Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Filtros aplicados
Intervalo de ano de publicação
1.
J. appl. oral sci ; 23(6): 614-622, Nov.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: lil-769822

RESUMO

ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM), and chemically by X-ray photoelectron spectroscopy (XPS). For bending analysis, one indirect composite (Signum) was reinforced with polyethylene fiber (Connect, Construct, or InFibra). The InFibra fiber was subjected to three different treatments: (1) single application of silane, (2) oxygen or argon plasma for 1 or 3 min, (3) oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm), 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS) analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min.


Assuntos
Argônio/química , Oxigênio/química , Plasma/química , Polietileno/química , Análise de Variância , Resinas Compostas/química , Colagem Dentária/métodos , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Maleabilidade , Valores de Referência , Silanos/química , Propriedades de Superfície , Fatores de Tempo
2.
J. appl. oral sci ; 23(3): 279-287, May-Jun/2015. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: lil-752437

RESUMO

Objective The objective of this study was to investigate the impact of two different commercially available dental implants on osseointegration. The surfaces were sandblasting and acid etching (Group 1) and sandblasting and acid etching, then maintained in an isotonic solution of 0.9% sodium chloride (Group 2). Material and Methods X-ray photoelectron spectroscopy (XPS) was employed for surface chemistry analysis. Surface morphology and topography was investigated by scanning electron microscopy (SEM) and confocal microscopy (CM), respectively. Contact angle analysis (CAA) was employed for wetting evaluation. Bone-implant-contact (BIC) and bone area fraction occupied (BAFO) analysis were performed on thin sections (30 μm) 14 and 28 days after the installation of 10 implants from each group (n=20) in rabbits' tibias. Statistical analysis was performed by ANOVA at the 95% level of significance considering implantation time and implant surface as independent variables. Results Group 2 showed 3-fold less carbon on the surface and a markedly enhanced hydrophilicity compared to Group 1 but a similar surface roughness (p>0.05). BIC and BAFO levels in Group 2 at 14 days were similar to those in Group 1 at 28 days. After 28 days of installation, BIC and BAFO measurements of Group 2 were approximately 1.5-fold greater than in Group 1 (p<0.05). Conclusion The surface chemistry and wettability implants of Group 2 accelerate osseointegration and increase the area of the bone-to-implant interface when compared to those of Group 1. .


Assuntos
Animais , Masculino , Feminino , Coelhos , Implantação Dentária Endóssea/métodos , Implantes Dentários , Osseointegração/efeitos dos fármacos , Osseointegração/fisiologia , Titânio/química , Condicionamento Ácido do Dente , Materiais Biocompatíveis , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Valores de Referência , Propriedades de Superfície/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Fatores de Tempo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...