Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.453
Filtrar
1.
Methods Mol Biol ; 2794: 201-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630231

RESUMO

During cortical development, both neurons and glial cells are generated in the germinal zone near the lateral ventricle, migrate in the correct direction, and settle in their appropriate locations. This developmental process can be clearly visualized by introducing fluorescent protein-expression vectors via in utero electroporation. In this chapter, we describe labeling methods for migrating neurons and glial progenitors, as well as methods for slice culture, and time-lapse imaging.


Assuntos
Neuroglia , Neurônios , Eletroporação , Diagnóstico por Imagem , Corantes
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612590

RESUMO

Spinal cord injury (SCI) presents a complex challenge in neurorehabilitation, demanding innovative therapeutic strategies to facilitate functional recovery. This study investigates the effects of treadmill training on SCI recovery, emphasizing motor function enhancement, neural tissue preservation, and axonal growth. Our research, conducted on a rat model, demonstrates that controlled treadmill exercises significantly improve motor functions post-SCI, as evidenced by improved scores on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and enhanced electromyography readings. Notably, the training facilitates the preservation of spinal cord tissue, effectively reducing secondary damage and promoting the maintenance of neural fibers in the injured area. A key finding is the significant stimulation of axonal growth around the injury epicenter in trained rats, marked by increased growth-associated protein 43 (GAP43) expression. Despite these advancements, the study notes a limited impact of treadmill training on motoneuron adaptation and highlights minimal changes in the astrocyte and neuron-glial antigen 2 (NG2) response. This suggests that, while treadmill training is instrumental in functional improvements post-SCI, its influence on certain neural cell types and glial populations is constrained.


Assuntos
Astrócitos , Traumatismos da Medula Espinal , Animais , Ratos , Humanos , Neuroglia , Eletromiografia , Neurônios Motores , Traumatismos da Medula Espinal/terapia , Axônios
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612777

RESUMO

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Assuntos
Glioblastoma , Glioma , Doença de Parkinson , Humanos , Glioblastoma/genética , Proteínas de Membrana/genética , Células Endoteliais , 60489 , Glioma/genética , Neuroglia , Neovascularização Patológica/genética
4.
Ned Tijdschr Geneeskd ; 1682024 Apr 09.
Artigo em Holandês | MEDLINE | ID: mdl-38601980

RESUMO

OBJECTIVE: To investigate the biological mechanisms underlying the associations of psychological stress and intestinal inflammation in inflammatory bowel disease (IBD). DESIGN: Experimental mouse models and large human cohorts have been used. METHOD: Consecutive mouse models with chemically induced colitis were used to investigate biological pathways though which psychological stress leads to gut inflammation. These results were validated in three human cohorts with patients with IBD. RESULTS: Stress induced elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia cells. These enteric glia cells produce the protein CSF1, that promotes monocyte accumulation in the intestinal mucosa and TNF-mediated intestinal inflammation. CONCLUSION: A pivotal role for the enteric nervous system (ENS) has been discovered in mediating the aggravating effect of psychological stress on intestinal inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Inflamação , Colite/induzido quimicamente , Neuroglia/metabolismo , Mucosa Intestinal/metabolismo
5.
Transl Vis Sci Technol ; 13(4): 16, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591944

RESUMO

Purpose: Myopic marmosets are known to exhibit significant inner retinal thinning compared to age-matched controls. The purpose of this study was to assess inner retinal activity in marmosets with lens-induced myopia compared to age-matched controls and evaluate its relationship with induced changes in refractive state and eye growth. Methods: Cycloplegic refractive error (Rx), vitreous chamber depth (VCD), and photopic full-field electroretinogram were measured in 14 marmosets treated binocularly with negative contact lenses compared to 9 untreated controls at different stages throughout the experimental period (from 74 to 369 days of age). The implicit times of the a-, b-, d-, and photopic negative response (PhNR) waves, as well as the saturated amplitude (Vmax), semi-saturation constant (K), and slope (n) estimated from intensity-response functions fitted with Naka-Rushton equations were analyzed. Results: Compared to controls, treated marmosets exhibited attenuated b-, d-, and PhNR waves Vmax amplitudes 7 to 14 days into treatment before compensatory changes in refraction and eye growth occurred. At later time points, when treated marmosets had developed axial myopia, the amplitudes and implicit times of the b-, d-, and PhNR waves were similar between groups. In controls, the PhNR wave saturated amplitude increased as the b + d-wave Vmax increased. This trend was absent in treated marmosets. Conclusions: Marmosets induced with negative defocus exhibit early alterations in inner retinal saturated amplitudes compared to controls, prior to the development of compensatory myopia. These early ERG changes are independent of refraction and eye size and may reflect early changes in bipolar, ganglion, amacrine, or glial cell physiology prior to myopia development. Translational Relevance: The early changes in retinal function identified in the negative lens-treated marmosets may serve as clinical biomarkers to help identify children at risk of developing myopia.


Assuntos
Miopia , Erros de Refração , Criança , Animais , Humanos , Callithrix , Neuroglia , Miopia/etiologia , Retina
6.
Cells ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607005

RESUMO

Satellite glial cells (SGCs) are the main type of glial cells in sensory ganglia. Animal studies have shown that these cells play essential roles in both normal and disease states. In a large number of pain models, SGCs were activated and contributed to the pain behavior. Much less is known about SGCs in humans, but there is emerging recognition that SGCs in humans are altered in a variety of clinical states. The available data show that human SGCs share some essential features with SGCs in rodents, but many differences do exist. SGCs in DRG from patients suffering from common painful diseases, such as rheumatoid arthritis and fibromyalgia, may contribute to the pain phenotype. It was found that immunoglobulins G (IgG) from fibromyalgia patients can induce pain-like behavior in mice. Moreover, these IgGs bind preferentially to SGCs and activate them, which can sensitize the sensory neurons, causing nociception. In other human diseases, the evidence is not as direct as in fibromyalgia, but it has been found that an antibody from a patient with rheumatoid arthritis binds to mouse SGCs, which leads to the release of pronociceptive factors from them. Herpes zoster is another painful disease, and it appears that the zoster virus resides in SGCs, which acquire an abnormal morphology and may participate in the infection and pain generation. More work needs to be undertaken on SGCs in humans, and this review points to several promising avenues for better understanding disease mechanisms and developing effective pain therapies.


Assuntos
Artrite Reumatoide , Fibromialgia , Humanos , Camundongos , Animais , Neuroglia/fisiologia , Dor , Células Receptoras Sensoriais
7.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607045

RESUMO

In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.


Assuntos
Neuroglia , Doenças Neuroinflamatórias , Humanos , Sistema Nervoso Central , Microglia/fisiologia , Astrócitos/fisiologia
8.
J Neuroinflammation ; 21(1): 92, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610019

RESUMO

Glial cells are key players in the initiation of innate immunity in neurodegeneration. Upon damage, they switch their basal activation state and acquire new functions in a context and time-dependent manner. Since modulation of neuroinflammation is becoming an interesting approach for the treatment of neurodegenerative diseases, it is crucial to understand the specific contribution of these cells to the inflammatory reaction and to select experimental models that recapitulate what occurs in the human disease. Previously, we have characterized a region-specific activation pattern of CD11b+ cells and astrocytes in the α-synuclein overexpression mouse model of Parkinson´s disease (PD). In this study we hypothesized that the time and the intensity of dopaminergic neuronal death would promote different glial activation states. Dopaminergic degeneration was induced with two administration regimens of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subacute (sMPTP) and chronic (cMPTP). Our results show that in the sMPTP mouse model, the pro-inflammatory phenotype of striatal CD11b+ cells was counteracted by an anti-inflammatory astrocytic profile. In the midbrain the roles were inverted, CD11b+ cells exhibited an anti-inflammatory profile and astrocytes were pro-inflammatory. The overall response generated resulted in decreased CD4 T cell infiltration in both regions. Chronic MPTP exposure resulted in a mild and prolonged neuronal degeneration that generated a pro-inflammatory response and increased CD4 T cell infiltration in both regions. At the onset of the neurodegenerative process, microglia and astrocytes cooperated in the removal of dopaminergic terminals. With time, only microglia maintained the phagocytic activity. In the ventral midbrain, astrocytes were the main phagocytic mediators at early stages of degeneration while microglia were the major phagocytic cells in the chronic state. In this scenario, we questioned which activation pattern recapitulates better the features of glial activation in PD. Glial activation in the cMPTP mouse model reflects many pathways of their corresponding counterparts in the human brain with advanced PD. Altogether, our results point toward a context-dependent cooperativity of microglia/myeloid cells and astrocytes in response to neuronal damage and the relevance of selecting the right experimental models for the study of neuroinflammation.


Assuntos
Neuroglia , Doenças Neuroinflamatórias , Humanos , Animais , Camundongos , Fagócitos , Astrócitos , Modelos Animais de Doenças , Dopamina , Anti-Inflamatórios
9.
Invest Ophthalmol Vis Sci ; 65(4): 10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573620

RESUMO

Purpose: In a previous study, we documented that the Intravitreal injections (IVIs) of bevacizumab in rats caused a retinal inflammatory response. We now study whether the IVI of other humanized anti-VEGF: ranibizumab and aflibercept also cause an inflammatory reaction in the rat retina and if it depends on the dose administered. Finally, we study whether this reaction affects retinal ganglion cell (RGC) survival. Methods: Albino Sprague-Dawley rats received a single IVI of 5 µL of PBS or ranibizumab or aflibercept at the concentration used in clinical practice (10 µg/µL or 40 µg/µL) or at a lower concentration (0.38 µg/µL and 1.5 µg/µL) calculated to obtain within the rat eye the same concentration as in the human eye in clinical practice. Others received a single 5 µL IVI of a polyclonal goat anti-rat VEGF (0.015 µg/µL) or of vehicle (PBS). Animals were processed 7 days or 1 month later. Retinal whole mounts were immunolabeled for the detection of microglial, macroglial, RGCs, and intrinsically photosensitive RGCs (ipRGCs). Fluorescence and confocal microscopy were used to examine retinal changes, and RGCs and ipRGCs were quantified automatically or semiautomatically, respectively. Results: All the injected substances including the PBS induced detectable side effects, namely, retinal microglial cell activation and retinal astrocyte hypertrophy. However, there was a greater microglial and macroglial response when the higher concentrations of ranibizumab and aflibercept were injected than when PBS, the antibody anti-rat VEGF and the lower concentrations of ranibizumab or aflibercept were injected. The higher concentration of ranibizumab and aflibercept resulted also in significant RGC death, but did not cause appreciable ipRGC death. Conclusions: The IVI of all the substances had some retinal inflammatory effects. The IVI of humanized anti-VEGF to rats at high doses cause important side effects: severe inflammation and RGC death, but not ipRGC death.


Assuntos
Fatores de Crescimento Endotelial , Células Ganglionares da Retina , Humanos , Ratos , Animais , Injeções Intravítreas , Ranibizumab/toxicidade , Fator A de Crescimento do Endotélio Vascular , Ratos Sprague-Dawley , Cabras , Neuroglia
10.
Nat Commun ; 15(1): 2866, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570482

RESUMO

Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.


Assuntos
Lesões Encefálicas , Ferimentos Perfurantes , Animais , Camundongos , Masculino , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo , Lesões Encefálicas/metabolismo , Córtex Cerebral/metabolismo , Ferimentos Perfurantes/complicações , Ferimentos Perfurantes/metabolismo
11.
Nat Commun ; 15(1): 2861, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570505

RESUMO

Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.


Assuntos
Caenorhabditis elegans , Neuroglia , Animais , Caenorhabditis elegans/genética , Astrócitos , Fenômenos Biomecânicos , Proteostase , Matriz Extracelular/metabolismo , Junções Intercelulares
12.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526071

RESUMO

During the development of the cerebral cortex, neurons and glial cells originate in the ventricular zone lining the ventricle and migrate toward the brain surface. This process is crucial for proper brain function, and its dysregulation can result in neurodevelopmental and psychiatric disorders after birth. In fact, many genes responsible for these diseases have been found to be involved in this process, and therefore, revealing how these mutations affect cellular dynamics is important for understanding the pathogenesis of these diseases. This protocol introduces a technique for time-lapse imaging of migrating neurons and glial progenitors in brain slices obtained from mouse embryos. Cells are labeled with fluorescent proteins using in utero electroporation, which visualizes individual cells migrating from the ventricular zone with a high signal-to-noise ratio. Moreover, this in vivo gene transfer system enables us to easily perform gain-of-function or loss-of-function experiments on the given genes by co-electroporation of their expression or knockdown/knockout vectors. Using this protocol, the migratory behavior and migration speed of individual cells, information that is never obtained from fixed brains, can be analyzed.


Assuntos
Neuroglia , Neurônios , Humanos , Animais , Camundongos , Imagem com Lapso de Tempo/métodos , Movimento Celular/fisiologia , Neurônios/fisiologia , Encéfalo , Córtex Cerebral , Eletroporação/métodos
13.
ACS Chem Neurosci ; 15(6): 1276-1285, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38454572

RESUMO

Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.


Assuntos
Ácido Aspártico , Receptores de Hidrocarboneto Arílico , Ácido Aspártico/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sódio/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Células Cultivadas
14.
Methods Mol Biol ; 2754: 499-506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512685

RESUMO

Primary murine neurons have proved to be an essential tool for the general investigation of neuronal polarity, polarized Tau distribution, and Tau-based neuronal dysfunction in disease paradigms. However, mature primary neurons are notoriously difficult to transfect with non-viral approaches and are very sensitive to cytoskeletal manipulation and imaging. Furthermore, standard non-viral transfection techniques require the use of a supportive glial monolayer or high-density cultures, both of which interfere with microscopy. Here we provide a simple non-viral liposome-based transfection method that enables transfection of Tau in low levels comparable to endogenous Tau. This allows the investigation of, for example, distribution and trafficking of Tau, without affecting other cytoskeleton-based parameters such as microtubule density or microtubule-based transport. Using this protocol, we achieve a profound transfection efficiency but avoid high overexpression rates. Importantly, this transfection method can be applied to neurons at different ages and is also suitable for very old cultures (up to 18 days in vitro). In addition, the protocol can be used in cultures without glial support and at suitable cell densities for microscopy-based single cell analysis. In sum, this protocol has proven a reliable tool suitable for most microscopy-based approaches in our laboratory.


Assuntos
Neurônios , Proteínas tau , Camundongos , Animais , Proteínas tau/genética , Proteínas tau/análise , Citoesqueleto/química , Microtúbulos/química , Neuroglia , Células Cultivadas
15.
Trends Neurosci ; 47(4): 239-240, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514350

RESUMO

A recent study by Cheung, Pauler, Koppensteiner et al. combining lineage tracing with single-cell RNA sequencing (scRNA-seq) has revealed unexpected features of the developing superior colliculus (SC). Extremely multipotent individual progenitors generate all types of SC neurons and glial cells that were found to localize in a non-predetermined pattern, demonstrating a remarkable degree of unpredictability in SC development.


Assuntos
Neurônios , Colículos Superiores , Humanos , Colículos Superiores/fisiologia , Neurônios/fisiologia , Neuroglia , Neurogênese
16.
Cell ; 187(8): 1990-2009.e19, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38513664

RESUMO

Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the cellular dynamics of MS by modeling temporal and regional rates of disease progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing single-cell spatial expression profiling using in situ sequencing (ISS), we annotated disease neighborhoods and found centrifugal evolution of active lesions. We demonstrated that disease-associated (DA)-glia arise independently of lesions and are dynamically induced and resolved over the disease course. Single-cell spatial mapping of human archival MS spinal cords confirmed the differential distribution of homeostatic and DA-glia, enabled deconvolution of active and inactive lesions into sub-compartments, and identified new lesion areas. By establishing a spatial resource of mouse and human MS neuropathology at a single-cell resolution, our study unveils the intricate cellular dynamics underlying MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Medula Espinal , Animais , Humanos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Camundongos , Análise da Expressão Gênica de Célula Única , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Neuroglia/metabolismo , Neuroglia/patologia
17.
Dev Neurobiol ; 84(2): 74-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509451

RESUMO

The organization of neurons into distinct layers, known as lamination, is a common feature of the nervous system. This process, which arises from the direct coupling of neurogenesis and neuronal migration, plays a crucial role in the development of the cerebellum, a structure exhibiting a distinct folding cytoarchitecture with cells arranged in discrete layers. Disruptions to neuronal migration can lead to various neurodevelopmental disorders, highlighting the significance of understanding the molecular regulation of lamination. We report a role Mllt11/Af1q/Tcf7c (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q, also known as Mllt11 transcriptional cofactor 7; henceforth referred to Mllt11) in the migration of cerebellar granule cells (GCs). We now show that Mllt11 plays a role in both the tangential and radial migration of GCs. Loss of Mllt11 led to an accumulation of GC precursors in the rhombic lip region and a reduction in the number of GCs successfully populating developing folia. Consequently, this results in smaller folia and an overall reduction in cerebellar size. Furthermore, analysis of the anchoring centers reveals disruptions in the perinatal folia cytoarchitecture, including alterations in the Bergmann glia fiber orientation and reduced infolding of the Purkinje cell plate. Lastly, we demonstrate that Mllt11 interacts with non-muscle myosin IIB (NMIIB) and Mllt11 loss-reduced NMIIB expression. We propose that the dysregulation of NMIIB underlies altered GC migratory behavior. Taken together, the findings reported herein demonstrate a role for Mllt11 in regulating neuronal migration within the developing cerebellum, which is necessary for its proper neuroanatomical organization.


Assuntos
Cerebelo , Estruturas Embrionárias , Metencéfalo/embriologia , Neurônios , Gravidez , Feminino , Humanos , Neurônios/metabolismo , Neuroglia/metabolismo , Movimento Celular/fisiologia
18.
Front Immunol ; 15: 1358719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533497

RESUMO

Neuroinflammation is a common pathological process in various neurological disorders, including stroke, Alzheimer's disease, Parkinson's disease, and others. It involves the activation of glial cells, particularly astrocytes, and the release of inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly secreted by activated astrocytes, which can affect neuroinflammation through various pathways. It can also act as a pro-inflammatory factor by modulating astrocyte activation and polarization through different signaling pathways, such as NF-κB, and JAK-STAT, amplifying the inflammatory response and aggravating neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic targets for neuroinflammation and related diseases. This review summarizes the current knowledge on the role mechanisms, interactions, and therapeutic implications of Lcn-2 and astrocytes in neuroinflammation.


Assuntos
Astrócitos , Doenças Neuroinflamatórias , Humanos , Astrócitos/metabolismo , Lipocalina-2/metabolismo , Inflamação/metabolismo , Neuroglia/metabolismo
19.
Glia ; 72(6): 1054-1066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450799

RESUMO

Neurons in sensory ganglia are wrapped completely by satellite glial cells (SGCs). One putative function of SGCs is to regulate the neuronal microenvironment, but this role has received only little attention. In this study we investigated whether the SGC envelope serves a barrier function and how SGCs may control the neuronal microenvironment. We studied this question on short-term (<24 h) cell cultures of dorsal root ganglia and trigeminal ganglia from adult mice, which contain neurons surrounded with SGCs, and neurons that are not. Using calcium imaging, we measured neuronal responses to molecules with established actions on sensory neurons. We found that neurons surrounded by SGCs had a smaller response to molecules such as adenosine triphosphate (ATP), glutamate, GABA, and bradykinin than neurons without glial cover. When we inhibited the activity of NTPDases, which hydrolyze the ATP, and also when we inhibited the glutamate and GABA transporters on SGCs, this difference in the neuronal response was no longer observed. We conclude that the SGC envelope does not hinder diffusional passage, but acts as a metabolic barrier that regulates the neuronal microenvironment, and can protect the neurons and modulate their activity.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Neuroglia/metabolismo , Gânglios Sensitivos , Gânglios Espinais , Glutamatos/metabolismo , Trifosfato de Adenosina/metabolismo , Células Satélites Perineuronais/metabolismo
20.
Glia ; 72(6): 1183-1200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477581

RESUMO

Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.


Assuntos
Inflamação , Mucosa Olfatória , Camundongos , Animais , Mucosa Olfatória/metabolismo , Inflamação/metabolismo , Quimiocina CXCL12/metabolismo , Perfilação da Expressão Gênica , Neuroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...