Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Cuad. bioét ; 31(103): 387-401, sept.-dic. 2020.
Artigo em Espanhol | IBECS | ID: ibc-200029

RESUMO

La transgénesis constituye una parcela de la biotecnología consistente en la introducción de información genética no propia en el genoma de los seres vivos y al margen de los mecanismos del intercambio genético natural. Esto ha permitido abordar importantes aplicaciones en bacterias, animales y plantas con notables beneficios en las vertientes sanitaria, alimentaria y ambiental. Desde su origen, la obtención de los organismos modificados genéticamente (OMGs) suscitó una cierta polémica por la posible influencia negativa de estos organismos o de sus productos derivados para la salud y el medio-ambiente. Con el tiempo, las técnicas de modificación genética han mejorado dando paso a otras de mayor precisión, sencillez y seguridad. En la actualidad se utiliza ampliamente la técnica CRISPR-Cas9, que permite editar, modificar o eliminar secuencias específicas del ADN, con múltiples aplicaciones en los mismos campos de la transgénesis, pero con mayor simplicidad, seguridad y menor costo. En este trabajo, se presentan las principales técnicas, aplicaciones e implicaciones éticas de la utilización de estas técnicas y sus perspectivas en un mundo en continua evolución. Las bacterias para la obtención de productos de interés farmacológico, las nuevas variedades de plantas cultivadas de mayor producción, más resistencia a agentes limitantes de su crecimiento y mejor calidad nutricional y los animales domésticos modificados genéticamente, ofrecen un conjunto de ventajas necesarias para hacer frente a los desafíos globales que afectan a la vida de muchas personas en todo el mundo


Transgenesis is a parcel of biotechnology that allows the introduction of genetic information not pro-per to the genome of living beings, apart from the mechanisms of natural genetic exchange. This made possible to address important applications in bacteria, animals and plants with significant benefits in health, food and environmental aspects. Since its origin, the production of genetically modified organisms (GMOs) caused some controversy due to the possible negative influence of these organisms or their derived products on health and the environment. Over time, genetic modification techniques have renewed, giving way to others of greater precision, simplicity and safety. Currently the CRISPR-Cas9 technique is widely used, which allows to edit, modify or eliminate specific DNA sequences, with multiple applications in the same fields of transgenesis, but adding greater simplicity, security and lower cost. This work presents the main techniques, applications and ethical implications of using these methods and their perspectives in an ever-evolving world. The bacteria for obtaining products of pharmacological interest, new varieties of cultivated plants of higher production, more resistance to growth limiting agents and better nutritional quality and domestic animals modified genetically, offer a set of advantages needed to address the global challenges that affect the lives of many people around the world


Assuntos
Humanos , Técnicas de Transferência de Genes/ética , Edição de Genes/ética , Organismos Geneticamente Modificados , Fatores de Risco , Bioética , Alimentos Geneticamente Modificados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma/ética
2.
Rev. neurol. (Ed. impr.) ; 52(10): 603-617, 16 mayo, 2011. ilus
Artigo em Espanhol | IBECS | ID: ibc-89207

RESUMO

Introduction. Brain gene therapy consists of introducing nucleic acids into nerve tissue whose expression may prove to betherapeutically useful. This genetic material is indirectly introduced by means of non invasive gene therapy into the bloodthereby avoiding its direct injection into the brain and the damage to the blood brain barrier.Aim. The different non invasive vectors and means of gene transfer to the central nervous system will be discussed.Development. There has been a remarkable breakthrough in recent years in non invasive gene transfer strategies into thecentral nervous system. The development of new serotypes of adenoassociated vectors, such as AAV9, and of functionalizednanoparticles, such as pegylated immunoliposomes, polymeric nanoparticles, pegylated nanoparticles, dendrimers, fullerens,as well as specific transporters specific to the low density lipoprotein receptor family, means that it is now possible tointroduce and express gene material in nerve tissue following peripherical administration of the above mentioned vectors.Conclusions. Non invasive gene therapy entails exciting new perspectives for the treatment of the numerous neurologicaldiseases for which there are no effective pharmacological treatments. Studies already performed on animals have provedto be highly promising and it is likely that, in the next few years, they will give rise to non invasive gene therapy procedureswhich will be useful and safe for treating patients (AU)


Introducción. La terapia génica cerebral consiste en la introducción de ácidos nucleicos en el tejido nervioso cuya expresiónpueda resultar de utilidad terapéutica. Mediante la terapia génica no invasiva, este material genético es introducido indirectamentepor vía sanguínea, evitando su inyección directa en el parénquima cerebral y el daño de la barrera hematoencefálica.Objetivo. Discutir los diferentes vectores y vías no invasivas de transferencia génica al sistema nervioso central.Desarrollo. En los últimos años se ha producido un giro espectacular en las estrategias para la transferencia génica no invasivadel sistema nervioso central. El desarrollo de nuevos serotipos de vectores adenoasociados, como AAV9, de una gama denanopartículas funcionalizadas, como inmunoliposomas pegilados, nanopartículas poliméricas, nanopartículas pegiladas,dendrímeros, fulerenos, así como de transportadores específicos de la familia de receptores de lipoproteína de baja densidad,permite introducir y expresar material génico en el tejido nervioso tras la administración periférica de dichos vectores.Conclusiones. La terapia génica no invasiva supone nuevas y excitantes perspectivas para el tratamiento de las numerosasenfermedades neurológicas para las cuales no existen tratamientos farmacológicos efectivos. Los estudios ya realizadosen animales resultan altamente prometedores y es probable que, en los próximos años, den lugar a procedimientos de terapia génica útiles y seguros para su uso en pacientes (AU)


Assuntos
Humanos , Terapia Genética/métodos , Doenças do Sistema Nervoso Central/terapia , Ácidos Nucleicos/administração & dosagem , Técnicas de Transferência de Genes , Doenças Neurodegenerativas/terapia , Nanopartículas/administração & dosagem , Vetores Genéticos/uso terapêutico
3.
An. R. Acad. Farm ; 77(1): 37-69, ene.-mar. 2011. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-90057

RESUMO

El silenciamiento de genes por medio de siARN constituyeactualmente una estrategia terapéutica que está siendo evaluada endiversos ensayos clínicos. La presente revisión se centra particularmenteen las estrategias no víricas de liberación in vivo de los siARN ya que elloconstituye uno de los más importantes problemas a resolver. Por otraparte es necesario comprender la genocompatibilidad/toxicogenética delos sistemas de liberación para poderlos seleccionar adecuadamentedeacuerdo con la aplicación terapéutica deseada(AU)


Gene silencing using small interfering RNA (siRNA) is atechnology that is now being evaluated in clinical trials as a potentiallynovel therapeutic strategy. This article provides an overview of the majorpharmaceutical challenges facing siRNA therapeutics, focusing on thenon-viral delivery strategies in vivo for synthetic siRNA, as this remainsone of the most important issues to be resolved. It is also important tounderstand the genocompatibility/toxicogenomics of siRNA deliveryreagents in terms of their impact on gene-silencing activity and selectivitybecause this information is essential for the selection of optimally actingsiRNA delivery systems for the many proposed applications of RNAinterference(AU)


Assuntos
Humanos , Masculino , Feminino , Nanotecnologia/ética , RNA Interferente Pequeno/síntese química , Terapia Genética/métodos , Terapia Genética/tendências , RNA Interferente Pequeno/uso terapêutico , Técnicas de Transferência de Genes
4.
Clin. transl. oncol. (Print) ; 8(12): 858-867, dic. 2006. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-126345

RESUMO

Cancer is a multigenic disorder involving mutations of both tumor suppressor genes and oncogenes. A large body of preclinical data, however, has suggested that cancer growth can be arrested or reversed by treatment with gene transfer vectors that carry a single growth inhibitory or pro-apoptotic gene or a gene that can recruit immune responses against the tumor. Many of these gene transfer vectors are modified viruses. The ability for the delivery of therapeutic genes, made them desirable for engineering virus vector systems. The viral vectors recently in laboratory and clinical use are based on RNA and DNA viruses processing very different genomic structures and host ranges. Particular viruses have been selected as gene delivery vehicles because of their capacities to carry foreign genes and their ability to efficiently deliver these genes associated with efficient gene expression. These are the major reasons why viral vectors derived from retroviruses, adenovirus, adeno-associated virus, herpesvirus and poxvirus are employed in more than 70% of clinical gene therapy trials worldwide. Because these vector systems have unique advantages and limitations, each has applications for which it is best suited. Retroviral vectors can permanently integrate into the genome of the infected cell, but require mitotic cell division for transduction. Adenoviral vectors can efficiently deliver genes to a wide variety of dividing and nondividing cell types, but immune elimination of infected cells often limits gene expression in vivo. Herpes simplex virus can deliver large amounts of exogenous DNA; however, cytotoxicity and maintenance of transgene expression remain as obstacles. AAV also infects many non-dividing and dividing cell types, but has a limited DNA capacity. This review discusses current and emerging virusbased genetic engineering strategies for the delivery of therapeutic molecules or several approaches for cancer treatment (AU)


Assuntos
Antineoplásicos/uso terapêutico , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Neoplasias/terapia , Neoplasias/virologia , Terapia Viral Oncolítica/métodos
5.
An. sist. sanit. Navar ; 28(1): 17-27, ene.-mar. 2005.
Artigo em Es | IBECS | ID: ibc-038426

RESUMO

La terapia génica se ha desarrollado como unmétodo de acercamiento al tratamiento de las enfermedadeshumanas basado en la transferencia de materialgenético a las células de un individuo. Habitualmentela finalidad de esta transferencia de materialgenético es restablecer una función celular que estabaabolida o defectuosa, introducir una nueva función obien interferir con una función existente. Así, las distintasestrategias de la terapia génica se basan en lacombinación de tres elementos clave, el material genéticoa transferir, el método de transferencia y el tipocelular que incorporará dicho material genético. Inicialmentela atención se centró en el tratamiento de lasenfermedades hereditarias monogénicas, pero posteriormentela mayor parte de los ensayos clínicos (másde cuatrocientos) han abordado el tratamiento del cáncer.En China se ha aprobado un producto genéticopara su comercialización: un adenovirus que transfierela versión correcta del gen supresor de tumores p53. Ya finales de los 90, un grupo de niños con inmunodeficienciacombinada severa fue exitosamente tratadomediante la transferencia ex vivo a células de su médulaósea de la versión correcta del gen alterado, aunquealgunos de estos niños han desarrollado más adelantesíndromes linfoproliferativos por la activación de unoncogén en las células corregidas. La terapia génicahumana es factible y puede ser útil, pero las herramientasnecesitan ser perfeccionadas para que puedallegar a formar parte del arsenal terapéutico habitual


Gene therapy has developed as a method ofapproach to the treatment of human diseases based onthe transfer of genetic material to the cells of anindividual. Normally, the aim of this transfer of geneticmaterial is to re-establish a cellular function that hasbeen abolished or is defective, to introduce a newfunction or to interfere with an existing function. Thus,the different gene therapy strategies are based on thecombination of three key elements: the geneticmaterial to be transferred, the method of transfer andthe cellular type that will incorporate this geneticmaterial. Attention was initially centred on thetreatment of monogenic hereditary diseases, butsubsequently the majority of clinical trials (over fourhundred) have concerned the treatment of cancer. InChina a genetic product has been approved forcommercialisation: an adenovirus that transfers thecorrect version of the tumour suppressor gene p53.And, in the late 1990s, a group of children with severecombined immunodeficiency were successfully treatedthrough the ex vivo transfer of the correct version ofthe altered gene to their bone marrow, although someof these children later developed lymphoproliferativesyndromes due to the activation of an oncogen in thecorrected cells. Human gene therapy is feasible andcan be useful, but the tools need improving for it tobecome part of the therapeutic arsenal


Assuntos
Humanos , Terapia Genética/métodos , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/terapia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...