Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Clin. transl. oncol. (Print) ; 26(3): 584-596, mar. 2024.
Artigo em Inglês | IBECS | ID: ibc-230789

RESUMO

Ovarian cancer (OC) has the highest mortality rate among female reproductive system tumours, with limited efficacy of traditional treatments and 5-year survival rates that rarely exceed 40%. Circular RNA (circRNA) is a stable endogenous circular RNA that typically regulates protein expression by binding to downstream miRNA. It has been demonstrated that circRNAs play an important role in the proliferation, migration, and glucose metabolism (such as the Warburg effect) of OC and can regulate the expression of glucose metabolism-related proteins such as GLUT1 and HK2, promoting anaerobic glycolysis of cancer cells, increasing glucose uptake and ATP production, and affecting energy supply and biosynthetic substances to support tumour growth and invasion. This review summarises the formation and characteristics of circRNAs and focuses on their role in regulating glucose metabolism in OC cells and their potential therapeutic value, providing insights for identifying new therapeutic targets (AU)


Assuntos
Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , /genética
2.
Clin. transl. oncol. (Print) ; 26(2): 363-374, feb. 2024.
Artigo em Inglês | IBECS | ID: ibc-230182

RESUMO

Introduction The critical role of microRNA-128 (miR-128) in gastrointestinal-related diseases has been documented. In the current study, we tried to clarify the specific role miR-128 in gastrointestinal stromal tumor (GIST) and the underlying mechanism. Methods Differentially expressed genes in GIST were identified following bioinformatics analysis. Then, expression patterns of miR-128 and B-lymphoma Mo-MLV insertion region 1 (BMI-1) in clinical tissue samples and cell lines were characterized, followed by validation of their correlation. GIST-T1 cells were selected and transfected with different mimic, inhibitor, or siRNA plasmids, after which the biological functions were assayed. Results We identified low miR-128 and high BMI-1 expression in GIST tissues of 78 patients and 4 GIST cell lines. Ectopic expression of miR-128 or silencing of BMI-1 suppressed the malignant potentials of GIST-T1 cells. As a target of miR-128, BMI-1 re-expression could partly counteract the suppressive effect of miR-128 on the malignancy of GIST-T1 cells. Conclusion Our study provided evidence that miR-128-mediated silencing of BMI-1 could prevent malignant progression of GIST, highlighting a promising anti-tumor target for combating GIST (AU)


Assuntos
Humanos , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Linfoma , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , RNA Interferente Pequeno/farmacologia
3.
Clin. transl. oncol. (Print) ; 26(2): 414-423, feb. 2024.
Artigo em Inglês | IBECS | ID: ibc-230186

RESUMO

Background Cholangiocarcinoma (CCA) is a heterogeneous malignancy. The aim of the study was to investigate the regulatory role of long noncoding RNA LINC00844 in CCA progression, explore the underlying molecular mechanisms, and to analyze the potential prognostic value of LINC00844 in CCA patients. Methods Expression of LINC00844 in CCA cell lines and tissues was examined by reverse transcription-quantitative PCR. Cell counting kit-8 assay was used to assess CCA cell proliferation, and the Transwell assay was used to evaluate tumor cell migration and invasion. miRNAs sponged by LINC00844 were predicted and confirmed using a luciferase reporter assay. Kaplan–Meier survival analysis was performed to evaluate the survival prognosis of CCA patients. Results The expression levels of LINC00844 were decreased in CCA tissues and cells. Overexpression of LINC00844 inhibited cell proliferation, migration and invasion in CCA cells. miR-19a-5p is directly targeted by LINC00844, mediating the inhibitory effects of LINC00844 on the proliferation, migration and invasion of CCA cells. LINC00844 and miR-19a-5p expression were associated with differentiation and tumor node metastasis stage in CCA patients. CCA patients with low LINC00844 expression or overexpression of miR-19a-5p had worse overall survival. Conclusion The expression levels of LINC00844 were decreased in both CCA tissues and cells, and high LINC00844 inhibited CCA cell proliferation, migration and invasion through sponging miR-19a-5p. Low LINC00844 and high miR-19a-5p expression were associated with worse overall survival in CCA patients. All the data suggested that the LINC00844/miR-19a-5p axis may provide novel therapeutic targets and prognostic biomarkers for CCA patients (AU)


Assuntos
Humanos , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética
4.
J. physiol. biochem ; 80(1): 189-204, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-229950

RESUMO

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling. (AU)


Assuntos
Exossomos , Cicatrização , Proliferação de Células
5.
J. physiol. biochem ; 80(1): 189-204, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-EMG-576

RESUMO

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling. (AU)


Assuntos
Exossomos , Cicatrização , Proliferação de Células
6.
Clin. transl. oncol. (Print) ; 26(1): 16-38, jan. 2024. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-229144

RESUMO

Recent studies have revealed the impact of microRNAs (miRNAs) in the carcinogenic process. miR-424 is a miRNA whose role in this process is being to be identified. Experiments in the ovarian cancer, cervical cancer, hepatocellular carcinoma, neuroblastoma, breast cancer, osteosarcoma, intrahepatic cholangiocarcinoma, prostate cancer, endometrial cancer, non-small cell lung cancer, hemangioma and gastric cancer have reported down-regulation of miR-424. On the other hand, this miRNA has been found to be up-regulated in melanoma, laryngeal and esophageal squamous cell carcinomas, glioma, multiple myeloma and thyroid cancer. Expression of this miRNA is regulated by methylation status of its promoter. Besides, LINC00641, CCAT2, PVT1, LIN00657, LINC00511 and NNT-AS1 are among lncRNAs that act as molecular sponges for miR-424, thus regulating its expression. Moreover, several members of SNHG family of lncRNAs have been found to regulate expression of miR-424. This miRNA is also involved in the regulation of E2F transcription factors. The current review aims at summarization of the role of miR-424 in the process of cancer evolution and its impact on clinical outcome of patients in order to find appropriate markers for malignancies (AU)


Assuntos
Humanos , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Esofágicas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
7.
Clin. transl. oncol. (Print) ; 26(1): 231-238, jan. 2024.
Artigo em Inglês | IBECS | ID: ibc-229161

RESUMO

Objectives Among the most promising antibody formats in terms of inhibiting carcinogenesis are single-stranded variable fragments, whose targeted binding to the Fzd7 receptor has been proven effective at suppressing tumorigenesis. In this study, we investigated the effectiveness of an anti-Fzd7 antibody fragment against both tumor growth and metastasis of breast cancer cells. Methods To develop anti-Fzd7 antibodies, bioinformatics approaches were used and the antibodies were expressed recombinantly in E. coli BL21 (DE3). The expression of anti-Fzd7 fragments was verified by Western blotting. Analysis of the antibody's binding capacity to Fzd7 was conducted by flow cytometry. Cell death and apoptosis were assessed by MTT and Annexin V/PI assays. The transwell migration and invasion assays, as well as the scratch method, were used to evaluate cell motility and invasiveness. Results The anti-Fzd7 antibody was expressed successfully as a single band of 31 kDa. It could bind to 21.5% of MDA-MB-231 cells, as opposed to only 0.54% of SKBR-3 cells as negative control. According to MTT assay, induced apoptosis was 73.7% in MDA-MB-231 cells, compared with 29.5% in SKBR-3 cells. Also, the antibody exerted a significant inhibitory effect of 76% and 58% on migration and invasion of MDA-MB-231 cells, respectively. Conclusion The recombinantly developed anti-Fzd7 scFv of this study could exhibit significant antiproliferative and antimigratory properties, along with a high apoptosis-inducing potential, making it suitable for the immunotherapy of triple negative breast cancer (AU)


Assuntos
Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/patologia , Far-Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células
8.
Clin. transl. oncol. (Print) ; 26(1): 245-259, jan. 2024.
Artigo em Inglês | IBECS | ID: ibc-229163

RESUMO

Purpose A substantial amount of evidence demonstrates suggests that long non-coding RNAs (lncRNAs) play a key role in the progression of various malignancies, cervical squamous cell carcinoma (CSCC) included. In our study, we deeply investigated the role and molecular mechanism of lncRNA NPHS2-6 in CSCC. Methods The expression level of gene and protein expression were measured by qRT-PCR and western blot. To test the cell proliferation and cell metastasis ability, we carried out the CCK-8 experiment, clone formation assay, transwell assay and wound healing, respectively. The interactivity among NPHS2-6, miR-1323 and SMC1B were co demonstrated using the bioinformatics tool, dual-luciferase reporter system, and RNA pulldown assay. The subcutaneous tumor model of nude mice was established to verify the results of previous studies at the in vivo. NPHS2-6 was upregulated in CSCC tissues and cells. Results NPHS2-6 deficiency significantly inhibited CSCC cell growth and EMT in vitro. In addition, NPHS2-6 deficiency also inhibited the growth of CSCC xenograft tumors in mice in vivo. Importantly, NPHS2-6 was a competing endogenous RNA (ceRNA) to increases SMC1B levels by binding to miR-1323, leading to activate the PI3K/Akt pathway, thereby exacerbating tumorigenesis of CSCC. Conclusions In conclusion, NPHS2-6/miR-1323/SMC1B/PI3K/Akt signaling accelerates the progression of CSCC, providing a new direction for the treatment strategy of CSCC (AU)


Assuntos
Animais , Feminino , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Clin. transl. oncol. (Print) ; 25(12): 3405-3419, dec. 2023.
Artigo em Inglês | IBECS | ID: ibc-227286

RESUMO

Background Peritoneal metastasis (PM) is an important factor contributing to poor prognosis in patients with gastric cancer (GC). Transcriptomic sequencing has been used to explore the molecular changes in metastatic cancers, but comparing the bulk RNA-sequencing data between primary tumors and metastases in PM studies is unreasonable due to the small proportion of tumor cells in PM tissues. Methods We performed single-cell RNA-sequencing analysis on four gastric adenocarcinoma specimens, including one primary tumor sample (PT), one adjacent nontumoral sample (PN), one peritoneal metastatic sample (MT) and one normal peritoneum sample (MN), from the same patient. Pseudotime trajectory analysis was used to display the process by which nonmalignant epithelial cells transform into tumor cells and then metastasize to the peritoneum. Finally, in vitro and in vivo assays were used to validate one of the selected genes that promote peritoneal metastasis. Results Single-cell RNA sequencing showed that a development curve was found from normal mucosa to tumor tissues and then into metastatic sites on peritoneum. TAGLN2 was found to trigger this metastasis process. The migration and invasion capability of GC cells were changed by downregulating and upregulating TAGLN2 expression. Mechanistically, TAGLN2 might modulate tumor metastasis via alterations in cell morphology and several signaling pathways, thus promoting epithelial–mesenchymal transition (EMT). Conclusions In summary, we identified and validated TAGLN2 as a novel gene involved in GC peritoneal metastasis. This study provided valuable insight into the mechanisms of GC metastasis and developed a potential therapeutic target to prevent GC cell dissemination (AU)


Assuntos
Humanos , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , RNA/genética , Regulação para Cima
10.
Clin. transl. oncol. (Print) ; 25(12): 3420-3430, dec. 2023.
Artigo em Inglês | IBECS | ID: ibc-227287

RESUMO

Background The lncRNA HOTAIR is frequently overexpressed in breast cancer tissues and plays an important role in the development of breast cancer. Here, we investigated the effect of the lncRNA HOTAIR on the biological behaviour of breast cancer cells and its molecular mechanism. Methods We investigated the level of HOTAIR in breast cancer and its clinical pathological characteristics by bioinformatic methods. Then, we evaluated the effects of HOTAIR and miRNA-1 expression on the biological behaviour of breast cancer cells by qPCR, Cell Counting Kit-8 (CCK-8) assay, clonogenic assays, Transwell assay and flow cytometry for cell proliferation, invasion migration and apoptosis, and cell cycle analysis. Finally, the target genes of the lncRNA HOTAIR/miR-1/GOLPH3 regulatory axis were validated by luciferase reports. Results The expression of HOTAIR in breast cancer tissues was significantly higher than that in normal breast tissues (P < 0.05). Silencing of HOTAIR suppressed cell proliferation, invasion and migration, promoted apoptosis and induced G1 phase block in breast cancer (P < 0.0001). We also verified that miR-1 is a target of HOTAIR and that GOLPH3 is a target of miR-1 by luciferase reporter assays (P < 0.001). Conclusions The expression of HOTAIR was significantly elevated in breast cancer tissues. Reducing the expression of HOTAIR inhibited the proliferation, invasion and migration of breast cancer cells and promoted apoptosis, and the mechanism was mainly the effect of the lncRNA HOTAIR/miR-1/GOLPH3 regulatory axis on the biological behaviour of breast cancer cells (AU)


Assuntos
Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Luciferases/metabolismo , Proteínas de Membrana/genética
11.
Clin. transl. oncol. (Print) ; 25(12): 3447-3459, dec. 2023.
Artigo em Inglês | IBECS | ID: ibc-227290

RESUMO

Purpose HOX transcribed antisense RNA (HOTAIR) is a long noncoding RNA (LncRNA) that promotes tumor progression. Exosomes are critically involved in cancer progression. The presence of HOTAIR in the circulating exosomes and the roles of exosomal HOTAIR in gastric cancer (GC) remains unknown. This study aimed to investigate the role of HOTAIR in exosomes in promoting the growth and metastasis of GC. Methods Serum exosomes from GC patients were captured by CD63 immunoliposome magnetic spheres (CD63-IMS), and the biological characteristics of the exosomes were identified. The expression levels of HOTAIR in GC cells, tissues, serum and serum exosomes were detected by fluorescence quantitative PCR (qRT-PCR), and the clinicopathological correlation was statistically analyzed. The growth and metastasis abilities of GC cells with HOTAIR knockdown in vitro were evaluated by cell experiment. The effects of HOTAIR highly-expressed NCI-N87 cell-derived exosomes were used to treat HOTAIR lowly-expressed MKN45 cells on GC growth and metastasis were also evaluated. Results The exosomes isolated by CD63-IMS had a particle size of 89.78 ± 4.8 nm and were oval membranous particles. The expression of HOTAIR in tumor tissues and serum of GC patients was increased (P < 0.05), and the expression of HOTAIR in serum exosomes was significantly increased (P < 0.01). The in NCI-N87 and MKN45 cell experiment demonstrated that HOTAIR knockdown by RNA interference suppressed cell growth and metastasis in NCI-N87 cells. Coculture of exosomes secreted by NCI-N87 cells with MKN45 cells significantly increased the expression of HOTAIR, and enhanced cell growth and metastasis. Conclusion LncRNA HOTAIR can be used as a potential biomarker which provides a new way for the diagnosis and treatment of GC (AU)


Assuntos
Humanos , Exossomos/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Antissenso
12.
Clin. transl. oncol. (Print) ; 25(11): 3217-3229, 11 nov. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-226845

RESUMO

Background Radiotherapy is widely employed in colorectal cancer (CRC) treatment but is often compromised by developed radioresistance. This study explored the mechanism of long non-coding RNA ovarian tumor domain containing 6B-antisense RNA1 (lncRNA OTUD6B-AS1) in CRC radioresistance through tripartite motif 16 (TRIM16). Methods CRC and non-cancerous tissues were collected and radioresistant CRC cells were established, with real-time quantitative polymerase chain reaction to determine gene expression in tissues and cells. Radioresistance was evaluated by cell counting kit-8 assay and immunofluorescence (γ-H2AX) and ferroptosis was tested by Western blot assay (ACSL4/GPX4) and assay kits (Fe2+/ROS/MDA/GSH). The association between ferroptosis and lncRNA OTUD6B-AS1-inhibited radioresistance was testified using ferroptosis inhibitor. The subcellular localization of lncRNA OTUD6B-AS1 was tested by the nuclear/cytoplasmic fractionation assay, with RNA immunoprecipitation assay to validate gene interactions. Rescue experiments were conducted to analyze the role of TRIM16 in CRC radioresistance. Results LncRNA OTUD6B-AS1 and TRIM16 were poorly expressed (P < 0.01) in CRC tissues and cells and further decreased (P < 0.01) in radioresistant CRC cells. OTUD6B-AS1 overexpression decreased cell survival (P < 0.01), increased γ-H2AX levels (P < 0.01), and elevated ferroptosis and oxidative stress (P < 0.01) after X-ray radiation. Ferroptosis inhibitor attenuated radioresistance (P < 0.01) caused by lncRNA OTUD6B-AS1 overexpression. LncRNA OTUD6B-AS1 stabilized TRIM16 mRNA via binding to HuR. TRIM16 knockdown reduced ferroptosis and increased radioresistance (P < 0.05). Conclusion OTUD6B-AS1 overexpression stabilized TRIM16 via binding to HuR and increased GPX4-mediated ferroptosis, thus attenuating CRC radioresistance. Our study provided a new rationale for the treatment of CRC (AU)


Assuntos
Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
13.
Clin. transl. oncol. (Print) ; 25(11): 3252-3262, 11 nov. 2023.
Artigo em Inglês | IBECS | ID: ibc-226848

RESUMO

Objective The significance of circular RNAs (circRNAs) has been identified in the progression of non-small cell lung cancer (NSCLC). Consistently, our study probed the functional actions of hsa_circ_0102899 (circ_0102899) in NSCLC cells. Methods circ_0102899 expression was checked in NSCLC tissues, as well as its correlation with clinical characteristics of patients, Using A459 cells, transfection to alter gene expression was performed, thus measuring the changes of proliferation, apoptosis, migration, and apoptosis, as well as epithelial–mesenchymal transition (EMT)-related proteins. circ_0102899’s effects in vivo were validated by tumor xenograft assay. Finally, the regulatory mechanism of circ_0102899 was investigated. Results circ_0102899 indicated a high-expression level in NSCLC tissues which was associated with NSCLC tumor characteristics. Functionally, circ_0102899 knockdown not only inhibited the growth and EMT process of NSCLC cells, but also inhibited tumor formation in vivo. In terms of the regulatory mechanism, circ_0102899 had a binding to miR-885-5p to target eukaryotic translation initiation factor 4γ2 (EIF4G2). circ_0102899 mediated miR-885–5/EIF4G2 axis to accelerate the process of cell malignant behavior in NSCLC. Conclusion circ_0102899 promotes EMT and metastasis in NSCLC by regulating the miR-885-5p/EIF4G2 axis (AU)


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
14.
Clin. transl. oncol. (Print) ; 25(11): 3262-3276, 11 nov. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-226849

RESUMO

Background Cancer stem cells (CSCs) have unique biological characteristics, including tumorigenicity, immortality, and chemoresistance. Colorectal CSCs have been identified and isolated from colorectal cancers by various methods. AKAP12, a scaffolding protein, is considered to act as a potential suppressor in colorectal cancer, but its role in CSCs remains unknown. In this study, we investigated the function of AKAP12 in Colorectal CSCs. Methods Herein, Colorectal CSCs were enriched by cell culture with a serum-free medium. CSC-associated characteristics were evaluated by Flow cytometry assay and qPCR. AKAP12 gene expression was regulated by lentiviral transfection assay. The tumorigenicity of AKAP12 in vivo by constructing a tumor xenograft model. The related pathways were explored by qPCR and Western blot. Results The depletion of AKAP12 reduced colony formation, sphere formation, and expression of stem cell markers in colorectal cancer cells, while its knockdown decreased the volume and weight of tumor xenografts in vivo. AKAP12 expression levels also affected the expression of stemness markers associated with STAT3, potentially via regulating the expression of protein kinase C. Conclusion This study suggests Colorectal CSCs overexpress AKAP12 and maintain stem cell characteristics through the AKAP12/PKC/STAT3 pathway. AKAP12 may be an important therapeutic target for blocking the development of colorectal cancer in the field of cancer stem cells (AU)


Assuntos
Humanos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Fenótipo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3
15.
Med. oral patol. oral cir. bucal (Internet) ; 28(6): e525-e529, nov. 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-227370

RESUMO

Background: Reactive cutaneous capillary endothelial proliferation (RCCEP), a special adverse event (AE) only observed in patients treated with camrelizumab, was reported to be correlated with the efficacy of camrelizumab in patients with advanced hepatocellular carcinoma. This study to analyze the possible correlation between the occurrence of RCCEP and efficacy of camrelizumab in patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). Material and Methods: In this study, we retrospectively analyzed the efficacy and RCCEP occurrence of camrelizumab in 58 patients with R/M HNSCC in the Shanghai Ninth People's Hospital affiliated to Shanghai JiaoTong University School of Medicine between January 2019 and June 2022. Kaplan-Meier analysis was used to assess the correlation between the occurrence of RCCEP and the survival of enrolled patients, and COX multifactor analysis was adopted to evaluate associated factors that affected the efficacy of camrelizumab immunotherapy. Results: A significant correlation between the incidence of RCCEP and a higher objective response rate was observed in this study (p=0.008). The occurrence of RCCEP was associated with better median overall survival (17.0 months vs. 8.7 months, p<0.0001, HR=5.944, 95% CI:2.097-16.84) and better median progression-free survival (15.1 months vs. 4.0 months, p<0.0001, HR=4.329,95% CI:1.683-11.13). In COX multifactor analysis, RCCEP occurrence was also an independent prognostic factor affecting OS and PFS in patients with R/M HNSCC. Conclusions: The occurrence of RCCEP can show a better prognosis, it could be used as a clinical biomarker to predict the efficacy of camrelizumab treatment. (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Estudos Retrospectivos , Porcelana Dentária , Proliferação de Células , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
16.
Clin. transl. oncol. (Print) ; 25(10): 2772-2782, oct. 2023. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-225058

RESUMO

The mechanism of deleted in lymphocytic leukemia 2 (DLEU2)-long non-coding RNA in tumors has become a major point of interest in recent research related to the occurrence and development of a variety of tumors. Recent studies have shown that the long non-coding RNA DLEU2 (lncRNA-DLEU2) can cause abnormal gene or protein expression by acting on downstream targets in cancers. At present, most lncRNA-DLEU2 play the role of oncogenes in different tumors, which are mostly associated with tumor characteristics, such as proliferation, migration, invasion, and apoptosis. The data thus far show that because lncRNA-DLEU2 plays an important role in most tumors, targeting abnormal lncRNA-DLEU2 may be an effective treatment strategy for early diagnosis and improving the prognosis of patients. In this review, we integrated lncRNA-DLEU2 expression in tumors, its biological functions, molecular mechanisms, and the utility of DLEU2 as an effective diagnostic and prognostic marker of tumors. This study aimed to provide a potential direction for the diagnosis, prognosis, and treatment of tumors using lncRNA-DLEU2 as a biomarker and therapeutic target (AU)


Assuntos
Humanos , Leucemia Linfoide/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética
17.
Clin. transl. oncol. (Print) ; 25(10): 2841-2851, oct. 2023.
Artigo em Inglês | IBECS | ID: ibc-225064

RESUMO

Multiple studies have shown that long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of diverse cancers. Cancer susceptibility candidate 19 (CASC19), encoded by chromosome 8q24.21, is a newly discovered lncRNA that contains 324 nucleotides. CASC19 has been found to be significantly overexpressed in different human cancers, such as non-small cell lung carcinoma, gastric cancer, colorectal cancer, pancreatic cancer, clear cell renal cell carcinoma, glioma, cervical cancer, and nasopharyngeal carcinoma. Moreover, dysregulation of CASC19 was closely associated with clinicopathological parameters and cancer progression. CASC19 regulates a variety of cell phenotypes, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial–mesenchymal transition, autophagy, and therapeutic resistance. In this study, we review recent studies on the characteristics and biological function of CASC19, as well as its role in human cancers. These findings suggest that CASC19 may be both a reliable biomarker and a potential therapeutic target in cancers (AU)


Assuntos
Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Oncogenes , Biomarcadores Tumorais
18.
Clin. transl. oncol. (Print) ; 25(10): 2901-2910, oct. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-225071

RESUMO

Background Hsa_circ_0001535 is involved in biological processes in various tumors. However, the biological effects and related mechanism of hsa_circ_0001535 in ovarian cancer (OC) is unclear. This work is aimed to probe the biological function and underlying mechanism of hsa_circ_0001535 in OC, especially sponged with mi-RNA, require further elucidation. Methods Hsa_circ_0001535 expression in OC tissues and cell lines were examined by qRT-PCR. Hsa_circ_0001535 overexpression model was constructed by lentivirus-mediated transfection in two OC cell lines, and the biological functions of hsa_circ_0001535 were evaluated by CCK-8, transwell assay and Western blot. Dual luciferase reporter gene assay was respectively used to explore the relationship between hsa_circ_0001535 and miR-593-3p, as well as miR-593-3p and PTEN. The expression of miR-593-3p and PTEN were detected by qRT-PCR in two OC cell lines and OC tissues. Results Hsa_circ_0001535 was down-regulated in OC tissues and cell lines. Hsa_circ_0001535 overexpression inhibited proliferation, migration and EMT marker expression in OC cells. Of interest, hsa_circ_0001535 targeted miR-593-3p and reduced its RNA level in OC cells. PTEN was a target gene of miR-593-3p, which was up-regulated by inhibiting miR-593-3p in OC cells. Furthermore, miR-593-3p mimic treatment reversed the up-regulation of PTEN by hsa_circ_0001535 overexpression in OC cells. Conclusions The above results showed that hsa_circ_0001535 acted as a molecular sponge for miR-593-3p to repress miR-593-3p expression, and promoted the expression of PTEN, thus inhibited proliferation and migration of OC cells. Our research provides a potential therapeutic target for ovarian cancer patients (AU)


Assuntos
Humanos , Feminino , MicroRNAs/genética , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Regulação para Cima
19.
Clin. transl. oncol. (Print) ; 25(10): 2938-2949, oct. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-225075

RESUMO

Renal cell carcinoma (RCC) with poor prognosis and high incidence rate is a common malignant disease. Current therapies could bring little benefit for the patients with advanced-stage RCC. PDIA2 is an isomerase responsible for protein folding and its role in cancer including RCC is under investigation. In this study, we found that PDIA2 was expressed much higher in RCC tissues than the control but the methylation level of PDIA2 promoter was lower based on the TCGA data. Patients with higher PDIA2 expression exerted worse survival. In clinical specimen, PDIA2 expression was correlated to patients’ clinical factors such as TNM stage (I/II vs III/IV, p = 0.025) and tumor size (≤ 7 cm vs > 7 cm, p = 0.004). Moreover, K-M analysis showed that PDIA2 was associated with patients’ survival in RCC. PDIA2 was expressed much higher in cancer cells A498 than 786-O than that in 293 T cells. After PDIA2 was knocked down, cell proliferation, migration and invasion was potently inhibited. But cell apoptotic rate increased reversely. Furthermore, the efficacy of Sunitinib on RCC cells was strengthened after PDIA2 knockdown. In addition, knockdown of PDIA2 gene leaded to downregulation of levels of JNK1/2, phosphorylated JNK1/2, c-JUN, and Stat3. But this inhibition was partially released when JNK1/2 was overexpressed. In consistent, cell proliferation was also partially recovered. In summary, PDIA2 plays important role in progression of RCC and JNK signaling pathway might be regulated by PDIA2. This study suggests PDIA2 as a candidate target for therapy of RCC (AU)


Assuntos
Humanos , Sistema de Sinalização das MAP Quinases/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Prognóstico
20.
Clin. transl. oncol. (Print) ; 25(10): 2960-2971, oct. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-225077

RESUMO

Objective Downregulation of miR-17-5p has been reported in several cancers, but whether and how miR-17-5p is downregulated in hepatocellular carcinoma (HCC) is unknown. Here, we examined whether miR-17-5p is downregulated in HCC and whether that affects expression of its target gene encoding transforming growth factor β receptor 2 (TGFβR). Methods We screened for potential microRNAs (miRNAs) involved in HCC by analyzing published transcriptomes from HCC patients. Expression of miR-17-5p was measured in HCC cell lines and in tissues from HCC patients using quantitative real-time PCR. The in vitro effects of miR-17-5p on HCC cells were assessed by EdU proliferation assay, CCK-8 cell proliferation assay, colony-formation assay, transwell migration/invasion assay, wound healing assay, and flow cytometry. Effects of miR-17-5p were evaluated in vivo using mice with subcutaneous tumors. Effects of the miRNA on the epithelial–mesenchymal transition (EMT) were assessed, while its effects on TGFβR2 expression were analyzed using bioinformatics and a dual luciferase reporter assay. Results Patients with low miR-17-5p expression showed lower rates of overall and recurrence-free survival than patients with high miR-17-5p expression, and multivariate Cox regression identified low miR-17-5p expression as an independent predictor of poor overall survival in HCC patients. In vitro, miR-17-5p significantly inhibited HCC cell proliferation, migration, invasion, and the EMT, while promoting apoptosis. In vivo, it slowed the development of tumors. These protective effects of miR-17-5p were associated with downregulation of TGFβR2. Conclusion The miRNA miR-17-5p can negatively regulate the expression of TGFβR2 and inhibit the EMT, thereby slowing tumor growth in HCC, suggesting a potential therapeutic approach against HCC (AU)


Assuntos
Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...