Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Neurología (Barc., Ed. impr.) ; 39(4): 353-360, May. 2024. tab, graf
Artigo em Inglês | IBECS | ID: ibc-VR-494

RESUMO

Background: Glioma presents high incidence and poor prognosis, and therefore more effective treatments are needed. Studies have confirmed that long non-coding RNAs (lncRNAs) basically regulate various human diseases including glioma. It has been theorized that HAS2-AS1 serves as an lncRNA to exert an oncogenic role in varying cancers. This study aimed to assess the value of lncRNA HAS2-AS1 as a diagnostic and prognostic marker for glioma. Methods: The miRNA expression data and clinical data of glioma were downloaded from the TCGA database for differential analysis and survival analysis. In addition, pathological specimens and specimens of adjacent normal tissue from 80 patients with glioma were used to observe the expression of HAS2-AS1. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic ability and prognostic value of HAS2-AS1 in glioma. Meanwhile, a Kaplan–Meier survival curve was plotted to evaluate the survival of glioma patients with different HAS2-AS1 expression levels. Results: HAS2-AS1 was significantly upregulated in glioma tissues compared with normal tissue. The survival curves showed that overexpression of HAS2-AS1 was associated with poor overall survival (OS) and progression-free survival (PFS). Several clinicopathological factors of glioma patients, including tumor size and WHO grade, were significantly correlated with HAS2-AS1 expression in tissues. The ROC curve showed an area under the curve (AUC) value of 0.863, indicating that HAS2-AS1 had good diagnostic value. The ROC curve for the predicted OS showed an AUC of 0.906, while the ROC curve for predicted PFS showed an AUC of 0.88. Both suggested that overexpression of HAS2-AS1 was associated with poor prognosis.Conclusions: Normal tissues could be clearly distinguished from glioma tissues based on HAS2-AS1 expression. Moreover, overexpression of HAS2-AS1 indicated poor prognosis in glioma patients.(AU)


Introducción: Los gliomas presentan una alta incidencia y un mal pronóstico, por lo que es necesario un tratamiento más efectivo. Algunos estudios han confirmado que los ARN no codificantes de cadena larga (ARNncl) regulan diferentes enfermedades, entre las que se incluyen los gliomas. Se ha postulado que HAS2-AS1 actúa como un ARNncl, con un efecto oncogénico en diferentes tipos de cáncer. Este estudio tiene como objetivo analizar el valor del ARNncl HAS2-AS1 como marcador diagnóstico y pronóstico de glioma. Métodos: Descargamos los datos clínicos y de expresión de micro-ARN de la base de datos del Atlas del Genoma del Cáncer (TCGA) para realizar el análisis diferencial y de supervivencia. También analizamos la expresión de HAS2-AS1 en muestras patológicas y muestras de tejido adyacente normal de 80 pacientes con glioma. Para analizar la capacidad diagnóstica y el valor pronóstico de HAS2-AS1 en el glioma, recurrimos a la curva ROC. También utilizamos curvas de Kaplan-Meier para evaluar la supervivencia de los pacientes con glioma con diferentes niveles de expresión de HAS2-AS1. Resultados: La expresión de HAS2-AS1 era significativamente mayor en las muestras patológicas que en el tejido normal. Las curvas de supervivencia demostraron que la sobreexpresión de HAS2-AS1 estaba relacionada con una menor supervivencia general y supervivencia libre de progresión. Algunos factores clínico-patológicos de los pacientes con glioma, como el tamaño del tumor y su grado, según la clasificación de la OMS, mostraron una correlación significativa con la expresión de HAS2-AS1 en los tejidos afectados. La curva ROC mostró un área bajo la curva de 0,863, lo que indica que la expresión de HAS2-AS1 posee un importante valor diagnóstico. El área bajo la curva de la supervivencia general estimada fue de 0,906; para la supervivencia libre de progresión estimada, de 0,88. Ambos valores muestran que la sobreexpresión de HAS2-AS1 se asocia con un mal pronóstico...(AU)


Assuntos
Humanos , Masculino , Feminino , Prognóstico , Biomarcadores , Glioma/diagnóstico , Glioma/genética , RNA Longo não Codificante/genética , Hialuronan Sintases
2.
Arch. esp. urol. (Ed. impr.) ; 77(2): 173-182, mar. 2024. ilus, graf, tab
Artigo em Inglês | IBECS | ID: ibc-231939

RESUMO

Background: In recent years, significant attention has been directed towards long non-coding RNA NUT family member 2A antisense RNA 1 (NUTM2A-AS1) for its oncogenic role in tumours. This study aimed to investigate the functional and molecular mechanisms underlying NUTM2A-AS1 in prostate cancer (PCa). Methods: NUTM2A-AS1, miR-376a-3p, and protein arginine methyltransferase 5 (PRMT5) levels were assessed in PCa samples and matched non-cancerous prostate samples. The DU145 cell line was conditioned to undergo transfection with relevant plasmids, and a cell counting kit-8 assay was performed to evaluate cell proliferation. A Transwell assay was conducted to analyse cell migration or invasion. Cell apoptosis was assessed using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and flow cytometry. A tumour sphere formation assay was conducted to assess the ability of PCa cells to form tumour spheres. Results: We found elevated expression of NUTM2A-AS1 and PRMT5 and decreased expression of miR-376a-3p in PCa samples. Inhibition of NUTM2A-AS1 or overexpression of miR-376a-3p led to reduced cell proliferation and diminished cancer stem cell-like traits in vitro. NUTM2A-AS1 regulated miR-376a-3p through competitive absorption, thereby modulating PRMT5. Up-regulation of PRMT5 nullified the therapeutic effects of inhibiting NUTM2A-AS1 or overexpressing miR-376a-3p in DU145 cells. Conclusions: NUTM2A-AS1 promotes cancer stem cell-like traits in PCa cells by targeting PRMT5 through miR-376a-3p. Therefore, these NUTM2A-AS1-based novel insights into tumour therapy hold promise for patients with PCa. (AU)


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , MicroRNAs , Proteína-Arginina N-Metiltransferases
3.
Clin. transl. oncol. (Print) ; 26(3): 698-708, mar. 2024.
Artigo em Inglês | IBECS | ID: ibc-230799

RESUMO

Purpose There is compelling evidence that long-stranded non-coding RNAs (lncRNAs) play an important role in the progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of lncRNA XXYLT1 antisense-2 (XXYLT1-AS2) in HCC progression. Methods Real-time PCR was used to assess the levels of XXYLT1-AS2 in plasma from HCC and normal patients. Cell proliferation, apoptosis, migration, and invasion were monitored, and tumor xenografts were established to investigate the biological functions of XXYLT1-AS2 by gain-of-function and loss-of-function studies in vitro and in vivo, the expression of autophagy biomarkers and transcriptional factor EB (TFEB) was examined by immunoprecipitation, ubiquitination assays, and western blotting. Autophagy inhibitor, 3-methyladenine (3MA), and proteasome inhibitor, MG132, were used to verify the role of autophagy in HCC progression and the effect of XXYLT1-AS2 on TFEB ubiquitination, respectively. Results In this study, we identified that lncRNA XXYLT1-AS2 is highly expressed in HCC plasma and promotes tumor growth in vivo. In functional studies, it was found that silent expression of XXYLT1-AS2 inhibited HCC proliferation, migration, invasion, and activated autophagy of HCC cells, which were attenuated by autophagy inhibitor, 3MA. Mechanistically, XXYLT1-AS2 decreased the protein level of TFEB through promoting its degradation by ubiquitin proteasome pathway. Conclusion XXYLT1-AS2 plays an oncogenic role in HCC progression through inhibition of autophagy via promoting the degradation of TFEB, and thus could be a novel target for HCC treatment (AU)


Assuntos
Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular
4.
Clin. transl. oncol. (Print) ; 26(2): 375-388, feb. 2024.
Artigo em Inglês | IBECS | ID: ibc-230183

RESUMO

Purpose Long noncoding RNAs (lncRNAs) with abnormal expression are frequently seen in hepatocellular cancer patients (HCC). Previous studies have reported the correlation between lncRNA and prognosis processes of HCC patients. In this research, a graphical nomogram with lncRNAs signatures, T, M phases was developed using the rms R package to estimate the survival rates of HCC patients in year 1, 3, and 5. Methods To find the prognostic lncRNA and create the lncRNA signatures, univariate Cox survival analysis and multivariate Cox regression analysis were chosen. The rms R software package was used to build a graphical nomogram based on lncRNAs signatures to predict the survival rates in of HCC patients in 1, 3, and 5 years. Using “edgeR”, “DEseq” R packages to find the differentially expressed genes (DEGs). Results Firstly, a total of 5581 DEGs including 1526 lncRNAs and 3109 mRNAs were identified through bioinformatic analysis, of which 4 lncRNAs (LINC00578, RP11-298O21.2, RP11-383H13.1, RP11-440G9.1) were identified to be strongly related to the prognosis of liver cancer (P < 0.05). Moreover, we constructed a 4-lncRNAs signature by using the calculated regression coefficient. 4-lncRNAs signature is identified to significantly correlated with clinical and pathological characteristics (such as T stage, and death status of HCC patients). Conclusions A prognostic nomogram on the base of 4-lncRNAs markers was built, which is capable to accurately predict the 1-year, 3-year, and 5-year survival of HCC patients after the construction of the 4-lncRNAs signature linked with prognosis of HCC (AU)


Assuntos
Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estimativa de Kaplan-Meier , Nomogramas , Prognóstico
5.
Clin. transl. oncol. (Print) ; 26(2): 414-423, feb. 2024.
Artigo em Inglês | IBECS | ID: ibc-230186

RESUMO

Background Cholangiocarcinoma (CCA) is a heterogeneous malignancy. The aim of the study was to investigate the regulatory role of long noncoding RNA LINC00844 in CCA progression, explore the underlying molecular mechanisms, and to analyze the potential prognostic value of LINC00844 in CCA patients. Methods Expression of LINC00844 in CCA cell lines and tissues was examined by reverse transcription-quantitative PCR. Cell counting kit-8 assay was used to assess CCA cell proliferation, and the Transwell assay was used to evaluate tumor cell migration and invasion. miRNAs sponged by LINC00844 were predicted and confirmed using a luciferase reporter assay. Kaplan–Meier survival analysis was performed to evaluate the survival prognosis of CCA patients. Results The expression levels of LINC00844 were decreased in CCA tissues and cells. Overexpression of LINC00844 inhibited cell proliferation, migration and invasion in CCA cells. miR-19a-5p is directly targeted by LINC00844, mediating the inhibitory effects of LINC00844 on the proliferation, migration and invasion of CCA cells. LINC00844 and miR-19a-5p expression were associated with differentiation and tumor node metastasis stage in CCA patients. CCA patients with low LINC00844 expression or overexpression of miR-19a-5p had worse overall survival. Conclusion The expression levels of LINC00844 were decreased in both CCA tissues and cells, and high LINC00844 inhibited CCA cell proliferation, migration and invasion through sponging miR-19a-5p. Low LINC00844 and high miR-19a-5p expression were associated with worse overall survival in CCA patients. All the data suggested that the LINC00844/miR-19a-5p axis may provide novel therapeutic targets and prognostic biomarkers for CCA patients (AU)


Assuntos
Humanos , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética
6.
Int. microbiol ; 27(1): 213-225, Feb. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-230255

RESUMO

Long non-coding RNAs (lncRNAs) are identified as important regulatory molecules related to diverse biological processes. In recent years, benefiting from the rapid development of high-throughput sequencing technology, RNA-seq, and analysis methods, more lncRNAs have been identified and discovered in various plant and algal species. However, so far, only limited studies related to algal lncRNAs are available. Volvox carteri f. nagariensis is the best multicellular model organism to study in developmental and evolutionary biology; therefore, studying and increasing information about this species is important. This study identified lncRNAs in the multicellular green algae Volvox carteri and 1457 lncRNAs were reported, using RNA-seq data and with the help of bioinformatics tools and software. This study investigated the effect of low-dose UV-B radiation on changes in the expression profile of lncRNAs in gonidial and somatic cells. The differential expression of lncRNAs was analyzed between the treatment (UV-B) and the control (WL) groups in gonidial and somatic cells. A total of 37 and 26 lncRNAs with significant differential expression in gonidial and somatic cells, respectively, were reported. Co-expression analysis between the lncRNAs and their neighbor protein-coding genes (in the interval of ± 10 Kb) was accomplished. In gonidial cells, 184 genes with a positive correlation and 13 genes with a negative correlation (greater than 0.95), and in somatic cells, 174 genes with a positive correlation, and 18 genes with a negative correlation were detected. Functional analysis of neighboring coding genes was also performed based on gene ontology. The results of the current work may help gain deeper insight into the regulation of gene expression in the studied model organism, Volvox carteri.(AU)


Assuntos
Humanos , Volvox/metabolismo , Sequência de Bases , Clorófitas/microbiologia , Evolução Biológica , RNA Longo não Codificante/genética , Microbiologia , Técnicas Microbiológicas , Clorófitas/genética , Clorófitas/metabolismo , RNA Longo não Codificante/metabolismo
7.
Clin. transl. oncol. (Print) ; 25(12): 3420-3430, dec. 2023.
Artigo em Inglês | IBECS | ID: ibc-227287

RESUMO

Background The lncRNA HOTAIR is frequently overexpressed in breast cancer tissues and plays an important role in the development of breast cancer. Here, we investigated the effect of the lncRNA HOTAIR on the biological behaviour of breast cancer cells and its molecular mechanism. Methods We investigated the level of HOTAIR in breast cancer and its clinical pathological characteristics by bioinformatic methods. Then, we evaluated the effects of HOTAIR and miRNA-1 expression on the biological behaviour of breast cancer cells by qPCR, Cell Counting Kit-8 (CCK-8) assay, clonogenic assays, Transwell assay and flow cytometry for cell proliferation, invasion migration and apoptosis, and cell cycle analysis. Finally, the target genes of the lncRNA HOTAIR/miR-1/GOLPH3 regulatory axis were validated by luciferase reports. Results The expression of HOTAIR in breast cancer tissues was significantly higher than that in normal breast tissues (P < 0.05). Silencing of HOTAIR suppressed cell proliferation, invasion and migration, promoted apoptosis and induced G1 phase block in breast cancer (P < 0.0001). We also verified that miR-1 is a target of HOTAIR and that GOLPH3 is a target of miR-1 by luciferase reporter assays (P < 0.001). Conclusions The expression of HOTAIR was significantly elevated in breast cancer tissues. Reducing the expression of HOTAIR inhibited the proliferation, invasion and migration of breast cancer cells and promoted apoptosis, and the mechanism was mainly the effect of the lncRNA HOTAIR/miR-1/GOLPH3 regulatory axis on the biological behaviour of breast cancer cells (AU)


Assuntos
Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Luciferases/metabolismo , Proteínas de Membrana/genética
8.
Clin. transl. oncol. (Print) ; 25(12): 3447-3459, dec. 2023.
Artigo em Inglês | IBECS | ID: ibc-227290

RESUMO

Purpose HOX transcribed antisense RNA (HOTAIR) is a long noncoding RNA (LncRNA) that promotes tumor progression. Exosomes are critically involved in cancer progression. The presence of HOTAIR in the circulating exosomes and the roles of exosomal HOTAIR in gastric cancer (GC) remains unknown. This study aimed to investigate the role of HOTAIR in exosomes in promoting the growth and metastasis of GC. Methods Serum exosomes from GC patients were captured by CD63 immunoliposome magnetic spheres (CD63-IMS), and the biological characteristics of the exosomes were identified. The expression levels of HOTAIR in GC cells, tissues, serum and serum exosomes were detected by fluorescence quantitative PCR (qRT-PCR), and the clinicopathological correlation was statistically analyzed. The growth and metastasis abilities of GC cells with HOTAIR knockdown in vitro were evaluated by cell experiment. The effects of HOTAIR highly-expressed NCI-N87 cell-derived exosomes were used to treat HOTAIR lowly-expressed MKN45 cells on GC growth and metastasis were also evaluated. Results The exosomes isolated by CD63-IMS had a particle size of 89.78 ± 4.8 nm and were oval membranous particles. The expression of HOTAIR in tumor tissues and serum of GC patients was increased (P < 0.05), and the expression of HOTAIR in serum exosomes was significantly increased (P < 0.01). The in NCI-N87 and MKN45 cell experiment demonstrated that HOTAIR knockdown by RNA interference suppressed cell growth and metastasis in NCI-N87 cells. Coculture of exosomes secreted by NCI-N87 cells with MKN45 cells significantly increased the expression of HOTAIR, and enhanced cell growth and metastasis. Conclusion LncRNA HOTAIR can be used as a potential biomarker which provides a new way for the diagnosis and treatment of GC (AU)


Assuntos
Humanos , Exossomos/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Antissenso
10.
Clin. transl. oncol. (Print) ; 25(11): 3217-3229, 11 nov. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-226845

RESUMO

Background Radiotherapy is widely employed in colorectal cancer (CRC) treatment but is often compromised by developed radioresistance. This study explored the mechanism of long non-coding RNA ovarian tumor domain containing 6B-antisense RNA1 (lncRNA OTUD6B-AS1) in CRC radioresistance through tripartite motif 16 (TRIM16). Methods CRC and non-cancerous tissues were collected and radioresistant CRC cells were established, with real-time quantitative polymerase chain reaction to determine gene expression in tissues and cells. Radioresistance was evaluated by cell counting kit-8 assay and immunofluorescence (γ-H2AX) and ferroptosis was tested by Western blot assay (ACSL4/GPX4) and assay kits (Fe2+/ROS/MDA/GSH). The association between ferroptosis and lncRNA OTUD6B-AS1-inhibited radioresistance was testified using ferroptosis inhibitor. The subcellular localization of lncRNA OTUD6B-AS1 was tested by the nuclear/cytoplasmic fractionation assay, with RNA immunoprecipitation assay to validate gene interactions. Rescue experiments were conducted to analyze the role of TRIM16 in CRC radioresistance. Results LncRNA OTUD6B-AS1 and TRIM16 were poorly expressed (P < 0.01) in CRC tissues and cells and further decreased (P < 0.01) in radioresistant CRC cells. OTUD6B-AS1 overexpression decreased cell survival (P < 0.01), increased γ-H2AX levels (P < 0.01), and elevated ferroptosis and oxidative stress (P < 0.01) after X-ray radiation. Ferroptosis inhibitor attenuated radioresistance (P < 0.01) caused by lncRNA OTUD6B-AS1 overexpression. LncRNA OTUD6B-AS1 stabilized TRIM16 mRNA via binding to HuR. TRIM16 knockdown reduced ferroptosis and increased radioresistance (P < 0.05). Conclusion OTUD6B-AS1 overexpression stabilized TRIM16 via binding to HuR and increased GPX4-mediated ferroptosis, thus attenuating CRC radioresistance. Our study provided a new rationale for the treatment of CRC (AU)


Assuntos
Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
11.
Clin. transl. oncol. (Print) ; 25(10): 2772-2782, oct. 2023. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-225058

RESUMO

The mechanism of deleted in lymphocytic leukemia 2 (DLEU2)-long non-coding RNA in tumors has become a major point of interest in recent research related to the occurrence and development of a variety of tumors. Recent studies have shown that the long non-coding RNA DLEU2 (lncRNA-DLEU2) can cause abnormal gene or protein expression by acting on downstream targets in cancers. At present, most lncRNA-DLEU2 play the role of oncogenes in different tumors, which are mostly associated with tumor characteristics, such as proliferation, migration, invasion, and apoptosis. The data thus far show that because lncRNA-DLEU2 plays an important role in most tumors, targeting abnormal lncRNA-DLEU2 may be an effective treatment strategy for early diagnosis and improving the prognosis of patients. In this review, we integrated lncRNA-DLEU2 expression in tumors, its biological functions, molecular mechanisms, and the utility of DLEU2 as an effective diagnostic and prognostic marker of tumors. This study aimed to provide a potential direction for the diagnosis, prognosis, and treatment of tumors using lncRNA-DLEU2 as a biomarker and therapeutic target (AU)


Assuntos
Humanos , Leucemia Linfoide/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética
12.
Clin. transl. oncol. (Print) ; 25(10): 2812-2831, oct. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-225062

RESUMO

Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/β-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3β, TGF-β1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells (AU)


Assuntos
Humanos , Feminino , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais/genética
13.
Clin. transl. oncol. (Print) ; 25(10): 2841-2851, oct. 2023.
Artigo em Inglês | IBECS | ID: ibc-225064

RESUMO

Multiple studies have shown that long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of diverse cancers. Cancer susceptibility candidate 19 (CASC19), encoded by chromosome 8q24.21, is a newly discovered lncRNA that contains 324 nucleotides. CASC19 has been found to be significantly overexpressed in different human cancers, such as non-small cell lung carcinoma, gastric cancer, colorectal cancer, pancreatic cancer, clear cell renal cell carcinoma, glioma, cervical cancer, and nasopharyngeal carcinoma. Moreover, dysregulation of CASC19 was closely associated with clinicopathological parameters and cancer progression. CASC19 regulates a variety of cell phenotypes, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial–mesenchymal transition, autophagy, and therapeutic resistance. In this study, we review recent studies on the characteristics and biological function of CASC19, as well as its role in human cancers. These findings suggest that CASC19 may be both a reliable biomarker and a potential therapeutic target in cancers (AU)


Assuntos
Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Oncogenes , Biomarcadores Tumorais
14.
J. physiol. biochem ; 79(3): 669-682, ago. 2023.
Artigo em Inglês | IBECS | ID: ibc-223756

RESUMO

Current evidence finds that circulating exosomal lncRNA focally amplified lncRNA on chromosome 1 (FAL1) promotes the progression of hepatocellular carcinoma (HCC). However, the underlying mechanism of serum extracellular vesicular FAL1 in HCC progression remains elusive. Here, we extracted extracellular vesicles (EVs) from serum samples of HCC patients and healthy volunteers, and found that FAL1 was highly enriched in the serum EVs of HCC patients. Then, macrophages were treated with EVs alone or together with small interfering RNA against FAL1 (si-FAL1). The data indicated that FAL1-enriched EVs induced macrophage M2 polarization, while silencing FAL1 in macrophages antagonized the role of EVs. Moreover, HepG2 cells were co-cultured with the conditioned macrophages, and co-culturing with EVs-incubated macrophages promoted HepG2 cell proliferation, invasion, cell cycle progression, and colony formation, and inhibited cell apoptosis and sorafenib sensitivity, while interfering FAL1 in macrophages reversed these effects. Consistently, ectopic expression of FAL1 in macrophages also induced macrophage M2 polarization, and co-culture of FAL1-overexpressing macrophages with HepG2 cells facilitated the malignant progression of HepG2 cells. Furthermore, co-culturing HepG2 cells with EVs-incubated macrophages activated the Wnt/β-catenin signaling pathway, and treatment with a Wnt/β-catenin pathway inhibitor IWP-2 partially neutralized the effect of EVs-incubated macrophages on HepG2 cell malignant behaviors. Additionally, FAL1 enriched EVs-incubated macrophages markedly increased mouse xenograft tumor growth. In conclusion, extracellular vesicular lncRNA FAL1 promotes macrophage M2 polarization and further activates the Wnt/β-catenin signaling pathway in HCC cells, thus promoting HCC progression. (AU)


Assuntos
Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Macrófagos/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
15.
Clin. transl. oncol. (Print) ; 25(7): 1869-1892, jul. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-222364

RESUMO

Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective management of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future (AU)


Assuntos
Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética
16.
Clin. transl. oncol. (Print) ; 25(7): 2015-2042, jul. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-222375

RESUMO

Long non-coding RNAs (lncRNAs) are non-coding RNAs that contain more than 200 nucleotides but do not code for proteins. In tumorigenesis, lncRNAs can have both oncogenic and tumor-suppressive properties. X inactive-specific transcript (XIST) is a known lncRNA that has been implicated in X chromosome silencing in female cells. Dysregulation of XIST is associated with an increased risk of various cancers. Therefore, XIST can be a beneficial prognostic biomarker for human malignancies. In this review, we attempt to summarize the emerging roles of XIST in human cancers (AU)


Assuntos
Humanos , MicroRNAs/genética , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinogênese , RNA Mensageiro
17.
Clin. transl. oncol. (Print) ; 25(7): 2191-2203, jul. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-222388

RESUMO

Introduction As ceRNA network of long non-coding RNA (lncRNA)–microRNA (miR)–messenger RNAs (mRNA) can be predicted on the basis of bioinformatics tools, we are now one step closer to deeper understanding carcinogenic mechanisms. In this study, we clarified the mechanistic understanding of JHDM1D-AS1-miR-940-ARTN ceRNA network in the development of breast cancer (BC). Materials and Methods The lncRNA–miRNA–mRNA interaction of interest was predicted by in silico analysis and identified by conducting RNA immunoprecipitation, RNA pull-down and luciferase assays. The expression patterns of JHDM1D-AS1, miR-940 and ARTN in BC cells were altered by lentivirus infection and plasmid transfection for functional assays on the biological properties of BC cells. Finally, the tumorigenic and metastatic abilities of BC cells were assessed in vivo. Results JHDM1D-AS1 was highly expressed, while miR-940 was poorly expressed in BC tissues and cells. JHDM1D-AS1 could competitively bind to miR-940, whereby promoting the malignant behaviors of BC cells. Furthermore, ARTN was identified as a target gene of miR-940. Through targeting ARTN, miR-940 exerted a tumor-suppressive role. In vivo experiments further confirmed that JHDM1D-AS1 enhanced the tumorigenesis and metastasis through up-regulation of ARTN. Conclusions Taken together, our study demonstrated the involvement of ceRNA network JHDM1D-AS1-miR-940-ARTN in the progression of BC, which highlighted promising therapeutic targets for BC treatment (AU)


Assuntos
Humanos , Neoplasias da Mama/patologia , Carcinogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética
18.
Clin. transl. oncol. (Print) ; 25(6): 1489-1511, jun. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-221186

RESUMO

Gallbladder cancer (GBC) performs strongly invasive and poor prognosis, and adenocarcinoma is the most common histological type in it. Statistically, the 5-year survival rate of patients with advanced GBC is less than 5%. Such dismal outcome might be caused by chemotherapy resistance and native biology of tumor cells, regardless of emerging therapeutic strategies. Early diagnosis, depending on biomarkers, receptors and secretive proteins, is more important than clinical therapy, guiding the pathologic stage of cancer and the choice of medication. Therefore, it is in urgent need to understand the specific pathogenesis of GBC and strive to find promising novel biomarkers for early screening in GBC. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs, miRs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are confirmed to participate in and regulate the occurrence and development of GBC. Exceptionally, lncRNAs and circRNAs could act as competing endogenous RNAs (ceRNAs) containing binding sites for miRNAs and crosstalk with miRNAs to target regulatory downstream protein-coding messenger RNAs (mRNAs), thus affecting the expression levels of specific proteins to participate in and regulate the development and progression of GBC. It follows that ncRNAs may become promising biomarkers and potential therapeutic targets for GBC. In this review, we mainly summarize the recent research progress of miRNAs and lncRNAs in regulating the development and progression of GBC, chemoresistance, and predicting the prognosis of patients, and highlight the potential applications of the lncRNA/circRNA–miRNA–mRNA cross-regulatory networks in early diagnosis, chemoresistance, and prognostic evaluation, aiming to better understand the pathogenesis of GBC and develop new diagnostic and therapeutic strategies (AU)


Assuntos
Humanos , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/genética , MicroRNA Circulante
19.
Clin. transl. oncol. (Print) ; 25(6): 1512-1521, jun. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-221187

RESUMO

Cancer has become the most common life-threatening disease in the world. Cancers presenting with advanced stages and metastasis show poor prognosis, even with the application of radiotherapy, surgery, chemotherapy and immunotherapy. It is of great importance to explore novel, efficient biomarkers and their internal mechanisms. Recently, it has been reported that long noncoding RNAs (lncRNAs) play important roles in tumor initiation and progression, influencing downstream mRNAs by interacting with miRNAs and functioning as sponges in competing endogenous RNA (ceRNA) networks. Small nucleolar RNA host gene 9 (SNHG9) binds with miRNAs, inducing miRNA downregulation. The downregulated miRNAs enhance downstream target gene expression via ceRNA networks. Dysregulation of SNHG9 is widely observed in tumors and is associated with clinical prognosis features, which makes it a valuable target for cancer biomarkers and therapeutics. Dysregulated SNHG9 in tumor cells also functions in tumor proliferation, colony formation, migration, invasion and inhibition of apoptosis and tumor cell metabolism. This systematic review of SNHG9 in tumors provides new perspectives on cancer diagnosis and treatment (AU)


Assuntos
Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Progressão da Doença
20.
Clin. transl. oncol. (Print) ; 25(6): 1617-1628, jun. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-221194

RESUMO

Purpose Cuproptosis-related long non-coding RNA (lncRNA) diseases are associated with the occurrence and development of tumors. This study aimed to investigate whether cuproptosis-related lncRNA can predict the prognosis of patients with lung adenocarcinoma (LUAD). Methods Cuproptosis-related lncRNA prognosis (CLPS) model was successfully constructed through cox regression and lasso regression analyses. Then, the prognostic value of CLPS model was tested through the survival analysis, the ROC curve and the nomogram. Finally, the correlation of CLPS model with tumor immunity and tumor mutation burden was analyzed, and the potential susceptibility of drugs for LUAD were predicted. Results CLPS model for LUAD (AC090948.1, CRIM1-DT, AC026356.2, AC004832.5, AL161431.1) was successfully constructed, which has an independent prognostic value. Furthermore, the risk score of CLPS model was correlated with tumor immune characteristics and immune escape, which can predict the sensitivity of drugs including Cisplatin, Etoposide, Gemcitabine, and Erlotinib. Conclusions In conclusion, it was found that CLPS model was associated with tumor immunity and tumor mutation load, which also predicted four potentially sensitive drugs for LUAD patients at different risks (AU)


Assuntos
Humanos , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Nomogramas , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...