Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.560
Filtrar
1.
Front Immunol ; 15: 1359933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562929

RESUMO

T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.


Assuntos
Doenças Autoimunes , Humanos , Doenças Autoimunes/metabolismo , Timo , Timócitos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ubiquitinação
2.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466627

RESUMO

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here, we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny in mice. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.


Assuntos
Timócitos , Fatores de Transcrição , Camundongos , Animais , Timócitos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Timo/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Epitélio/metabolismo
3.
Nat Commun ; 15(1): 2194, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467629

RESUMO

The regulation of thymocyte development by RNA-binding proteins (RBPs) is largely unexplored. We identify 642 RBPs in the thymus and focus on Arpp21, which shows selective and dynamic expression in early thymocytes. Arpp21 is downregulated in response to T cell receptor (TCR) and Ca2+ signals. Downregulation requires Stim1/Stim2 and CaMK4 expression and involves Arpp21 protein phosphorylation, polyubiquitination and proteasomal degradation. Arpp21 directly binds RNA through its R3H domain, with a preference for uridine-rich motifs, promoting the expression of target mRNAs. Analysis of the Arpp21-bound transcriptome reveals strong interactions with the Rag1 3'-UTR. Arpp21-deficient thymocytes show reduced Rag1 expression, delayed TCR rearrangement and a less diverse TCR repertoire. This phenotype is recapitulated in Rag1 3'-UTR mutant mice harboring a deletion of the Arpp21 response region. These findings show how thymocyte-specific Arpp21 promotes Rag1 expression to enable TCR repertoire diversity until signals from the TCR terminate Arpp21 and Rag1 activities.


Assuntos
Receptores de Antígenos de Linfócitos T , Timócitos , Animais , Camundongos , Diferenciação Celular/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Timócitos/metabolismo , Timo/metabolismo
4.
Sci Immunol ; 9(93): eadh5318, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489350

RESUMO

Recombination activating gene (RAG) expression increases as thymocytes transition from the CD4-CD8- double-negative (DN) to the CD4+CD8+ double-positive (DP) stage, but the physiological importance and mechanism of transcriptional up-regulation are unknown. Here, we show that a DP-specific component of the recombination activating genes antisilencer (DPASE) provokes elevated RAG expression in DP thymocytes. Mouse DP thymocytes lacking the DPASE display RAG expression equivalent to that in DN thymocytes, but this supports only a partial Tcra repertoire due to inefficient secondary Vα-Jα rearrangement. These data indicate that RAG up-regulation is required for a replete Tcra repertoire and that RAG expression is fine-tuned during lymphocyte development to meet the requirements of distinct antigen receptor loci. We further show that transcription factor RORγt directs RAG up-regulation in DP thymocytes by binding to the DPASE and that RORγt influences the Tcra repertoire by binding to the Tcra enhancer. These data, together with prior work showing RORγt to control Tcra rearrangement by regulating DP thymocyte proliferation and survival, reveal RORγt to orchestrate multiple pathways that support formation of the Tcra repertoire.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Timócitos , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores de Antígenos de Linfócitos T alfa-beta , Fatores de Transcrição/genética , Expressão Gênica
5.
Front Immunol ; 15: 1321309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469297

RESUMO

Background: The thymus plays a central role in shaping human immune function. A mechanistic, quantitative description of immune cell dynamics and thymic output under homeostatic conditions and various patho-physiological scenarios are of particular interest in drug development applications, e.g., in the identification of potential therapeutic targets and selection of lead drug candidates against infectious diseases. Methods: We here developed an integrative mathematical model of thymocyte dynamics in human. It incorporates mechanistic features of thymocyte homeostasis as well as spatial constraints of the thymus and considerations of age-dependent involution. All model parameter estimates were obtained based on published physiological data of thymocyte dynamics and thymus properties in mouse and human. We performed model sensitivity analyses to reveal potential therapeutic targets through an identification of processes critically affecting thymic function; we further explored differences in thymic function across healthy subjects, multiple sclerosis patients, and patients on fingolimod treatment. Results: We found thymic function to be most impacted by the egress, proliferation, differentiation and death rates of those thymocytes which are most differentiated. Model predictions also showed that the clinically observed decrease in relapse risk with age, in multiple sclerosis patients who would have discontinued fingolimod therapy, can be explained mechanistically by decreased thymic output with age. Moreover, we quantified the effects of fingolimod treatment duration on thymic output. Conclusions: In summary, the proposed model accurately describes, in mechanistic terms, thymic output as a function of age. It may be further used to perform predictive simulations of clinically relevant scenarios which combine specific patho-physiological conditions and pharmacological interventions of interest.


Assuntos
Esclerose Múltipla , Timócitos , Humanos , Camundongos , Animais , Timócitos/metabolismo , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Cloridrato de Fingolimode/metabolismo , Timo , Diferenciação Celular , Esclerose Múltipla/metabolismo
6.
Front Immunol ; 15: 1363704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495886

RESUMO

BCL11B is a transcription factor with six C2H2-type zinc-finger domains. Studies in mice have shown that Bcl11b plays essential roles in T cell development. Several germline heterozygous BCL11B variants have been identified in human patients with inborn errors of immunity (IEI) patients. Among these, two de novo mis-sense variants cause asparagine (N) to lysine (K) replacement in distinct zinc-finger domains, BCL11BN441K and BCL11BN807K. To elucidate the pathogenesis of the BCL11BN807K variant, we generated a mouse model of BCL11BN807K by inserting the corresponding mutation, Bcl11bN797K, into the mouse genome. In Bcl11b+/N797K mice, the proportion of immature CD4-CD8+ single-positive thymocytes was increased, and the development of invariant natural killer cells was severely inhibited in a T-cell-intrinsic manner. Under competitive conditions, γδT cell development was outcompeted by control cells. Bcl11bN797K/N797K mice died within one day of birth. Recipient mice reconstituted with Bcl11bN797K/N797K fetal liver cells nearly lacked CD4+CD8+ double-positive thymocytes, which was consistent with the lack of their emergence in culture from Bcl11bN797K/N797K fetal liver progenitors. Interestingly, Bcl11bN797K/N797K progenitors gave rise to aberrant c-Kit+ and CD44+ cells both in vivo and in vitro. The increase in the proportion of immature CD8 single-positive thymocytes in the Bcl11bN797K mutants is caused, in part, by the inefficient activation of the Cd4 gene due to the attenuated function of the two Cd4 enhancers via distinct mechanisms. Therefore, we conclude that immunodeficient patient-derived Bcl11bN797K mutant mice elucidated a novel role for Bcl11b in driving the appropriate transition of CD4-CD8- into CD4+CD8+ thymocytes.


Assuntos
Proteínas Repressoras , Timócitos , Animais , Humanos , Camundongos , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Zinco
8.
Mol Biol Rep ; 51(1): 277, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319443

RESUMO

BACKGROUND: The most widely used food additive monosodium glutamate (MSG) has been linked to immunopathology. Conversely, quercetin (Q), a naturally occurring flavonoid has been demonstrated to have immunomodulatory functions. Therefore, the purpose of the study is to determine if quercetin can mitigate the deleterious effects of MSG on immune cells, and the possible involvement of TLR, if any.  METHODS AND RESULTS: This study was conducted on Q, to determine how it affects the inflammatory response triggered by MSG in primary cultured thymocytes and splenocytes from rats (n = 5). Q shielded cells by augmenting cell survival and decreasing lactate dehydrogenase leakage during MSG treatment. It decreased IL-1ß, IL-6, IL-8, and TNF-α expression and release by hindering NF-kB activation and by inhibiting the JAK/STAT pathway. Moreover, Q prevented NLRP3 activation, lowered IL-1ß production, and promoted an anti-inflammatory response by increasing IL-10 production. Q reduced MSG-induced cellular stress and inflammation by acting as an agonist for PPAR-γ and LXRα, preventing NF-kB activation, and lowering MMP-9 production via increasing TIMP-1. Additionally, Q neutralized free radicals, elevated intracellular antioxidants, and impeded RIPK3, which is involved in inflammation induced by oxidative stress, TNF-α, and TLR agonists in MSG-treated cells. Furthermore, it also modulated TYK2 and the JAK/STAT pathway, which exhibited an anti-inflammatory effect. CONCLUSIONS: MSG exposure is associated with immune cell dysfunction, inflammation, and oxidative stress, and Q modulates TLR to inhibit NF-kB and JAK/STAT pathways, providing therapeutic potential. Further research is warranted to understand Q's downstream effects and explore its potential clinical applications in inflammation.


Assuntos
NF-kappa B , Transdução de Sinais , Animais , Ratos , Anti-Inflamatórios , Inflamação/induzido quimicamente , Janus Quinases , Quercetina/farmacologia , Glutamato de Sódio/toxicidade , Baço , Fatores de Transcrição STAT , Timócitos , Fator de Necrose Tumoral alfa
9.
Front Immunol ; 15: 1339787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384475

RESUMO

Introduction: The development and migration of T cells in the thymus and peripheral tissues are crucial for maintaining adaptive immunity in mammals. However, the regulatory mechanisms underlying T cell development and thymocyte identity formation in pigs remain largely underexplored. Method: Here, by integrating bulk and single-cell RNA-sequencing data, we investigated regulatory signatures of porcine thymus and lymph node T cells. Results: The comparison of T cell subpopulations derived from porcine thymus and lymph nodes revealed that their transcriptomic differences were influenced more by tissue origin than by T cell phenotypes, and that lymph node cells exhibited greater transcriptional diversity than thymocytes. Through weighted gene co-expression network analysis (WGCNA), we identified the key modules and candidate hub genes regulating the heterogeneity of T cell subpopulations. Further, we integrated the porcine thymocyte dataset with peripheral blood mononuclear cell (PBMC) dataset to systematically compare transcriptomic differences between T cell types from different tissues. Based on single-cell datasets, we further identified the key transcription factors (TFs) responsible for maintaining porcine thymocyte identity and unveiled that these TFs coordinately regulated the entire T cell development process. Finally, we performed GWAS of cell type-specific differentially expressed genes (DEGs) and 30 complex traits, and found that the DEGs in thymus-related and peripheral blood-related cell types, especially CD4_SP cluster and CD8-related cluster, were significantly associated with pig productive and reproductive traits. Discussion: Our findings provide an insight into T cell development and lay a foundation for further exploring the porcine immune system and genetic mechanisms underlying complex traits in pigs.


Assuntos
Leucócitos Mononucleares , Timócitos , Suínos , Animais , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Mamíferos
10.
Front Immunol ; 15: 1322214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318192

RESUMO

Thymus is the main immune organ which is responsible for the production of self-tolerant and functional T cells, but it shrinks rapidly with age after birth. Although studies have researched thymus development and involution in mouse, the critical regulators that arise with age in human thymus remain unclear. We collected public human single-cell transcriptomic sequencing (scRNA-seq) datasets containing 350,678 cells from 36 samples, integrated them as a cell atlas of human thymus. Clinical samples were collected and experiments were performed for validation. We found early thymocyte-specific signaling and regulons which played roles in thymocyte migration, proliferation, apoptosis and differentiation. Nevertheless, signaling patterns including number, strength and path completely changed during aging, Transcription factors (FOXC1, MXI1, KLF9, NFIL3) and their target gene, IGFBP5, were resolved and up-regulated in aging thymus and involved in promoting epithelial-mesenchymal transition (EMT), responding to steroid and adipogenesis process of thymic epithelial cell (TECs). Furthermore, we validated that IGFBP5 protein increased at TECs and Hassall's corpuscle in both human and mouse aging thymus and knockdown of IGFBP5 significantly increased the expression of proliferation-related genes in thymocytes. Collectively, we systematically explored cell-cell communications and regulons of early thymocytes as well as age-related differences in human thymus by using both bioinformatic and experimental verification, indicating IGFBP5 as a functional marker of thymic involution and providing new insights into the mechanisms of thymus involution.


Assuntos
Envelhecimento , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina , Timócitos , Timo , Humanos , Envelhecimento/genética , Diferenciação Celular/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Transdução de Sinais , Timócitos/metabolismo , Timo/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética
11.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256161

RESUMO

The thymus is one of the most crucial immunological organs, undergoing visible age-related shrinkage. Thymic epithelial cells (TECs) play a vital role in maintaining the normal function of the thymus, and their degeneration is the primary cause of age-induced thymic devolution. Thymosin ß4 (Tß4) serves as a significant important G-actin sequestering peptide. The objective of this study was to explore whether Tß4 influences thymocyte differentiation by regulating the cytoskeletal rearrangement and mitochondrial transfer of TECs. A combination of H&E staining, immunofluorescence, transmission electron microscopy, RT-qPCR, flow cytometry, cytoskeletal immunolabeling, and mitochondrial immunolabeling were employed to observe the effects of Tß4 on TECs' skeleton rearrangement, mitochondrial transfer, and thymocyte differentiation. The study revealed that the Tß4 primarily regulates the formation of microfilaments and the mitochondrial transfer of TECs, along with the formation and maturation of double-negative cells (CD4-CD8-) and CD4 single-positive cells (CD3+TCRß+CD4+CD8-) thymocytes. This study suggests that Tß4 plays a crucial role in thymocyte differentiation by influencing the cytoskeletal rearrangement and mitochondrial transfer of TECs. These effects may be associated with Tß4's impact on the aggregation of F-actin. This finding opens up new avenues for research in the field of immune aging.


Assuntos
Timócitos , Timosina , Citoesqueleto , Células Epiteliais , Actinas
12.
Nat Struct Mol Biol ; 31(1): 54-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177672

RESUMO

THEMIS plays an indispensable role in T cells, but its mechanism of action has remained highly controversial. Using the systematic proximity labeling methodology PEPSI, we identify THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis assays and mass spectrometry analysis reveal that phosphorylation of THEMIS at the evolutionally conserved Tyr34 residue is oppositely regulated by SHP1 and the kinase LCK. Similar to THEMIS-/- mice, THEMISY34F/Y34F knock-in mice show a significant decrease in CD4 thymocytes and mature CD4 T cells, but display normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, the Tyr34 motif in THEMIS, when phosphorylated upon T cell antigen receptor activation, appears to act as an allosteric regulator, binding and stabilizing SHP1 in its active conformation, thus ensuring appropriate negative regulation of T cell antigen receptor signaling. However, cytokine signaling in CD8 T cells fails to elicit THEMIS Tyr34 phosphorylation, indicating both Tyr34 phosphorylation-dependent and phosphorylation-independent roles of THEMIS in controlling T cell maturation and expansion.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Timócitos , Camundongos , Animais , Camundongos Knockout , Timócitos/metabolismo , Receptores de Antígenos de Linfócitos T , Transdução de Sinais
13.
Nat Immunol ; 25(1): 54-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062135

RESUMO

The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.


Assuntos
Ácido Oleico , Timócitos , Animais , Camundongos , Ácido Oleico/metabolismo , Timo , Linfócitos T Reguladores , Diferenciação Celular , Fatores de Transcrição Forkhead/genética
14.
J Leukoc Biol ; 115(2): 306-321, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-37949818

RESUMO

The role of natural killer group 2D (NKG2D) in peripheral T cells as a costimulatory receptor is well established. However, its contribution to T cell thymic education and functional imprint is unknown. Here, we report significant changes in development, receptor signaling, transcriptional program, and function in T cells from mice lacking NKG2D signaling. In C57BL/6 (B6) and OT-I mice, we found that NKG2D deficiency results in Vß chain usage changes and stagnation of the double-positive stage in thymic T cell development. We found that the expression of CD5 and CD45 in thymocytes from NKG2D deficient mice were reduced, indicating a direct influence of NKG2D on the strength of T cell receptor (TCR) signaling during the developmental stage of T cells. Depicting the functional consequences of NKG2D, peripheral OT-I NKG2D-deficient cells were unresponsive to ovalbumin peptide stimulation. Paradoxically, while αCD3/CD28 agonist antibodies led to phenotypic T cell activation, their ability to produce cytokines remained severely compromised. We found that OT-I NKG2D-deficient cells activate STAT5 in response to interleukin-15 but were unable to phosphorylate ERK or S6 upon TCR engagement, underpinning a defect in TCR signaling. Finally, we showed that NKG2D is expressed in mouse and human thymic T cells at the double-negative stage, suggesting an evolutionarily conserved function during T cell development. The data presented in this study indicate that NKG2D impacts thymic T cell development at a fundamental level by reducing the TCR threshold and affecting the functional imprint of the thymic progeny. In summary, understanding the impact of NKG2D on thymic T cell development and TCR signaling contributes to our knowledge of immune system regulation, immune dysregulation, and the design of immunotherapies.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Timo , Animais , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Timócitos , Receptores de Antígenos de Linfócitos T
15.
Hematol Oncol ; 42(1): e3224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712442

RESUMO

Myelodysplastic syndromes (MDS) patients often experience CD8+ T lymphocytes exhaustion, which plays a crucial role in the development of MDS. However, the specific role of thymocyte selection-associated high mobility box protein (TOX) in the CD8+ T lymphocytes exhaustion in MDS patients remains unclear. In this study, we investigated the role of TOX in CD8+ T lymphocytes exhaustion in patients with MDS. The expression of TOX, inhibitory receptors (IRs), and functional molecules in peripheral blood T lymphocytes of MDS patients and normal controls were detected using flow cytometry. Lentiviral transduction was used to create stable TOX-knockdown CD8+ T lymphocytes, and small interfering RNA (si-RNA) was used to knock down TOX in Jurkat cells. The expression of TOX was found to be significantly higher in CD8+ T lymphocytes of MDS patients compared to normal controls. This was associated with upregulated IRs and reduced expression of functional molecules such as Granzyme and Perforin. Myelodysplastic syndromes patients with higher TOX expression had poor clinical indicators and shorter survival. Knockdown of TOX using sh-RNA partially reverses the exhausted phenotype and enhances the lethality of CD8+ T lymphocytes. Moreover, the knockdown of TOX using si-RNA in Jurkat cells improved cell proliferation activity, down-regulated IRs and activated PI3K/AKT/mTOR signaling pathway. TOX promotes the exhaustion of CD8+ T lymphocytes by inhibiting PI3K/AKT/mTOR pathway, and targeted inhibition of TOX could partially restore the effector functions and activity of CD8+ T lymphocytes.


Assuntos
Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Timócitos/metabolismo , Serina-Treonina Quinases TOR , RNA/metabolismo
16.
J Leukoc Biol ; 115(2): 401-409, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-37742056

RESUMO

Invariant natural killer T cells are a rare, heterogeneous T-cell subset with cytotoxic and immunomodulatory properties. During thymic development, murine invariant natural killer T cells go through different maturation stages differentiating into distinct sublineages, namely, invariant natural killer T1, 2, and 17 cells. Recent reports indicate that invariant natural killer T2 cells display immature properties and give rise to other subsets, whereas invariant natural killer T1 cells seem to be terminally differentiated. Whether human invariant natural killer T cells follow a similar differentiation model is still unknown. To define the maturation stages and assess the sublineage commitment of human invariant natural killer T cells during thymic development, in this study, we performed single-cell RNA sequencing analysis on human Vα24+Vß11+ invariant natural killer T cells isolated from thymocytes. We show that these invariant natural killer T cells displayed heterogeneity, and our unsupervised analysis identified 5 clusters representing different maturation stages, from an immature profile with high expression of genes important for invariant natural killer T cell development and proliferation to a mature, fully differentiated profile with high levels of cytotoxic effector molecules. Evaluation of expression of sublineage-defining gene sets revealed mainly cells with an invariant natural killer T2 signature in the most immature cluster, whereas the more differentiated ones displayed an invariant natural killer T1 signature. Combined analysis with a publicly available single-cell RNA sequencing data set of human invariant natural killer T cells from peripheral blood suggested that the 2 main subsets exist both in thymus and in the periphery, while a third more immature one was restricted to the thymus. Our data point to the existence of different maturation stages of human thymic invariant natural killer T cells and provide evidence for sublineage commitment of invariant natural killer T cells in the human thymus.


Assuntos
Células T Matadoras Naturais , Humanos , Camundongos , Animais , Células T Matadoras Naturais/metabolismo , Timo , Timócitos , Subpopulações de Linfócitos T , Diferenciação Celular/genética , Perfilação da Expressão Gênica
17.
Methods Mol Biol ; 2749: 1-6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38133769

RESUMO

Primary cell culture systems are widely used as a valuable method for analyzing the biological functions of specific cells in vitro. Recently, various serum-free primary cell culture methods have been developed that do not involve the use of animal serums. Since the thymus is comprised of many cell types, such as thymocytes, thymic epithelial cells, macrophages, and fibroblasts, thymic epithelial cells must be isolated for their functional analysis in vitro. This chapter describes the detailed protocol for the selective primary culture of thymic epithelial cells using defined serum-free medium.


Assuntos
Células Epiteliais , Timo , Camundongos , Animais , Timócitos , Técnicas de Cultura de Células , Fibroblastos , Diferenciação Celular
18.
Biochim Biophys Acta Gen Subj ; 1868(1): 130523, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006987

RESUMO

Inorganic polyphosphate (polyP) is an ancient polymer, which was proven to be a signalling molecule in the mammalian brain, mediating the communication between astrocytes via activation of P2Y1 purinoreceptors and modulating the activity of neurons. There is very limited information regarding the ability of polyP to transmit the information as an agonist of purinoreceptors in other cells and tissues. Here, we show that application of polyP to the suspension of primary thymocytes increases the concentration of intracellular calcium. PolyP evoked calcium signal was dependent on the presence of P2X inhibitors but not P2Y1 inhibitor. PolyP dependent increase in intracellular calcium concentration caused mild mitochondrial depolarization, which was dependent on inhibitors of purinoreceptors, extracellular calcium and inhibitor of mitochondrial calcium uniporter but wasn't dependent on cyclosporin A. Application of polyP modulated cell volume regulation machinery of thymocytes in calcium dependent manner. Molecular docking experiments revealed that polyP can potentially bind to several types of P2X receptors with binding energy similar to ATP - natural agonist of P2X purinoreceptors. Further molecular dynamics simulations with P2X4 showed that binding of one molecule of polyP dramatically increases permeability of this receptor-channel for water molecules. Thus, in this research we for the first time showed that polyP can interact with P2X receptors in thymocytes and modulate physiological processes.


Assuntos
Cálcio , Polifosfatos , Animais , Cálcio/metabolismo , Polifosfatos/farmacologia , Simulação de Acoplamento Molecular , Timócitos/metabolismo , Transdução de Sinais , Mamíferos/metabolismo
19.
J Immunol ; 212(4): 534-540, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38117277

RESUMO

In jawed vertebrates, adaptive immunity depends on the process of V(D)J recombination creating vast numbers of T and B lymphocytes that each expresses unique Ag receptors of uniform specificity. The asynchronous initiation of V-to-(D)J rearrangement between alleles and the resulting protein from one allele signaling feedback inhibition of V recombination on the other allele ensures homogeneous receptor specificity of individual cells. Upon productive Vß-to-DßJß rearrangements in noncycling double-negative thymocytes, TCRß protein signals induction of the cyclin D3 protein to accelerate cell cycle entry, thereby driving proliferative expansion of developing αß T cells. Through undetermined mechanisms, the inactivation of cyclin D3 in mice causes an increased frequency of αß T cells that express TCRß proteins from both alleles, producing lymphocytes of heterogeneous specificities. To determine how cyclin D3 enforces monogenic TCRß expression, we used our mouse lines with enhanced rearrangement of specific Vß segments due to replacement of their poor-quality recombination signal sequence (RSS) DNA elements with a better RSS. We show that cyclin D3 inactivation in these mice elevates the frequencies of αß T cells that display proteins from RSS-augmented Vß segments on both alleles. By assaying mature αß T cells, we find that cyclin D3 deficiency increases the levels of Vß rearrangements that occur within developing thymocytes. Our data demonstrate that a component of the cell cycle machinery mediates TCRß protein-signaled feedback inhibition in thymocytes to achieve monogenic TCRß expression and resulting uniform specificity of individual αß T cells.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Timócitos , Animais , Camundongos , Alelos , Ciclina D3/genética , Retroalimentação , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Linfócitos , Receptores de Antígenos de Linfócitos T alfa-beta/genética
20.
Leukemia ; 38(3): 491-501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155245

RESUMO

T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Camundongos , Animais , Fatores de Transcrição/genética , Timócitos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Timo/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...