertebrate evolutionary history over the next 50-500 years. Second, we rank jawed vertebrate species by their EDGE scores to identify the highest priorities for species-focused conservation of evolutionary history, finding that chondrichthyans, ray-finned fish and testudines rank highest of all jawed vertebrates. Third, we assess the conservation status of jawed vertebrate families. We found that species within monotypic families are more likely to be threatened and more likely to be in decline than other species. We provide a baseline for the status of families at risk of extinction to catalyse conservation action. This work continues a trend of highlighting neglected groups-such as testudines, crocodylians, amphibians and chondrichthyans-as conservation priorities from a phylogenetic perspective.


Assuntos
Conservação dos Recursos Naturais , Tartarugas , Humanos , Animais , Filogenia , Vertebrados/genética , Evolução Biológica , Anfíbios , Biodiversidade
12.
J Vis Exp ; (203)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38314798

RESUMO

Bipolar cells and horizontal cells of the vertebrate retina are the first neurons to process visual information after photons are detected by photoreceptors. They perform fundamental operations such as light adaptation, contrast sensitivity, and spatial and color opponency. A complete understanding of the precise circuitry and biochemical mechanisms that govern their behavior will advance visual neuroscience research and ophthalmological medicine. However, current preparations for examining bipolar and horizontal cells (retinal whole mounts and vertical slices) are limited in their capacity to capture the anatomy and physiology of these cells. In this work, we present a method for removing photoreceptor cell bodies from live, flatmount mouse retinas, providing enhanced access to bipolar and horizontal cells for efficient patch clamping and rapid immunolabeling. Split retinas are prepared by sandwiching an isolated mouse retina between two pieces of nitrocellulose, then gently peeling them apart. The separation splits the retina just above the outer plexiform layer to yield two pieces of nitrocellulose, one containing the photoreceptor cell bodies and another containing the remaining inner retina. Unlike vertical retina slices, the split retina preparation does not sever the dendritic processes of inner retinal neurons, allowing for recordings from bipolar and horizontal cells that integrate the contributions of gap junction-coupled networks and wide-field amacrine cells. This work demonstrates the versatility of this preparation for the study of horizontal and bipolar cells in electrophysiology, immunohistochemistry, and in situ hybridization experiments.


Assuntos
Células Amácrinas , Retina , Camundongos , Animais , Colódio , Retina/fisiologia , Células Fotorreceptoras , Vertebrados
13.
Anat Rec (Hoboken) ; 307(4): 925-956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38299218

RESUMO

Prestosuchus chiniquensis is the best represented pseudosuchian archosaur from the Pinheiros-Chiniquá Sequence, Middle-Late Triassic (Ladinian/Carnian) of the Santa Maria Supersequence, Southern Brazil. Several incomplete specimens attributed to this species have been described, but the morphology of the postcranial skeleton of P. chiniquensis is poorly known. In this contribution we present the postcranial material of the UFRGS-PV-0629-T specimen, concluding its description, as its skull and endocast have already been described. Additionally, histological data provided new information on the poorly known ontogenetic series of P. chiniquensis, and on its growth patterns suggesting a longer period of slow growth when compared to other basal Loricata species. A phylogenetic analysis placed UFRGS-PV-0629-T in a group composed by the lectotype, paralectotype, and other described P. chiniquensis specimens, further corroborating our taxonomic hypothesis, that specimens of basal Loricata collected in Brazil are closely related to each other. Due to the association of characters found in the phylogenetic analysis, the specimen UFRGS-PV-0629-T is attributed as the most complete material ever found for P. chiniquensis. As such, it is clear that the material presented here provides important new information on P. chiniquensis. Based on the results presented here, we revised the diagnosis for P. chiniquensis. However, it also evidences the need for new discoveries and studies of other specimens seeking to understand this and other closely related species, which were important components of worldwide trophic webs of the Triassic biotas.


Assuntos
Crânio , Vertebrados , Animais , Brasil , Filogenia , Crânio/anatomia & histologia , Cabeça/anatomia & histologia , Fósseis
14.
Biosystems ; 237: 105133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336225

RESUMO

Life codes increase in both number and variety with biological complexity. Although our knowledge of codes is constantly expanding, the evolutionary progression of organic, neural, and cultural codes in response to selection pressure remains poorly understood. Greater clarification of the selective mechanisms is achieved by investigating how major evolutionary transitions reduce spatiotemporal and energetic constraints on transmitting heritable code to offspring. Evolution toward less constrained flows is integral to enduring flow architecture everywhere, in both engineered and natural flow systems. Beginning approximately 4 billion years ago, the most basic level for transmitting genetic material to offspring was initiated by protocell division. Evidence from ribosomes suggests that protocells transmitted comma-free or circular codes, preceding the evolution of standard genetic code. This rudimentary information flow within protocells is likely to have first emerged within the geo-energetic and geospatial constraints of hydrothermal vents. A broad-gauged hypothesis is that major evolutionary transitions overcame such constraints with tri-flow adaptations. The interconnected triple flows incorporated energy-converting, spatiotemporal, and code-based informational dynamics. Such tri-flow adaptations stacked sequence splicing code on top of protein-DNA recognition code in eukaryotes, prefiguring the transition to sexual reproduction. Sex overcame the spatiotemporal-energetic constraints of binary fission with further code stacking. Examples are tubulin code and transcription initiation code in vertebrates. In a later evolutionary transition, language reduced metabolic-spatiotemporal constraints on inheritance by stacking phonetic, phonological, and orthographic codes. In organisms that reproduce sexually, each major evolutionary transition is shown to be a tri-flow adaptation that adds new levels of code-based informational exchange. Evolving biological complexity is also shown to increase the nongenetic transmissibility of code.


Assuntos
Eucariotos , Código Genético , Animais , Código Genético/genética , Eucariotos/genética , Vertebrados/genética , Reprodução , Ribossomos , Evolução Molecular
15.
Anat Rec (Hoboken) ; 307(4): 974-1000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38344898

RESUMO

Our knowledge of the diversity and evolution of South American Triassic pseudosuchians has greatly improved in the past 15 years, due to new discoveries, but also to the revision of several historically important specimens. One of the earliest descriptions of pseudosuchians from the Triassic of Brazil stems from the classic work of Huene from the first half of the 20th century, who described several species, including such influential taxa as Rauisuchus tiradentes or Prestosuchus chiniquensis, which have recently been reviewed. The more poorly known proposed second species of Prestosuchus, P. loricatus, is the focus of the present work. The original material included some elements of the axial skeleton (cervical and caudal vertebrae, ribs, osteoderms) and the hindlimb (ischia, calcaneum, metatarsus), collected from the Dinodontosaurus Assemblage Zone of the Chiniquá area, west of São Pedro do Sul. "Prestosuchus" loricatus shows numerous differences to P. chiniquensis, including the shape of cervical neural spines, presence of epipophyses on the cervical vertebrae, presence of a pit in the iliac articulation of the ischium, lack of longitudinal furrows in the dorsolateral surface of the ischial shafts, the more slender calcaneal tuber and a less pronounced ventral pit in the calcaneum, and is thus referred to a new genus, Schultzsuchus gen. nov. Phylogenetic analysis indicates an early branching position within Poposauroidea for Schultzsuchus, making it the oldest known member of this clade in South America.


Assuntos
Fósseis , Vertebrados , Animais , Brasil , Filogenia , Costelas
16.
Ann Anat ; 253: 152225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346566

RESUMO

The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.


Assuntos
Neurônios Motores , Músculos Oculomotores , Animais , Músculos Oculomotores/inervação , Neurônios Motores/fisiologia , Vertebrados , Órbita , Pálpebras , Nervo Oculomotor/fisiologia
17.
Viruses ; 16(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399981

RESUMO

Alphaviruses can replicate in arthropods and in many vertebrate species including humankind, but only in vertebrate cells do infections with these viruses result in a strong inhibition of host translation and transcription. Translation shutoff by alphaviruses is a multifactorial process that involves both host- and virus-induced mechanisms, and some of them are not completely understood. Alphavirus genomes contain cis-acting elements (RNA structures and dinucleotide composition) and encode protein activities that promote the translational and transcriptional resistance to type I IFN-induced antiviral effectors. Among them, IFIT1, ZAP and PKR have played a relevant role in alphavirus evolution, since they have promoted the emergence of multiple viral evasion mechanisms at the translational level. In this review, we will discuss how the adaptations of alphaviruses to vertebrate hosts likely involved the acquisition of new features in viral mRNAs and proteins to overcome the effect of type I IFN.


Assuntos
Alphavirus , Interferon Tipo I , Animais , Alphavirus/fisiologia , Linhagem Celular , Interferon Tipo I/genética , Vertebrados , Tropismo , Antivirais/farmacologia , Replicação Viral
18.
Mol Biol Rep ; 51(1): 332, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393511

RESUMO

BACKGROUND: Recent studies in the field of molecular identification have described 16S rRNA gene as a highly informative fragment of mitochondrial DNA for species discrimination. This study presents a newly developed universal primer pair yielding an approximately 350 bp fragment of mitochondrial 16S rRNA, variable enough to encompass and identify all vertebrate classes. METHODS AND RESULTS: The primers were designed by aligning and analyzing over 1500 16S rRNA sequences downloaded from the NCBI nucleotide database. A total of 93 vertebrate species, spanning 27 orders and 55 families, were PCR-amplified to validate the primers. All the target species were successfully amplified and identified when aligned with reference sequences from the NCBI nucleotide database. Using the Kimura 2-parameter model, low intra-species genetic divergence of the target region was observed - from 0 to 4.63%, whereas relatively higher inter-species genetic divergence was observed, ranging from 4.88% to 69.81%. Moreover, the newly developed primers were successfully applied to a direct PCR protocol, making the workflow very cost-effective, time-saving and less laborious in comparison to conventional PCR. CONCLUSIONS: The short length, high variability and conserved priming sites of the target fragment across all vertebrate species make it a highly desirable marker for species identification and discrimination.


Assuntos
DNA Mitocondrial , Vertebrados , Humanos , Animais , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Filogenia , Vertebrados/genética , DNA Mitocondrial/genética , Nucleotídeos , Análise de Sequência de DNA
19.
Mol Ecol ; 33(6): e17295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396362

RESUMO

Dispersal affects evolutionary processes by changing population size and genetic composition, influencing the viability and persistence of populations. Investigating which mechanisms underlie variation in dispersal phenotypes and whether populations harbour adaptive potential for dispersal is crucial to understanding the eco-evolutionary dynamics of this important trait. Here, we investigate the genetic architecture of dispersal among successfully recruited individuals in an insular metapopulation of house sparrows. We use an extensive long-term individual-based ecological data set and high-density single-nucleotide polymorphism (SNP) genotypes for over 2500 individuals. We conducted a genome-wide association study (GWAS), and found a relationship between dispersal probability and a SNP located near genes known to regulate circadian rhythm, glycogenesis and exercise performance, among other functions. However, this SNP only explained 3.8% of variance, suggesting that dispersal is a polygenic trait. We then used an animal model to estimate heritable genetic variation (σA 2 ), which composes 10% of the total variation in dispersal probability. Finally, we investigated differences in σA 2 across populations occupying ecologically relevant habitat types (farm vs. non-farm) using a genetic groups animal model. We found different adaptive potentials across habitats, with higher mean breeding value, σA 2 , and heritability for the habitat presenting lower dispersal rates, suggesting also different roles of environmental variation. Our results suggest a complex genetic architecture of dispersal and demonstrate that adaptive potential may be environment dependent in key eco-evolutionary traits. The eco-evolutionary implications of such environment dependence and consequent spatial variation are likely to become ever more important with the increased fragmentation and loss of suitable habitats for many natural populations.


Assuntos
Ecossistema , Estudo de Associação Genômica Ampla , Humanos , Animais , Evolução Biológica , Densidade Demográfica , Vertebrados , Dinâmica Populacional
20.
Environ Monit Assess ; 196(3): 258, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349596

RESUMO

In the Azores, complaints about grape loss to birds have become recurrent. Although winegrowers frequently blame the endemic Azores Woodpigeon Columba palumbus azorica, data about the magnitude of grape damage and the species responsible for them are lacking. This study provides detailed information about grape damage caused by vertebrates on Pico Island, home to the main wine-growing area of the region. Vineyards were monitored during the ripening period in 2017 and 2018. Damage was assessed by determining the number of plucked, pecked and bitten grapes for a total of 850 bunches. Camera traps were placed in 113 enclosures providing detection and consumption rates of vertebrate species. GLM analysis was performed to test the effect of grape variety, distance to the woods, year and time before harvest on grape damage and consumption events. Damage was estimated at 10.3% (± 0.9) in 2017 and 8.7% (± 0.9) in 2018 and mostly consisted of plucked grapes. Ten vertebrate species were detected consuming grapes. Overall, 524 consumption events were registered. The Madeira lizard Teira dugesii, the Azores Blackbird Turdus merula azorensis and rodents (rats Rattus sp. and the house mouse Mus musculus) were responsible for most of those events. The Azores Woodpigeon accounted for three consumption events. GLM analysis showed that damage was greater in vines adjacent to woods and lower in traditional white varieties. This study constitutes an important baseline for the implementation of efficient measures to mitigate grape predation and sheds light on the minor role of the Azores Woodpigeon in grape damage.


Assuntos
Monitoramento Ambiental , Vinho , Camundongos , Animais , Ratos , Açores , Fazendas , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...