Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Allergol. immunopatol ; 52(1): 16-23, 01 jan. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-229172

RESUMO

Background: The bronchial infection by Mycobacterium tuberculosis (Mtb) is increasing in prevalence and severity worldwide. Despite appropriate tuberculosis treatment, most patients still develop bronchial stenosis, which often leads to disability. Polyphyllin II (PP2) is a steroidal saponin extracted from Rhizoma Paridis. In this study, we aimed to explore the effect of PP2 on the advancement of Mtb-induced bronchial infection. Method: The effects of PP2 on cell viability were measured by using MTT and lactate dehydrogenase (LDH) kit. The mRNA and protein levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-8 were elucidated by RT-qPCR and ELISA, respectively. The expression of NLR family pyrin domain containing 3 (NLRP3) related inflammasome (NLRP3, IL-1β, and cleaved-caspase-1) and the activated degree of protein kinase B (AKT)/nuclear factor-kappa B (NF-kB; p-AKT and p-NF-κB) were detected by Western blotting. Results: PP2 at 0, 1, 5, and 10 μM had little cytotoxicity on 16HBE cells. PP2 inhibited Mtb-induced cell proliferation and decreased LDH levels. We further found that PP2 could suppress Mtb-induced inflammatory responses and activation of NLPR3 inflammasome. Additionally, the role of PP2 in Mtb is associated with the AKT/NF-kB signaling pathway. Conclusion: PP2 inhibited Mtb infection in bronchial epithelial cells, by inhibiting Mtb-induced inflammatory reactions and activation of NLPR3 inflammasome. These effects may be exerted by suppressing the AKT/NF-kB pathway, which will provide a prospective treatment (AU)


Assuntos
Humanos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Bronquite/microbiologia , Mycobacterium tuberculosis , Células Epiteliais , Inflamassomos
2.
Clin. transl. oncol. (Print) ; 25(5): 1402-1412, mayo 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-219523

RESUMO

Background Melanoma is an aggressive form of skin cancer worldwide. Phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) exerts carcinogenic roles in various tumors. So far, the function and mechanism of PIK3R2 in melanoma are not been fully clarified. Objective We aimed to clarify the role of PIK3R2 in melanoma. Methods PIK3R2 expressions in melanoma clinical tissues and melanoma cells were measured using quantitative real-time PCR and Western blot. In addition, PIK3R2 expressions in different tumor stages of melanoma were determined by immunohistochemistry assay. Meanwhile, PIK3R2 function was evaluated using loss or gain-of-function assays, Cell Counting Kit-8 assay, flow cytometry, and Transwell analysis. Furthermore, PIK3R2 mechanism in melanoma was assessed by a series of rescue experiments. Results PIK3R2 was highly expressed in melanoma tissues and cells, and PIK3R2 expressions were the highest in Stage IV. Functionally, PIK3R2 knockdown repressed melanoma cell proliferation, invasion, epithelial-mesenchymal transition, and facilitated cell apoptosis. Also, PIK3R2 overexpression produced an opposite trend. Mechanistically, PIK3R2 facilitated melanoma progression by activating PI3K/AKT/NF-κB pathway. Furthermore, PIK3R2 knockdown restrained the melanoma tumor growth in vivo. Conclusions PIK3R2 aggravated melanoma by activating PI3K/AKT/NF-κB pathway, prompting that PIK3R2 might be a therapeutic target for melanoma (AU)


Assuntos
Humanos , Melanoma/metabolismo , Melanoma/patologia , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
J. physiol. biochem ; 79(2)may. 2023. graf, ilus
Artigo em Inglês | IBECS | ID: ibc-222539

RESUMO

Extracellular histones have been reported to aggravate different pathophysiological processes by increasing vascular permeability, coagulopathy, and inflammation. In the present study, we elucidate how extracellular histones (10–100 µg/mL) concentration dependently increase cytosolic reactive oxygen species (ROS) production using human umbilical vein endothelial cells (HUVECs). Furthermore, we identify cyclooxygenase (COX) and NADPH oxidase (NOX) activity as sources of ROS production in extracellular histone-treated HUVEC. This COX/NOX-mediated ROS production is also involved in enhanced NF-kB activity and cell adhesion molecules (VCAM1 and ICAM1) expression in histone-treated HUVEC. Finally, by using different toll-like receptor (TLR) antagonists, we demonstrate the role of TLR4 in CAMs overexpression triggered by extracellular histones in endothelial cells. In conclusion, our data suggest that through TLR4 signaling, extracellular histones increase endothelial cell activation, a mechanism involving increased COX- and NOX-mediated ROS. These findings increase our understanding on how extracellular histones enhance systemic inflammatory responses in diseases in which histone release occurs as part of the pathological processes. (AU)


Assuntos
Humanos , Histonas , NF-kappa B/metabolismo , Moléculas de Adesão Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Allergol. immunopatol ; 51(2): 82-89, 01 mar. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-216800

RESUMO

Background: Psoriasis is a prevalent inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes, and infiltration of inflammatory cells into the epidermis. However, the underlying mechanisms remain unclear. Tectorigenin is an active ingredient in traditional medicines and has anti-inflammatory activity. This research explored the effects of tectorigenin on the anti-inflammatory property, autophagy, and the underlying mechanisms in M5 ([IL-22, IL-17A, oncostatin M, IL-1α, and TNF-α])–stimulated HaCaT cells. Methods: The in vitro model of mixed M5 cytokines–stimulated HaCaT keratinocytes was established to investigate the phenotypic features in psoriasis. Cell viability was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, cell proliferative rate by EdU (5-ethynyl-2'-deoxyuridine) assay, and autophagy was detected by immunofluorescence staining. After M5 exposure, the proliferative rate, protein expression of autophagy, and signaling activities of NLR family pyrin domain containing 3 (NLRP3) inflammasome and toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) were measured. The latter were quantitated using quantitative PCR and western blot, respectively. The inflammatory response was detected by enzyme-linked immunosorbent assay (ELISA). Results: Tectorigenin exerted a protective effect in ameliorating the hyperproliferation and inflammation of HaCaT keratinocytes induced by M5 cytokines. Furthermore, tectorigenin on keratinocytes seemed to inactivate NLRP3 inflammasome and inhibit cell proliferation and inflammation response via suppression of TLR4/NF-κB pathway. Conclusion: This study proves that tectorigenin may be a potential therapeutic candidate for psoriasis treatment in future (AU)


Assuntos
Humanos , Autofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Psoríase/metabolismo , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Células Cultivadas
5.
Arch. esp. urol. (Ed. impr.) ; 76(1): 56-64, 28 feb. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-217467

RESUMO

Objective: The main pathological changes of hemorrhagic cystitis (HC) are bladder inflammation, bladder epithelial damage and mast cell infiltration. Tropisetron has been corroborate to conduct a protective role in HC, but its specific etiology remains unclear. The objective of this research was to estimate the mechanism of action of Tropisetron in haemorrhagic cystitis tissue. Methods: Cyclophosphamide (CTX) was utilized to induce the construction of HC rat model, and rats were handled with different doses of Tropisetron. The impact of Tropisetron on the expression of inflammatory factors and oxidative stress factors in the rats with cystitis were measured by western blot, as well as the related proteins of toll-like receptor 4/nuclear transcription factor-κB (TLR-4/NF-κB) and januskinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) pathways. Results: CTX-induced cystitis in rats was accompanied by notable pathological tissue damage and increased bladder wet weight ratio, elevated mast cell numbers and collagen fibrosis compared to controls. Tropisetron ameliorated CTX-induced injury in a concentration-dependent manner. Futhermore, CTX induced oxidative stress and inflammatory damage, while Tropisetron can alleviate these injuries. Besides, Tropisetron ameliorated CTX-induced cystitis by restraining TLR-4/NF-κB and JAK1/STAT3 signalling pathways. Conclusions: Taken together, Tropisetron ameliorates cyclophosphamide-induced haemorrhagic cystitis via modulating TLR-4/NF-κB and JAK1/STAT3 signalling pathways. These findings carry important implication for the study of the molecular mechanisms of pharmacological treatment of hemorrhagic cystitis (AU)


Assuntos
Humanos , Ciclofosfamida/efeitos adversos , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Hemorragia/induzido quimicamente , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Tropizetrona/efeitos adversos , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais
6.
Allergol. immunopatol ; 51(1): 37-43, ene. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-214020

RESUMO

Objective: To reveal the possible effects of decursin on viability, oxidative stress, and inflammatory response in lipopolysaccharide (LPS)-treated human bronchial epithelial cells-2B (BEAS-2B) and human pulmonary artery endothelial cells (HPAEC) cells, and revealed the potential mechanisms. Methods: LPS was used to induce acute lung injury (ALI) in normal human lung epithelial cells, including BEAS-2B and HPAEC cells. Cell viability and apoptosis in response to LPS and decursin in BEAS-2B and HPAEC cells were, respectively, evaluated by MTT colorimetric and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The oxidative stress and inflammatory response in LPS-treated BEAS-2B and HPAEC cells were detected by enzyme-linked-immunosorbent serologic assay. In addition, the role of decursin in nuclear -factor-kappa B (NF-κB) activation was analyzed by immunoblot and immunofluorescence assays. Results: Our data revealed that decursin could alleviate the viability of LPS-induced BEAS-2B and HPAEC cells. Decursin could also reduce LPS-induced oxidative stress in BEAS-2B and HPAEC cells. In addition, it could reduce LPS-induced inflammation in BEAS-2B and HPAEC cells. Mechanically, decursin suppressed the activation of NF-κB pathway. Conclusion: Decursin suppressed NF-κB pathway, and therefore alleviated ALI (AU)


Assuntos
Humanos , Lesão Pulmonar Aguda/metabolismo , Lipopolissacarídeos , NF-kappa B/metabolismo , Progressão da Doença , Transdução de Sinais
7.
Allergol. immunopatol ; 51(1): 92-97, ene. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-214025

RESUMO

Background: Although TRIpartite Motif containing 8 (TRIM8) gene plays an important role in a number of biological processes, such as inflammation, its function and mechanism in ulcerative colitis (UC) remain unknown. Methods: The UC model was established by feeding mice with 3.5% dextran sulfate sodium (DSS). The animals were divided into the following four groups: control group, DSS group, DSS+short hairpin (sh)-NC group, and DSS+sh-TRIM8 group. Changes in body weight and disease activity index (DAI) score of mice in all the groups were recorded for 7 days. The animals were executed at the end of the experiment, and the expression of TRIM8 in colon tissue was detected by polymerase chain reaction and Western blot assays. The length of colon was measured, and the histopathological changes in mice colon were examined by hematoxylin and eosin staining. The expression of pro-inflammatory factors in mice serum and colonic tissue homogenate was detected by enzyme-linked-immunosorbent serologic assay. The expression of nuclear factor kappa B (NF-κB) pathway-related proteins in colonic tissues was detected by Western-blot analysis. Results: TRIM8 was highly expressed in the colonic tissues of UC mice. Knockdown of TRIM8 improved DSS-induced weight loss, increased DAI score, shortened colon length, and alleviated colonic injury and inflammation in mice. Western-blot experiments showed that knockdown of TRIM8 inhibited DSS-induced phosphorylation of p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) protein but increased IκBα expression. Conclusion: Knockdown of TRIM8 inhibits UC injury and inflammatory response caused by DSS. This could be related to the regulation of NF-κB signaling pathway by TRIM8 protein (AU)


Assuntos
Animais , Masculino , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Sulfato de Dextrana , Colite/induzido quimicamente , Colite/prevenção & controle , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
8.
Allergol. immunopatol ; 51(1): 140-145, ene. 2023. ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-214029

RESUMO

Objective: To unravel the role of La ribonucleoprotein 7 (LARP7), a transcriptional regulator, in the progression of psoriasis and the underlying molecular mechanisms. Methods: The psoriasis-like mice model was created by daily administering of imiquimod on shaved skin. The histological analysis and skin damage were evaluated in each group. The inflammation and oxidative stress response were assessed by enzyme-linked-immunosorbent serologic and immunoblot assays. The involvement of silent information regulator 1 (member of the Sirtuin family; SIRT1/nuclear factor kappa B (NF-κB) signaling pathway in LARP7-mediated psoriasis progression was also detected by immunoblot assay. Results: LARP7 relieved psoriasis symptoms in the mice model. LARP7 inhibited the expression of inflammatory cytokines as well as chemokines in psoriasis-like skin tissues. Additionally, LARP7 suppressed oxidative stress in the psoriasis-like skin tissues of mice. LARP7 inhibited the activation of the SIRT1/NF-κB signaling pathway, and therefore affected the progression of psoriasis. Conclusion: LARP7 relieved psoriasis symptoms in mice by regulating the SIRT1/NF-κB signaling pathway (AU)


Assuntos
Animais , Masculino , Camundongos , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Transdução de Sinais , Psoríase/tratamento farmacológico , Ribonucleoproteínas/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
9.
Allergol. immunopatol ; 51(1): 146-153, ene. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-214030

RESUMO

Background: Asthma is a hackneyed chronic inflammatory disease of the airway. Chryseriol (CSR) is a kind of flavonoid, and has the effect of bronchiectasis, indicating its potential application for treating respiratory diseases. However, the functions of CSR in asthma have not been reported till now. Materials and methods: The histopathologic changes of the lung tissues were assessed by hematoxylin and eosin staining. The cell apoptosis was identified through terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay. Total numbers of eosinophils, neutrophils, and macrophages were assessed under microscope. The levels of interleukin (IL)-1β, IL-4, IL-5, and IL-13 were detected by enzyme-linked-immunosorbent serologic assay. The airway hyper-responsiveness (AHR) was evaluated by the whole body plethysmography. The levels of methane dicarboxylic aldehyde, superoxide dismutase, glutathione S-transferase, and glutathione in lung homogenates were confirmed by using corresponding commercial kits. The protein expressions were examined by Western blot analysis. Results: The ovalbumin (OVA) was utilized to establish asthma mouse model. At first, it was revealed that CSR treatment reduced lung injury in OVA-stimulated mice. Moreover, cell apoptosis was enhanced after OVA stimulation but was attenuated by CSR treatment. In addition, CSR treatment decreased the infiltration of inflammatory cells and the production of inflammatory factors in OVA-treated mice. Further investigations demonstrated that CSR treatment relieved AHR in OVA-stimulated mice. The oxidative stress was strengthened in OVA-treated mice, but these effects were relieved by CSR treatment. Lastly, it was discovered that CSR treatment retarded nuclear factor kappa B (NF-κB)/hypoxia-inducible factor 1 alpha (HIF-1α) and p38 mitogen-activated protein kinase (MAPK)/signal transducer and activator of transcription 1 (STAT1) pathways in OVA-triggered asthma mice (AU)


Assuntos
Animais , Feminino , Camundongos , Fator de Transcrição STAT1/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Asma/tratamento farmacológico , Flavonas/uso terapêutico , Progressão da Doença , Camundongos Endogâmicos BALB C , Transdução de Sinais
10.
Allergol. immunopatol ; 51(1): 159-167, ene. 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-214032

RESUMO

Introduction: Inflammatory bowel disease (IBD), which mainly leads to diarrhea, fatigue, stool blood, abdominal pain, and cramping, is threatening public health. Tripartite motif-containing 52 (TRIM52) has been reported to play an important role in inflammatory responses via activating the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway. However, the causes of IBD need to be elucidated, and the function of TRIM52 in IBD remains unclear. Here, we demonstrated that TRIM52 aggravated inflammation and pyroptosis in dextran sulfate sodium (DSS)-induced IBD by activating TLR4/NF-κBs pathway. Methods: The colitis model was established on mice through DSS induction. For the TRIM52 knockdown, the mice were infected with a recombinant adenoviral vector expressing sgRNAs targeting TRIM52. RT-qPCR, western blot, and immunohistochemistry were performed to verify TRIM52 expression in DSS-induced IBD. The body weight, disease activity index, colon length, and H&E staining were used to assess the IBD symptoms in mice with TRIM52 knockdown. The inflammatory responses were examined by RT-qPCR and ELISA measuring tumor necrosis factor-α (TNF-α), inter-leukin 6 (IL-6), and interleukin 1β (IL-1β). Furthermore, the pyroptosis in colon tissue was detected by western blot. Finally, the TLR4/NF-κBs pathway activity was also examined by western blot. Results: TRIM52 expression was up-regulated in DSS-induced IBD, and knockdown of TRIM52 could alleviate the symptoms of IBD. TRIM52 knockdown retarded DSS-induced inflammatory response and inhibited DSS-induced pyroptosis in colon tissue. In addition, TRIM52 played a role in activating TLR4/NF-κBs pathway. Conclusion: Knockdown of TRIM52 alleviated inflammation and pyroptosis in IBD by regulating TLR4/NF-κBs pathway. TRIM52 is expected to be a novel diagnostic indicator for IBD and a target of therapeutic treatment (AU)


Assuntos
Animais , Camundongos , Proteínas com Motivo Tripartido/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Colite/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transdução de Sinais , Camundongos Transgênicos , Sulfato de Dextrana
11.
Arch. bronconeumol. (Ed. impr.) ; 59(1): 10-18, ene. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-214117

RESUMO

Objective: Explorations have been progressing in decoding the mechanism of non-small cell lung cancer (NSCLC). However, long noncoding RNA small nucleolar RNA host gene 5/microRNA-181c-5p/chromobox protein 4 (SNHG5/miR-181c-5p/CBX4) axis-oriented mechanisms in NSCLC is still in infancy. Therein, this study is proposed to probe this axis in NSCLC progression. Methods: Samples of 86 NSCLC patients were collected and SNHG5, miR-181c-5p and CBX4 expression was detected in NSCLC tissues and cells. NSCLC cells were transfected with plasmids to change SNHG5, miR-181c-5p or CBX4 expression, after which cell functions and phosphorylated (p)-nuclear factor (NF)-κB protein expression were evaluated. The relationships among SNHG5, miR-181c-5p and CBX4 were validated. Tumor xenografts were implemented to verify the roles of SNHG5, miR-181c-5p and CBX4 in tumor growth. Results: Low miR-181c-5p and high SNHG5 and CBX4 levels were found in NSCLC tissues and cells. Restoration of miR-181c-5p or knockdown of SNHG5 or CBX4 restrained NSCLC cell progression and inactivated the NF-κB pathway. Upregulated CBX4 abolished the effects of miR-181c-5p on reducing NSCLC cell progression. SNHG5 regulated the interaction between miR-181c-5p and CBX4. In vivo, restoration of miR-181c-5p or knockdown of SNHG5 or CBX4 retarded the tumor growth. Conclusion: This study has delineated that SNHG5 induces the NF-κB pathway by regulating the miR-181c-5p/CBX4 axis to promote NSCLC progression, which may pave a novel path for NSCLC treatment. (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Proteínas do Grupo Polycomb , RNA Longo não Codificante , NF-kappa B , Ligases , Linhagem Celular Tumoral
12.
Allergol. immunopatol ; 51(6): 1-7, 2023. graf
Artigo em Inglês | IBECS | ID: ibc-227302

RESUMO

Background: Acute lung injury (ALI) causes severe and uncontrolled pulmonary inflammation and has high morbidity in dying patients. Objective: This study aimed to evaluate the potential function of Kaempferitrin (Kae) and uncover its mechanisms in ALI. Material and Methods: We evaluated the role of Kae in ALI through the lipopolysaccharide (LPS)-induced histopathological changes, lung wet/dry (W/D) ratio, total bronchoalveolar lavage fluid (BALF) cells count, pulmonary inflammation, and the levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and IL-1β. The effect of Kae on NF-κB signaling pathway was discovered through the protein expression levels of transcription factors p65, p-p65, IκBα, and p-IκBα by Western blot analysis. Results: The results showed that Kae could improve lung injury by reducing apoptosis, histopathological changes, and lung W/D ratio; more importantly, Kae enhanced the survival of ALI mice. Moreover, Kae relieved inflammation, as it reduced total BALF cells count, and deceased the levels of TNF-α, IL-6, and IL-1β in serum. In addition, Western blot analysis data suggested that Kae could decrease the protein expression levels of transcription factors p65, p-p65, IκB-α, and p-IκB-α, which were promoted by LPS. Conclusion: The results of this study suggested that Kae could relieve LPS-induced ALI in mice and reduce inflammation and apoptosis through NF-κB pathway (AU)


Assuntos
Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , NF-kappa B/metabolismo , Pneumonia/patologia , Sepse , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL
13.
Allergol. immunopatol ; 51(6): 30-36, 2023. graf
Artigo em Inglês | IBECS | ID: ibc-227306

RESUMO

Objective: This study aimed to investigate the functioning and mechanism of coptisine in acute lung injury (ALI). Methods: Murine Lung Epithelial 12 (MLE-12) cells were stimulated with lipopolysaccharide (LPS) to construct an in vitro pulmonary injury model to study the functioning of coptisine in sepsis-induced ALI. The viability of MLE-12 cells was assessed by the cell counting kit-8 assay. The cytokine release of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and IL-1β was measured by enzyme-linked-immunosorbent serologic assay. The relative expression levels of TNF-α, IL-6, and IL-1β mRNA were examined by reverse transcription-quantitative polymerase chain reaction. The cell apoptosis of MLE-12 cells was determined by Annexin V/propidium iodide staining and analyzed by flow cytometry. The expressions of apoptosis-related proteins Bax and cleaved Caspase-3 were observed by Western blot analysis. The activation of nuclear factor kappa B (NF-κB) signaling pathway was discovered by the determination of phospho-p65, p65, phospho-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and IκBα through Western blot analysis. Results: Coptisine treatment could significantly restore decrease in MLE-12 cell viability caused by LPS stimulation. The release of TNF-α, IL-6, and IL-1β was significantly inhibited by coptisine treatment. Coptisine treatment inhibited MLE-12 cell apoptosis induced by LPS, and also inhibited the expression levels of Bax and cleaved Caspase-3. Coptisine treatment along with LPS stimulation, significantly reduced the protein level of phospho-IκBα, increased the level of IκBα, and reduced phospho-p65–p65 ratio. Conclusion: These results indicated that coptisine attenuated sepsis lung injury by suppressing lung epithelial cell inflammation and apoptosis through NF-κB pathway. Therefore, coptisine may have potential to treat sepsis-induced ALI (AU)


Assuntos
Humanos , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Pneumonia/tratamento farmacológico , Apoptose , Caspase 3 , Células Epiteliais/metabolismo , /metabolismo , Lipopolissacarídeos/efeitos adversos , NF-kappa B/metabolismo , Sepse/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2
14.
Allergol. immunopatol ; 51(4): 31-39, 2023. graf
Artigo em Inglês | IBECS | ID: ibc-222632

RESUMO

Background: Asthma is a common illness with chronic airway inflammation. C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) plays a vital role ininflammatory response, but its effect on asthma is imprecise. Herein, we analyzed the functions of CTRP3 in asthma. Methods: The BALB/c mice were randomized into four groups: control, ovalbumin (OVA), OVA+vector, and OVA+CTRP3. The asthmatic mice model was established by OVA stimulation. Overexpression of CTRP3 was implemented by the transfection of corresponding adeno-associated virus 6 (AAV6). The contents of CTRP3, E-cadherin, N-cadherin, smooth muscle alpha-actin (α-SMA), phosphorylated (p)-p65/p65, transforming growth factor-beta 1 (TGFβ1), and p-Smad3/Smad3 were determined by Western blot analysis. The quantity of total cells, eosinophils, neutrophils, and lymphocytes in bronchoalveolar lavage fluid (BALF) was assessed by using a hemocytometer. The contents of tumor necrosis factor-α and interleukin-1β in BALF were examined by enzyme-linked immunesorbent serologic assay. The lung function indicators and airway resistance (AWR) were measured. The bronchial and alveolar structures were evaluated by hematoxylin and eosin staining and sirius red staining. Results: The CTRP3 was downregulated in mice of OVA groups; however, AAV6-CTRP3 treatment markedly upregulated the expression of CTRP3. Upregulation of CTRP3 diminished asthmatic airway inflammation by decreasing the number of inflammatory cells and the contents of proinflammatory factors. CTRP3 markedly lessened AWR and improved lung function in OVA-stimulated mice. Histological analysis found that CTRP3 alleviated OVA-induced airway remodeling in mice. Moreover, CTRP3 modulated NF-κB and TGFβ1/Smad3 pathways in OVA-stimulated mice. Conclusion: CTRP3 alleviated airway inflammation and remodeling in OVA-induced asthmatic mice via regulating NF-κB and TGFβ1/Smad3 pathways (AU)


Assuntos
Animais , Feminino , Camundongos , Asma/imunologia , Asma/metabolismo , Inflamação/metabolismo , Remodelação das Vias Aéreas , NF-kappa B/imunologia , Fator de Crescimento Transformador beta1/imunologia , Proteína Smad3/imunologia , Modelos Animais de Doenças , Distribuição Aleatória , Doença Crônica
15.
Allergol. immunopatol ; 51(4): 71-77, 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-222636

RESUMO

Purpose: Echinacoside (ECH) has been reported to have anti-inflammatory and anti-immune effects, and may be effective for treating asthma. This study aimed to investigate the effect of ECH on asthma. Methods: A mouse model of asthma was established by ovalbumin (OVA) induction, and the effect of ECH on airway remodeling in mice was evaluated using the Periodic Acid-Schiff stain and enzyme-linked immunosorbent serologic assay (ELISA). Additionally, the effect of ECH on collagen deposition in asthmatic mice was assessed using Western blotting (WB) analysis, and response to airway inflammation was evaluated by ELISA. The signaling pathway regulated by ECH was also investigated using WB. Results: Our findings demonstrated that ECH restored OVA-induced increase in mucin, -immunoglobulin E, and respiratory resistance. ECH also alleviated OVA-induced collagen -deposition, including collagen I, collagen III, alpha smooth muscle actin, and epithelial (E)-cadherin. Moreover, ECH restored the elevated levels of interleukin (IL)-13, IL-17, and the increased -number of macrophages, eosinophils, lymphocytes, and neutrophills induced by OVA. ECH mainly exerted its regulatory effects by modulating the silent mating type information regulation 2 homolog 1 (Sirtuin 1/SIRT1)–nuclear factor kappa B (NF-κB) signaling pathway in the mouse models of asthma. Conclusion: This study highlights the therapeutic potential of ECH for attenuating airway remodeling and inflammation in an OVA-induced neonatal mouse model of asthma through the modulation of SIRT1/NF-κB pathway (AU)


Assuntos
Animais , Masculino , Camundongos , Remodelação das Vias Aéreas , Asma/imunologia , Asma/metabolismo , Glicosídeos/metabolismo , Sirtuínas/metabolismo , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Animais Recém-Nascidos , Transdução de Sinais , Ovalbumina
16.
Allergol. immunopatol ; 51(4): 175-181, 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-222648

RESUMO

Background: Asthma is a common lung disease with increasing incidence and prevalence globally, thereby imposing a substantial global health and economic burden. Recently, studies have shown that Mitsugumin 53 (MG53) exhibits multiple biological functions and plays a protective role in a variety of diseases. However, the role of MG53 in asthma remained unknown; hence, in the present study we aimed to explore the functioning of MG53 in asthma. Methods: Using ovalbumin and aluminum hydroxide adjuvant, an OVA-induced asthmatic animal model was constructed and administered with MG53. After establishing mice model, inflammatory cell counts and the levels of type 2 inflammatory cytokines were examined and histological staining of lung tissues were performed. The levels of key factors associated with the nuclear factor-κB (NF-κB) pathway were detected. Results: Asthmatic mice displayed a remarkable accumulation of white blood cells, neutrophils, macrophages, lymphocytes, and eosinophils in bronchoalveolar lavage fluid, compared to control mice. MG53 treatment lowered the number of these inflammatory cells in asthmatic mice. The level of type 2 cytokines in asthmatic mice was higher than that in control mice, and was lessened by MG53 intervention. In asthmatic mice, airway resistance was elevated, which was reduced by MG53 treatment. In addition, inflammatory cell infiltration and mucus secretion were aggravated in the lung tissues of asthmatic mice, and both were attenuated by MG53 intervention. The levels of phosphorylated p65 and phosphorylated inhibitor of nuclear factor kappa-B kinase were elevated in asthmatic mice, but were downregulated by MG53 supplement. Conclusion: The aggravated airway inflammation was observed in asthmatic mice; however, MG53 treatment suppressed airway inflammation by targeting the NF-κB pathway (AU)


Assuntos
Animais , Feminino , Camundongos , Proteínas de Membrana/genética , Asma/genética , Inflamação , NF-kappa B/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transdução de Sinais
17.
Allergol. immunopatol ; 50(6): 84-92, 01 nov. 2022. graf, ilus
Artigo em Inglês | IBECS | ID: ibc-211509

RESUMO

Background Inflammatory bowel disease (IBD) is a common chronic intestinal disease. Protopine isolated from different plants has been investigated to understand its special functions on varied diseases. However, the regulatory effects of protopine on the progression of IBD remain unclear. Our study is aimed to explore the effects of protopine on the progression of IBD and its underlying regulatory mechanism of action. Methods The cell viability was assessed through MTT colorimetric assay. The protein expressions of genes were examined by Western blot analysis. The cell apoptosis and reactive oxygen species level were measured using flow cytometry. The levels of inflammation and oxidative stress-related proteins were tested through enzyme-linked-immunosorbent serologic assay. The intracellular Ca2+ concentration and mitochondrial membrane potential were measured through immunofluorescence assay. Results First, different concentrations of lipopolysaccharide (LPS) were treated with NCM460 cells to establish IBD cell model, and 5-μg/mL LPS was chosen for followed experiments. In this study, we discovered that protopine relieved the LPS-induced inhibited intestinal epithelial cell viability and enhanced cell apoptosis. Moreover, protopine attenuated LPS-stimulated inflammation activation and oxidative stress. Further experiments illustrated that the increased intracellular Ca2+ concentration and decreased mitochondrial membrane potential stimulated by LPS were reversed by protopine treatment. Finally, through Western blot analysis, it was demonstrated that protopine retarded the activated NLR family pyrin domain containing 3 (NLRP3) and nuclear factor kappa B (NF-κB) signaling pathways mediated by LPS. Conclusion Protopine alleviated LPS-triggered intestinal epithelial cell injury by inhibiting NLRP3 and NF-κB signaling pathways to reduce inflammation and oxidative stress. This discovery may provide a useful drug for treating IBD (AU)


Assuntos
Humanos , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
18.
Allergol. immunopatol ; 50(6): 93-99, 01 nov. 2022. graf, ilus
Artigo em Inglês | IBECS | ID: ibc-211510

RESUMO

Objective To investigate the effects of morroniside on inflammatory and oxidative stress in lipopolysaccharide (LPS)-induced inflammatory bowel disease (IBD) cell model. Methods NCM460 cells were treated with 2-, 5-, or 10-μg/mL LPS for 24 h to develop an IBD cell model. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) colorimetric assay was performed to uncover the role of morroniside on the viability of LPS-treated NCM460 cells. Flow cytometry and immunoblot assays were performed to confirm the effects of morroniside on the apoptosis of LPS-treated NCM460 cells. Quantitative polymerase chain reaction and enzyme-linked-immunosorbent serologic assays were performed to confirm the effects of morroniside on inflammatory and oxidative stress by measuring the levels of tumor necrosis factor-α, interleukin-1β, IL-6, superoxide dismutase, malondialdehyde, total antioxidant capacity, and myeloperoxidase. In addition, immunoblot and immunofluorescence assays were performed to detect the effects of morroniside on NLRP3 and NF-κB pathways. Results Monosine attenuated LPS-induced injury of NCM460 cells. Monosine reduced LPS-induced inflammation in NCM460 cells. In addition, morroniside reduced LPS-induced oxidative stress in NCM460 cells. Mechanically, morroniside suppressed NLRP3 and NF-κB pathways, and alleviated LPS-induced inflammatory and oxidative stress in IBD. Conclusion Morroniside could serve as a promising drug for treating IBD (AU)


Assuntos
Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Estresse Oxidativo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo
19.
Allergol. immunopatol ; 50(6): 115-121, 01 nov. 2022. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-211512

RESUMO

Background Psoriasis is considered as an inflammatory skin disease accompanied by dyslipidemia comorbidity. B-cell leukemia-3 (Bcl-3) belongs to IκB (inhibitor of nuclear factor kappa B [NF-κB]) family, and regulates inflammatory response through associating with NF-κB. The role of Bcl-3 in psoriasis was investigated in this study. Methods Apolipoprotein E (ApoE)-deficient mice were treated with imiquimod to induce psoriasis and dyslipidemia. Mice were injected intradermally in the back with lentiviral particles encoding Bcl-3 small hairpin RNA (shRNA). Hematoxylin and eosin were used to detect pathological characteristics. The blood lipid levels were determined by automatic biochemical analyzer, and inflammation was assessed by enzyme-linked-immunosorbent serologic assay and real-time quantitative reverse transcription polymerase chain reaction. Results Bcl-3 was elevated in imiquimod-induced ApoE-deficient mice. Injection with lentiviral particles encoding Bcl-3 shRNA reduced Psoriasis area and severity index (PASI) score in ApoE-deficient psoriatic mice. Knockdown of Bcl-3 also ameliorated imiquimod-induced psoriasiform skin lesions in ApoE-deficient mice. Moreover, loss of Bcl-3 enhanced expression of loricrin, an epidermal barrier protein, reduced expression of proliferating cell nuclear antigen (PCNA) and lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1) in imiquimod-induced ApoE-deficient mice. The enhanced levels of blood lipid in ApoE-deficient mice were attenuated by silencing of Bcl-3 with increase of high-density lipoprotein, and reduction of total cholesterol, triglycerides, and low-density lipoprotein cholesterol. Knockdown of Bcl-3 attenuated imiquimod-induced decrease of transforming growth factor beta (TGF-β), and increase of Interleukin (IL)-17A, IL-23, IL-6, and tumor necrosis factor-α (TNF-α) in ApoE-deficient mice. Protein expression of phospho-Akt (p-Akt) and p-GSK3β in ApoE-deficient psoriatic mice was decreased by silencing of Bcl-3 (AU)


Assuntos
Animais , Masculino , Camundongos , Dislipidemias , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Apolipoproteínas E/efeitos adversos , Apolipoproteínas E/metabolismo , Colesterol/metabolismo , Comorbidade , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Proteína Oncogênica v-akt/metabolismo , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
20.
Allergol. immunopatol ; 50(5): 23-29, sept. 2022. graf
Artigo em Inglês | IBECS | ID: ibc-208623

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is a familiar airway disease characterized by chronic immune response in the lungs. More and more evidences have assured that cigarette smoking is the primary reason for the progression of COPD, but its related regulatory mechanism requires further clarification. The α-B-crystallin (CRYAB) has been identified to exhibit vital functions in different diseases, and is down-regulated in the alveoli of mice mediated by cigarette smoke extract (CSE).Methods: The messenger RNA expression of CRYAB was assessed by reverse transcription--quantitative polymerase chain reaction. The proteins’ expressions were tested using Western blot method. The cytotoxicity was measured by lactate dehydrogenase assay. The levels of malondialdehyde, superoxide dismutase, catalase, myeloperoxidase, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were assessed through enzyme-linked-immunosorbent serologic assay (ELISA).Results: In this study, it was discovered that the expression of CRYAB was markedly decreased with the increased time of cigarette smoking. Moreover, CRYAB overexpression increased cell viability and decreased cell apoptosis induced by cigarette smoke. In addition, the strengthened oxidative stress and inflammation mediated by CSE treatment was relieved after overexpression of CRYAB. Eventually, results OF Western blot method confirmed that CRYAB retarded the activation of phosphatidylinositol 3-kinase–Ak strain transforming (PI3K–Akt) and nuclear factor kappa B (NF-κB) signaling pathways.Conclusion: Our results manifested that CRYAB reduced cigarette smoke-induced inflammation, apoptosis, and oxidative stress in normal and diseased bronchial epithelial (NHBE) and human bronchial epithelial (BEAS-2B) cells by suppressing PI3K/Akt and NF-κB signaling pathways, which highlighted the functioning of CRYAB in preventing or treating COPD (AU)


Assuntos
Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica , Fumar Cigarros/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais , alfa-Cristalinas , alfa-Cristalinas/metabolismo , Apoptose , Estresse Oxidativo , Inflamação , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...