Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Biomater Adv ; 157: 213740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183690

RESUMO

The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.


Assuntos
Osso e Ossos , Tendões , Tendões/cirurgia , Osso e Ossos/cirurgia , Fibrocartilagem/lesões , Ligamentos
2.
Arthroscopy ; 40(2): 614-629, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37270115

RESUMO

PURPOSE: To systematically review and compare biomechanical properties of labral reconstruction to labral repair, intact native labrum, and labral excision in cadaveric studies. METHODS: A search of the PubMed and Embase databases was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and checklist. Cadaveric studies focused on hip biomechanics related to intact labrum, labral repair, labral reconstruction, labral augmentation, and labral excision were included. Investigated parameters included biomechanical data measures, such as distraction force, distance to suction seal rupture, peak negative pressure, contact area, and fluid efflux. Review articles, duplicates, technique reports, case reports, opinion articles, articles written in a language other than English, clinical studies focusing on patient-reported outcomes, studies performed in animals, and articles with no abstract available were also excluded. RESULTS: Fourteen cadaveric biomechanical studies were included that compared labral reconstruction to labral repair (4 studies), labral reconstruction to labral excision (4 studies); and evaluation of distractive force of the labrum (3 studies), the distance to suction seal rupture (3 studies), fluid dynamics (2 studies), displacement at peak force (1 study), and stability ratio (1 study). Data pooling was not performed because of methodological heterogenicity of the studies. Labral reconstruction did not outperform labral repair in restoring the hip suction seal or any other biomechanical property. Labral repair significantly prevented greater fluid efflux when compared to labral reconstruction. Labral repair and reconstruction improved the distractive stability of the hip fluid seal from the labral tear and labral excision stage, respectively. Furthermore, labral reconstruction demonstrated to have better biomechanical properties than labral excision. CONCLUSIONS: In cadaveric studies, labral repair or intact native labrum was biomechanically more superior than labral reconstruction; however, labral reconstruction can restore acetabular labral biomechanical properties and was biomechanically superior to labral excision. CLINICAL RELEVANCE: In cadaveric models, labral repair outperforms segmental labral reconstruction in preserving the hip suction seal; nonetheless, segmental labral reconstruction biomechanically outperforms labral excision at time 0.


Assuntos
Acetábulo , Lacerações , Humanos , Acetábulo/cirurgia , Cadáver , Articulação do Quadril/cirurgia , Fibrocartilagem/cirurgia
3.
Tissue Eng Regen Med ; 21(2): 341-351, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856071

RESUMO

BACKGROUND: Current tendon and ligament reconstruction surgeries rely on scar tissue healing which differs from native bone-to-tendon interface (BTI) tissue. We aimed to engineer Synovium-derived mesenchymal stem cells (Sy-MSCs) based scaffold-free fibrocartilage constructs and investigate in vivo bone-tendon interface (BTI) healing efficacy in a rat anterior cruciate ligament (ACL) reconstruction model. METHODS: Sy-MSCs were isolated from knee joint of rats. Scaffold-free sy-MSC constructs were fabricated and cultured in differentiation media including  TGF-ß-only, CTGF-only, and TGF-ß + CTGF. Collagenase treatment on tendon grafts was optimized to improve cell-to-graft integration. The effects of fibrocartilage differentiation and collagenase treatment on BTI integration was assessed by conducting histological staining, cell adhesion assay, and tensile testing. Finally, histological and biomechanical analyses were used to evaluate in vivo efficacy of fibrocartilage construct in a rat ACL reconstruction model. RESULTS: Fibrocartilage-like features were observed with in the scaffold-free sy-MSC constructs when applying TGF-ß and CTGF concurrently. Fifteen minutes collagenase treatment increased cellular attachment 1.9-fold compared to the Control group without affecting tensile strength. The failure stress was highest in the Col + D + group (22.494 ± 13.74 Kpa) compared to other groups at integration analysis in vitro. The ACL Recon + FC group exhibited a significant 88% increase in estimated stiffness (p = 0.0102) compared to the ACL Recon group at the 4-week postoperative period. CONCLUSION: Scaffold-free, fibrocartilage engineering together with tendon collagenase treatment enhanced fibrocartilaginous BTI healing in ACL reconstruction.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Células-Tronco Mesenquimais , Ratos , Animais , Tendões , Fibrocartilagem , Fator de Crescimento Transformador beta , Colagenases
4.
Clin Orthop Relat Res ; 482(2): 386-398, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732715

RESUMO

BACKGROUND: No single graft type has been shown to have a benefit in acetabular labral reconstruction. The native labrum and lateral meniscus share many similarities, suggesting that the meniscus may be a promising source of graft material in labral reconstruction. QUESTIONS/PURPOSES: Using a pig model, we sought to evaluate the healing process of fresh-frozen meniscus allograft for acetabular reconstruction by assessing (1) MRI and macroscopic observations of the meniscus allograft; (2) histologic appearance and immunohistologic evaluation of the meniscus allograft, native meniscus, and labrum; (3) microscopic assessment of the native labrum and meniscus via scanning electron microscopy; and (4) biomechanical assessment of tensile properties. METHODS: Twelve skeletally mature male miniature Bama pigs (24 hips) were randomly divided into two groups: labral defect group (control) and lateral meniscus allograft group. The selection of Bama pig specimens was based on the similarity of their acetabular labrum to that of the human acetabular labrum, characterized by the presence of fibrocartilage-like tissue lacking blood vessels. The pigs underwent bilateral hip surgery. Briefly, a 1.5-cm-long section was resected in the anterior dorsal labrum, which was left untreated or reconstructed using an allogeneic lateral meniscus. The pigs were euthanized at 12 and 24 weeks postoperatively, and then evaluated by macroscopic observations and MRI measurement to assess the extent of coverage of the labral defect. We also performed a histologic analysis and immunohistologic evaluation to assess the composition and structure of meniscus allograft, native labrum, and meniscus, as well as scanning electron microscopy assessment of the microstructure of the native labrum and meniscus and biomechanical assessment of tensile properties. RESULTS: Imaging measurement and macroscopic observations revealed that the resected area of the labrum was fully filled in the lateral meniscus allograft group, whereas in the control group, the labral defect remained at 24 weeks. The macroscopic scores of the meniscus allograft group (8.2 ± 0.8) were higher than those of the control groups (4.8 ± 1.0) (mean difference 3.3 [95% CI 1.6 to 5.0]; p < 0.001). Moreover, in the meniscus allograft group, histologic assessment identified fibrocartilage-like cell cluster formation at the interface between the graft and acetabulum; cells and fibers arranged perpendicularly to the acetabulum and tideline structure that were similar to those of native labrum could be observed at 24 weeks. Immunohistochemical results showed that the average optical density value of Type II collagen at the graft-acetabulum interface was increased in the meniscus allograft group at 24 weeks compared with at 12 weeks (0.259 ± 0.031 versus 0.228 ± 0.023, mean difference 0.032 [95% CI 0.003 to 0.061]; p = 0.013). Furthermore, the tensile modulus of the lateral meniscus allograft was near that of the native labrum at 24 weeks (54.7 ± 9.9 MPa versus 63.2 ± 11.3 MPa, mean difference -8.4 MPa [95% CI -38.3 to 21.4]; p = 0.212). CONCLUSION: In a pig model, lateral meniscus allografts fully filled labral defects in labral reconstruction. Regeneration of a fibrocartilage transition zone at the graft-acetabulum interface was observed at 24 weeks. CLINICAL RELEVANCE: The use of an autograft meniscus for labral reconstruction may be a viable option when labral tears are deemed irreparable. Before its clinical implementation, it is imperative to conduct a comparative study involving tendon grafts, which are extensively used in current clinical practice.


Assuntos
Cartilagem Articular , Menisco , Animais , Masculino , Acetábulo/cirurgia , Aloenxertos , Cartilagem Articular/cirurgia , Fibrocartilagem/diagnóstico por imagem , Fibrocartilagem/cirurgia , Articulação do Quadril/cirurgia , Suínos
5.
Am J Biol Anthropol ; 183(1): 107-124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37795912

RESUMO

OBJECTIVES: Activity patterns and lifeways in southern African hunter-gatherer/herders (sAHGH) during the Holocene were dynamic, with subsistence activities and mobility varying through space and time. In this study, spatial and temporal variations in entheseal changes (ECs) are assessed as physical activity markers in sAHGH from the Holocene. METHODS: The Coimbra method was used to assess fibrocartilaginous ECs in the upper and lower limbs of 118 sAHGH from the Holocene. Descriptive statistics and generalized estimating equations were used to explore the association between ECs, sex, age, ecological biomes, and temporality. RESULTS: A total of 118 individuals were sampled, comprising 67 males, and 42 females, mostly from the fynbos (59/118), forest (30/118) and succulent karoo biomes (16/118). ECs were identified in 94% of the sample. Interobserver scoring suggests our findings are likely to underrepresent the extent of EC score differences in sAHGH. Findings indicate a complex pattern of physical activity in sAHGH with differences attributable to regional ecology rather than age or sex. More prominent ECs were identified in individuals from the forest biome, relative to the fynbos and succulent karoo biomes. These were consistent with resource search and processing costs, and terrain differences in these ecozones. ECs were only detected temporally relative to the infiltration of pastoralism (at 2000 BP) when the data were stratified by ecological biome. DISCUSSION: This study provides evidence that regional ecology plays a central role in driving activity patterns regardless of social or cultural organization. Ecological biomes provide a gradient along which the temporal impact of resource limitations on human biology, activity patterns and sociocultural behaviors can be studied.


Assuntos
Ecossistema , Extremidade Inferior , Masculino , Feminino , Humanos , Florestas , Fibrocartilagem
6.
Sci Adv ; 9(45): eadg8138, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939174

RESUMO

Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus-like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.


Assuntos
Menisco , Células-Tronco Mesenquimais , Animais , Camundongos , Menisco/metabolismo , Fibrocartilagem/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno/metabolismo , Modelos Animais , Camundongos Transgênicos , Canais Iônicos/metabolismo
7.
Am J Sports Med ; 51(13): 3509-3522, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743771

RESUMO

BACKGROUND: Unlike the adult meniscus, the fetal meniscus possesses robust healing capacity. The dense and stiff matrix of the adult meniscus provides a biophysical barrier for cell migration, which is not present in the fetal meniscus. Inspired by developmental characteristics, modifying the matrix of the adult meniscus into a fetal-like, loose and soft microenvironment holds opportunity to facilitate repair, especially in the avascular zone. HYPOTHESIS: Modifying the dense and stiff matrix of the adult meniscus into a fetal-like, loose and soft microenvironment could enhance cell migration to the tear interface and subsequent robust healing capacity. STUDY DESIGN: Controlled laboratory study. METHODS: Fresh porcine menisci were treated with hyaluronidase or collagenase. The density and arrangement of collagen fibers were assessed. The degradation of proteoglycans and collagen was evaluated histologically. Cell migration within the meniscus or the infiltration of exogenous cells into the meniscus was examined. Dendritic silica nanoparticles with relatively large pores were used to encapsulate hyaluronidase for rapid release. Mesoporous silica nanoparticles with relatively small pores were used to encapsulate transforming growth factor-beta 3 (TGF-ß3) for slow release. A total of 24 mature male rabbits were included. A longitudinal vertical tear (0.5 cm in length) was prepared in the avascular zone of the medial meniscus. The tear was repaired with suture, repaired with suture in addition to blank silica nanoparticles, or repaired with suture in addition to silica nanoparticles releasing hyaluronidase and TGF-ß3. Animals were sacrificed at 12 months postoperatively. Meniscal repair was evaluated macroscopically and histologically. RESULTS: The gaps between collagen bundles increased after hyaluronidase treatment, while collagenase treatment resulted in collagen disruption. Proteoglycans degraded after hyaluronidase treatment in a dose-dependent manner, but collagen integrity was maintained. Hyaluronidase treatment enhanced the migration and infiltration of cells within meniscal tissue. Last, the application of fibrin gel and the delivery system of silica nanoparticles encapsulating hyaluronidase and TGF-ß3 enhanced meniscal repair responses in an orthotopic longitudinal vertical tear model. CONCLUSION: The gradient release of hyaluronidase and TGF-ß3 removed biophysical barriers for cell migration, creating a fetal-like, loose and soft microenvironment, and enhanced the fibrochondrogenic phenotype of reparative cells, facilitating the synthesis of matrix and tissue integration. CLINICAL RELEVANCE: Modifying the adult matrix into a fetal-like, loose and soft microenvironment via the local gradient release of hyaluronidase and TGF-ß3 enhanced the healing capacity of the meniscus.


Assuntos
Hialuronoglucosaminidase , Fator de Crescimento Transformador beta3 , Animais , Masculino , Coelhos , Fibrocartilagem , Meniscos Tibiais/cirurgia , Meniscos Tibiais/patologia , Ruptura/patologia , Colágeno , Proteoglicanas , Colagenases , Dióxido de Silício
8.
Elife ; 122023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698466

RESUMO

The attachment site of the rotator cuff (RC) is a classic fibrocartilaginous enthesis, which is the junction between bone and tendon with typical characteristics of a fibrocartilage transition zone. Enthesis development has historically been studied with lineage tracing of individual genes selected a priori, which does not allow for the determination of single-cell landscapes yielding mature cell types and tissues. Here, in together with open-source GSE182997 datasets (three samples) provided by Fang et al., we applied Single-cell RNA sequencing (scRNA-seq) to delineate the comprehensive postnatal RC enthesis growth and the temporal atlas from as early as postnatal day 1 up to postnatal week 8. And, we furtherly performed single-cell spatial transcriptomic sequencing on postnatal day 1 mouse enthesis, in order to deconvolute bone-tendon junction (BTJ) chondrocytes onto spatial spots. In summary, we deciphered the cellular heterogeneity and the molecular dynamics during fibrocartilage differentiation. Combined with current spatial transcriptomic data, our results provide a transcriptional resource that will support future investigations of enthesis development at the mechanistic level and may shed light on the strategies for enhanced RC healing outcomes.


Assuntos
Condrócitos , Tendões , Animais , Camundongos , Diferenciação Celular , Fibrocartilagem , Análise de Sequência de RNA
9.
Zhonghua Bing Li Xue Za Zhi ; 52(8): 827-831, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37527988

RESUMO

Objective: To investigate the clinicopathological characteristics, immunophenotype, molecular genetics and differential diagnoses of fibrocartilaginous lipomas which consist of adipose tissue, fibrocartilage and fibrous elements. Methods: The clinicopathological features, immunohistochemical profiles and molecular profiles in six cases of fibrocartilaginous lipomas diagnosed at Foshan Traditional Chinese Medicine Hospital, Fudan University Shanghai Cancer Center, the Fifth Affiliated Hospital of Zhengzhou University and the Fourth Affiliated Hospital of Harbin Medical University from January 2017 to February 2022 were included. The follow-up information, diagnosis and differential diagnoses were evaluated. Results: There were three males and three females with a median age of 53 years (range 36-69 years) at presentation. Tumors were located in the extremities, the head and neck region and trunk; and presented as painless masses that were located in the subcutaneous tissue or deep soft tissue. Grossly, three cases were well defined with thin capsule, one case was well circumscribed without capsule, two cases were surrounded by some skeletal muscle. The tumors were composed of fatty tissue with intermingled gray-white area. The tumors ranged from 1.50-5.50 cm (mean 2.92 cm). Microscopically, the hallmark of these lesions was the complex admixture of mature adipocytes, fibrocartilage and fibrous element in varying proportions; the fibrocartilage arranged in a nodular, sheet pattern with some adipocytes inside. Tumor cells had a bland appearance without mitotic activity. Immunohistochemical analysis using antibodies to SMA, desmin, S-100, SOX9, HMGA2, RB1, CD34, adipopholin was performed in six cases; the fibrocartilage was positive for S-100 and SOX9, adipocytes were positive for S-100, adipopholin and HMGA2; CD34 was expressed in the fibroblastic cells, while desmin and SMA were negative. Loss of nuclear RB1 expression was not observed. Other genetic abnormalities had not been found yet in four cases. Follow-up information was available in six cases; there was no recurrence in five, and one patient only underwent biopsy of the mass. Conclusions: Fibrocartilaginous lipoma is a benign lipomatous tumor with mature adipocytes, fibrocartilage and fibrous elements. By immunohistochemistry, they show the expression of fat and cartilage markers. No specific molecular genetics changes have been identified so far. Familiarity with its clinicopathological features helps the distinction from its morphologic mimics.


Assuntos
Lipoma , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Desmina/análise , China , Lipoma/patologia , Fibroblastos/patologia , Proteínas S100/análise , Diagnóstico Diferencial , Fibrocartilagem/química , Fibrocartilagem/patologia , Biomarcadores Tumorais/análise
10.
Int J Oral Sci ; 15(1): 36, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626033

RESUMO

The anterior disc displacement (ADD) leads to temporomandibular joint osteoarthritis (TMJOA) and mandibular growth retardation in adolescents. To investigate the potential functional role of fibrocartilage stem cells (FCSCs) during the process, a surgical ADD-TMJOA mouse model was established. From 1 week after model generation, ADD mice exhibited aggravated mandibular growth retardation with osteoarthritis (OA)-like joint cartilage degeneration, manifesting with impaired chondrogenic differentiation and loss of subchondral bone homeostasis. Lineage tracing using Gli1-CreER+; Tmfl/-mice and Sox9-CreER+;Tmfl/-mice showed that ADD interfered with the chondrogenic capacity of Gli1+ FCSCs as well as osteogenic differentiation of Sox9+ lineage, mainly in the middle zone of TMJ cartilage. Then, a surgically induced disc reposition (DR) mouse model was generated. The inhibited FCSCs capacity was significantly alleviated by DR treatment in ADD mice. And both the ADD mice and adolescent ADD patients had significantly relieved OA phenotype and improved condylar growth after DR treatment. In conclusion, ADD-TMJOA leads to impaired chondrogenic progenitor capacity and osteogenesis differentiation of FCSCs lineage, resulting in cartilage degeneration and loss of subchondral bone homeostasis, finally causing TMJ growth retardation. DR at an early stage could significantly alleviate cartilage degeneration and restore TMJ cartilage growth potential.


Assuntos
Osteoartrite , Osteogênese , Animais , Camundongos , Proteína GLI1 em Dedos de Zinco , Fibrocartilagem , Articulação Temporomandibular , Modelos Animais de Doenças , Células-Tronco , Transtornos do Crescimento
11.
Am J Sports Med ; 51(11): 3025-3034, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37594006

RESUMO

BACKGROUND: Microfracture is the most common treatment for cartilage defects of the knee. In microfracture surgery, holes are randomly drilled into the subchondral bone. The effect of the hole's location on its interaction with the cartilage defect site and its influence on the healing process is currently uncertain. PURPOSE: To investigate the effects of different microfracture locations on healing in a rabbit knee osteochondral defect model. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 29 adult New Zealand White rabbits were divided into 5 groups. In the healthy cartilage control group (n = 5), no surgical procedure was performed. Cylindrical full-thickness cartilage defects (5 × 3 mm) were created in the patellar groove of the remaining 24 rabbits. In the defect control group (n = 6), only the defect was created. A microfracture was performed at the 12-o'clock position (group peripheral single; n = 6), centrally (group central; n = 6), and at the 12- and 6-o'clock positions (group peripheral double; n = 6) of the defect. The animals were sacrificed after 8 weeks. Cartilage healing was evaluated by International Cartilage Regeneration & Joint Preservation Society (ICRS) score, modified O'Driscoll score, immunohistochemical analysis (type 1 collagen, type 2 collagen, and aggrecan), and scanning electron microscopy analysis. RESULTS: In group peripheral double, better cartilage healing was observed in all parameters compared with the other groups (P < .05). Group peripheral double had the greatest amount of filling, with 79% of the defect area filled with fibrocartilage repair tissue. Group peripheral single demonstrated filling of 73% of the defect area, group central 56%, and the defect control group 45%. The ICRS score was significantly higher in group peripheral single compared with group central and the defect control group. Type 2 collagen and aggrecan immunoreactivity were significantly stronger in group central than group peripheral single and the defect control group (P < .05). CONCLUSION: Microfracture performed at the peripheral margin of the defect had better filling characteristics in a rabbit model. This study suggests that interaction of pluripotent cells released from the microfracture site with the intact cartilage may enhance the quality of the repair tissue. CLINICAL RELEVANCE: The location of microfracture holes in relation to the peripheral border of the osteochondral defect (to the intact cartilage) is important in both the quality and the quantity of the newly formed repair tissue.


Assuntos
Fraturas de Estresse , Fraturas Intra-Articulares , Coelhos , Animais , Agrecanas , Fibrocartilagem , Colágeno Tipo I , Colágeno Tipo II
12.
Nanoscale Horiz ; 8(10): 1313-1332, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37614124

RESUMO

With the current developmental advancements in nanotechnology, nanofibrous scaffolds are being widely used. The healing of fibrocartilaginous enthesis is a slow and complex process, and while existing treatments have a certain effect on promoting their healing, these are associated with some limitations. The nanofibrous scaffold has the advantages of easy preparation, wide source of raw materials, easy adjustment, easy modification, can mimic the natural structure and morphology of the fibrocartilaginous enthesis, and has good biocompatibility, which can compensate for existing treatments and be combined with them to promote the repair of fibrocartilaginous enthesis. The nanofibrous scaffold can promote the healing of fibrocartilaginous enthesis by controlling the morphology and ensuring controlled drug release. Hence, the use of nanofibrous scaffold with stimulative response features in the musculoskeletal system has led us to imagine its potential application in fibrocartilaginous enthesis. Therefore, the healing of fibrocartilaginous enthesis based on a nanofibrous scaffold may be a novel therapeutic approach.


Assuntos
Nanofibras , Cicatrização , Nanofibras/química , Fibrocartilagem
13.
Tissue Eng Part A ; 29(19-20): 529-540, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382424

RESUMO

For functional reconstruction of fibrocartilage, it is necessary to reproduce the essential mechanical property exhibited by natural fibrocartilage. The distinctive mechanical property of fibrocartilage is originated from the specific histological features of fibrocartilage composed of highly aligned type I collagen (Col I) and an abundant cartilaginous matrix. While the application of tensile stimulation induces highly aligned Col I, our study reveals that it also exerts an antichondrogenic effect on scaffold-free tissues constructed with meniscal chondrocytes (MCs) and induces downregulation of Sox-9 expression and attenuated glycosaminoglycan production. Modulation of mechanotransduction by blocking nuclear translocation of Yes-associated protein (YAP) ameliorated the antichondrogenic effect in the presence of tensile stimulation. Since MCs subjected to mechanical doses either by surface stiffness or tensile stimulation showed reversibility of YAP status even after a long-term exposure to mechanotransduction, fibrocartilage tissue was constructed by sequentially inducing tissue alignment by tensile stimulation followed by inducing cartilaginous matrix production in a tension-released state. The minimal tensile dose to constitute durable tissue alignment was screened by investigating the alignment of cytoskeleton and Col I after culturing the scaffold-free tissue constructs with various tensile doses (10% static tension for 1, 3, 7, and 10 days) followed by maintaining in a released state for 5 days. Fluorescence-conjugated phalloidin binding and immunofluorescence of Col I indicated that the duration of static tension for more than 7 days resulted in durable tissue alignment for at least 5 days in the tension-released state. The tissues subjected to tensile stimulation for 7 days followed by 14 days in a released state in chondrogenic media resulted in abundant cartilaginous matrix as well as uniaxial anisotropic alignment. Our results show that the optimized tensile dose can facilitate the successful reconstruction of fibrocartilage by modulating the characteristics of matrix production by MCs.


Assuntos
Colágeno Tipo I , Mecanotransdução Celular , Colágeno Tipo I/metabolismo , Engenharia Tecidual/métodos , Fibrocartilagem/metabolismo , Colágeno/metabolismo
14.
Biomater Adv ; 152: 213522, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343332

RESUMO

Current tendon/ligament reconstructions integrate via scar tissue rather than proper bone-tendon interface regeneration, which affects graft longevity, changes in bone tunnel size, and functional outcomes. The purpose of this study was to develop a functional demineralized bone matrix (DBM) + fibrocartilage extracellular matrix (FCECM) composite scaffold, characterize its physicochemical properties, and evaluate its efficacy in repairing tendon-bone interface in a rabbit tendon reconstruction model. Solubilized FCECM was loaded and crosslinked on to DBM scaffolds via gamma-irradiation to create DBM + FCECM scaffolds. The resulting scaffold showed interconnected pores coated with FCECM and protein cargo similar to FCECM. The addition of FCECM modified the physicochemical properties of the DBM scaffold, including microstructure, biochemical composition, mechanical strength, thermodynamic properties, and degradation period. The DBM + FCECM scaffold was biocompatible for mesenchymal stem cells (MSCs) and resulted in elevation of fibrochondrogenic gene markers compared to DBM scaffolds in vitro. In vivo implantation of DBM + FCECM scaffold resulted in neofibrocartilage formation, better pullout strength, and less bone tunnel widening compared to DBM only group in a rabbit tendon reconstruction model. In conclusion, the FCECM augmented DBM scaffold repairs the tendon-bone interface with osseous-fibrocartilage tissue, which may be utilized to improve current tendon reconstruction surgeries.


Assuntos
Matriz Óssea , Osso e Ossos , Animais , Coelhos , Osso e Ossos/cirurgia , Tendões/transplante , Matriz Extracelular/química , Fibrocartilagem
15.
Bone ; 174: 116818, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295663

RESUMO

The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone. We use correlative, multiscale high-resolution volume imaging methods including µCT with submicrometer resolution and FIB-SEM tomography (both with deep learning-based image segmentation), and TEM and SEM imaging, to describe ultrastructural features of physiologic, age-related and aberrant mineral patterning. We applied these approaches to murine wildtype (WT) Achilles enthesis tissues to describe in normal calcifying fibrocartilage a crossfibrillar mineral tessellation pattern similar to that observed in lamellar bone, but with greater variance in mineral tesselle morphology and size. We also examined Achilles enthesis structure in Hyp mice, a murine model for the inherited osteomalacic disease X-linked hypophosphatemia (XLH) with calcifying enthesopathy. In Achilles enthesis fibrocartilage of Hyp mice, we show defective crossfibrillar mineral tessellation similar to that which occurs in Hyp lamellar bone. At the cellular level in fibrocartilage, unlike in bone where enlarged osteocyte mineral lacunae are found as peri-osteocytic lesions, mineral lacunar volumes for fibrochondrocytes did not differ between WT and Hyp mice. While both WT and Hyp aged mice demonstrate Achilles tendon midsubstance ectopic mineralization, a consistently defective mineralization pattern was observed in Hyp mice. Strong immunostaining for osteopontin was observed at all mineralization sites examined in both WT and Hyp mice. Taken together, this new 3D ultrastructural information describes details of common mineralization trajectories for enthesis, tendon and bone, which in Hyp/XLH are defective.


Assuntos
Tendão do Calcâneo , Calcinose , Entesopatia , Raquitismo Hipofosfatêmico Familiar , Camundongos , Animais , Raquitismo Hipofosfatêmico Familiar/patologia , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/patologia , Entesopatia/diagnóstico por imagem , Entesopatia/patologia , Calcinose/patologia , Fibrocartilagem/patologia , Minerais
16.
Small ; 19(37): e2301051, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37156747

RESUMO

Condylar fibrocartilage with structural and compositional heterogeneity can efficiently orchestrate load-bearing and energy dissipation, making the temporomandibular joint (TMJ) survive high occlusion loads for a prolonged lifetime. How the thin condylar fibrocartilage can achieve efficient energy dissipation to cushion enormous stresses remains an open question in biology and tissue engineering. Here, three distinct zones in the condylar fibrocartilage are identified by analyzing the components and structure from the macro-and microscale to the nanoscale. Specific proteins are highly expressed in each zone related to its mechanics. The heterogeneity of condylar fibrocartilage can direct energy dissipation through the nano-micron-macro gradient spatial scale, by atomic force microscope (AFM), nanoindentation, dynamic mechanical analyzer assay (DMA), and the corresponding energy dissipation mechanisms are exclusive for each distinct zone. This study reveals the significance of the heterogeneity of condylar fibrocartilage in mechanical behavior and provides new insights into the research methods for cartilage biomechanics and the design of energy-dissipative materials.


Assuntos
Côndilo Mandibular , Articulação Temporomandibular , Côndilo Mandibular/metabolismo , Articulação Temporomandibular/metabolismo , Fibrocartilagem/metabolismo , Engenharia Tecidual/métodos , Fenômenos Biomecânicos
17.
Acta Biomater ; 166: 409-418, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37088163

RESUMO

A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.


Assuntos
Tendão do Calcâneo , Animais , Ratos , Osso e Ossos , Fibrocartilagem , Minerais
18.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108575

RESUMO

The goal of cartilage tissue engineering (CTE) is to regenerate new hyaline cartilage in joints and treat osteoarthritis (OA) using cell-impregnated hydrogel constructs. However, the production of an extracellular matrix (ECM) made of fibrocartilage is a potential outcome within hydrogel constructs when in vivo. Unfortunately, this fibrocartilage ECM has inferior biological and mechanical properties when compared to native hyaline cartilage. It was hypothesized that compressive forces stimulate fibrocartilage development by increasing production of collagen type 1 (Col1), an ECM protein found in fibrocartilage. To test the hypothesis, 3-dimensional (3D)-bioprinted hydrogel constructs were fabricated from alginate hydrogel impregnated with ATDC5 cells (a chondrogenic cell line). A bioreactor was used to simulate different in vivo joint movements by varying the magnitude of compressive strains and compare them with a control group that was not loaded. Chondrogenic differentiation of the cells in loaded and unloaded conditions was confirmed by deposition of cartilage specific molecules including glycosaminoglycans (GAGs) and collagen type 2 (Col2). By performing biochemical assays, the production of GAGs and total collagen was also confirmed, and their contents were quantitated in unloaded and loaded conditions. Furthermore, Col1 vs. Col2 depositions were assessed at different compressive strains, and hyaline-like cartilage vs. fibrocartilage-like ECM production was analyzed to investigate how applied compressive strain affects the type of cartilage formed. These assessments showed that fibrocartilage-like ECM production tended to reduce with increasing compressive strain, though its production peaked at a higher compressive strain. According to these results, the magnitude of applied compressive strain governs the production of hyaline-like cartilage vs. fibrocartilage-like ECM and a high compressive strain stimulates fibrocartilage-like ECM formation rather than hyaline cartilage, which needs to be addressed by CTE approaches.


Assuntos
Cartilagem Hialina , Hidrogéis , Cartilagem Hialina/metabolismo , Hidrogéis/química , Hialina/metabolismo , Fibrocartilagem/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Engenharia Tecidual/métodos , Glicosaminoglicanos/metabolismo , Condrócitos/metabolismo
19.
Am J Pathol ; 193(7): 939-949, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068637

RESUMO

The present study aimed to examine the impact of mitochondrial sirtuin 3 (SIRT3) on the degenerative rotator cuff injury, which is a prevalent issue among the elderly population primarily due to aging-related tissue degradation. The study hypothesized that SIRT3, as a major deacetylase in mitochondria, is a significant factor in controlling the quality of mitochondria and the deterioration of fibrocartilage, a crucial component of the rotator cuff. Results showed that the aging process led to weakened biomechanical properties and degeneration of the fibrocartilage layer in mice, accompanied by a decrease in SIRT3 expression. SIRT3 activation ameliorated the aging-related disruption of chondrocyte phenotype and fibrocartilage degradation. SIRT3 activator honokiol improved the phenotype of senescent chondrocytes and promoted rotator cuff healing in aged mice through SIRT3 activation. In conclusion, the findings suggested that the decline in SIRT3 levels with age contributes to rotator cuff degeneration and chondrocyte senescence, and that SIRT3 activation through the use of honokiol is an effective approach for promoting rotator cuff healing in the elderly population.


Assuntos
Lesões do Manguito Rotador , Sirtuína 3 , Idoso , Camundongos , Humanos , Animais , Lesões do Manguito Rotador/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Condrócitos/metabolismo , Envelhecimento , Fibrocartilagem/metabolismo , Mitocôndrias/metabolismo
20.
Am J Vet Res ; 84(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921024

RESUMO

OBJECTIVE: To investigate the effects of interleukin-1ß (IL-1ß) and methylprednisolone acetate (MPA) on equine intrabursal deep digital flexor tendon (DDFT) and navicular bone fibrocartilage (NBF) cells in vitro. SAMPLE: Third passage DDFT and NBF cells from 5 healthy donor horses ages 11-17 years euthanized for reasons unrelated to musculoskeletal conditions. PROCEDURES: Aggregate cultures were incubated with culture medium alone (control), 10 ng/mL IL-1ß, 10 ng/mL IL-1ß + 0.05 mg/mL MPA, or 10 ng/mL IL-1ß + 0.5 mg/mL MPA for 24 hours. Extracellular matrix (ECM) gene expressions were assessed via real-time polymerase chain reaction (rtPCR). Culture media matrix metalloproteinase (MMP) -3 and -13 concentrations were quantified via ELISA. Total glycosaminoglycan (GAG) content in the cell pellets and culture media was also assessed. RESULTS: IL-1ß and IL-1ß combined with MPA significantly downregulated ECM gene expression to a greater extent in NBF cells compared with DDFT cells. IL-1ß and IL-1ß combined with MPA significantly upregulated MMP-3 culture media concentrations in DDFT cells only, and MMP-13 culture media concentrations to a greater extent in NBF cells compared with DDFT cells. CLINICAL RELEVANCE: NBF cells were more susceptible to IL-1ß and MPA-mediated ECM gene expression downregulation in vitro. These results serve as a first step for future work to determine intrabursal corticosteroid regimens that limits or resolve the inflammation as well as take into consideration NBF cell biosynthesis in horses with navicular disease, for which currently no information exists.


Assuntos
Doenças dos Cavalos , Inflamação , Cavalos , Animais , Acetato de Metilprednisolona , Interleucina-1beta , Inflamação/veterinária , Fibrocartilagem , Tendões , Doenças dos Cavalos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...