Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.473
Filtrar
1.
PDA J Pharm Sci Technol ; 78(2): 206-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38609149

RESUMO

The Cell Banks, Advanced Technologies (ATMPs, NGS) session at the 2023 Viral Clearance Symposium (VCS) focused on the assurance of high virus safety profiles of advanced technology medicinal products (ATMPs) by implementation of advanced virus detection methods using rapid and sensitive technologies, such as next-generation sequencing (NGS). All presentations in this session made the need to replace in vivo testing for viruses by new technologies that have been demonstrated to be incomparably broad in their detection capabilities and can even detect unknown viruses. An evaluation of historical data collected by the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) from their members' in vivo and in vitro adventitious virus test experience as well as on using NGS was presented. The data convincingly supported the necessity to replace in vivo testing with faster, broader, more sensitive, more accurate, and more specific virus detection methods. Additionally, a collaborative study-initiated by the CAACB-with the goal to revisit traditional adventitious agent testing by using targeted NGS to replace in vivo and in vitro tests for well-known and broadly used Chinese hamster ovary (CHO) cells was presented, including the planned risk-assessment approach using prior knowledge and historical data. Overall, this session demonstrated that the use of new virus detection methods, such as NGS, represents a great opportunity to provide sufficient viral safety margins, specifically, for ATMPs, where downstream virus clearance is not possible. This path forward is also supported by the final ICH Q5A(R2) guideline.


Assuntos
Contaminação de Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Cricetinae , Células CHO , Cricetulus , Contaminação de Medicamentos/prevenção & controle , Tecnologia
2.
Monoclon Antib Immunodiagn Immunother ; 43(2): 59-66, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593439

RESUMO

The C-X-C motif chemokine receptor-1 (CXCR1) is a rhodopsin-like G-protein-coupled receptor, expressed on the cell surface of immune cells and tumors. CXCR1 interacts with some C-X-C chemokines, such as CXCL6, CXCL7, and CXCL8/interleukin-8, which are produced by various cells. Since CXCR1 is involved in several diseases including tumors and diabetes mellitus, drugs targeting CXCR1 have been developed. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CXCR1 has been desired for the diagnosis and treatment. This study established a novel anti-mouse CXCR1 (mCXCR1) mAb, Cx1Mab-1 (rat IgG1, kappa), using the Cell-Based Immunization and Screening method. Cx1Mab-1 reacted with mCXCR1-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR1) and mCXCR1-overexpressed LN229 glioblastoma (LN229/mCXCR1) in flow cytometry. Cx1Mab-1 demonstrated a high binding affinity for CHO/mCXCR1 and LN229/mCXCR1 with a dissociation constant of 2.6 × 10-9 M and 2.1 × 10-8 M, respectively. Furthermore, Cx1Mab-1 could detect mCXCR1 by Western blot analysis. These results indicated that Cx1Mab-1 is useful for detecting mCXCR1, and provides a possibility for targeting mCXCR1-expressing cells in vivo experiments.


Assuntos
Anticorpos Monoclonais , Neoplasias , Cricetinae , Animais , Ratos , Citometria de Fluxo , Células CHO , Cricetulus
3.
Monoclon Antib Immunodiagn Immunother ; 43(2): 53-58, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593441

RESUMO

The giant panda (Ailuropoda melanoleuca) is one of the important species in worldwide animal conservation. Because it is essential to understand the disease of giant panda for conservation, histopathological analyses of tissues are important to understand the pathogenesis. However, monoclonal antibodies (mAbs) against giant panda-derived proteins are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. PDPN is also overexpressed in various human tumors, which are associated with poor prognosis. Here, an anti-giant panda PDPN (gpPDPN) mAb, PMab-314 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening method. PMab-314 recognized N-terminal PA16-tagged gpPDPN-overexpressed Chinese hamster ovary-K1 cells (CHO/PA16-gpPDPN) in flow cytometry. The KD value of PMab-314 for CHO/PA16-gpPDPN was determined as 1.3 × 10-8 M. Furthermore, PMab-314 is useful for detecting gpPDPN in western blot analysis. These findings indicate that PMab-314 is a useful tool for the analyses of gpPDPN-expressed cells.


Assuntos
Anticorpos Monoclonais , Ursidae , Cricetinae , Camundongos , Animais , Humanos , Cricetulus , Células CHO , Células Endoteliais/metabolismo , Glicoproteínas de Membrana , Especificidade de Anticorpos , Fatores de Transcrição
4.
Appl Microbiol Biotechnol ; 108(1): 285, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573360

RESUMO

CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.


Assuntos
Proteínas Oncogênicas , Proteínas de Sinalização YAP , Animais , Cricetinae , Células CHO , Cricetulus , Fatores de Transcrição/genética , Divisão Celular , Serina-Treonina Quinases TOR
5.
Biotechnol J ; 19(3): e2400063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528344

RESUMO

The effective design of perfusion cell culture is currently challenging regarding balancing the operating parameters associated with the hydrodynamic conditions due to increased system complexity. To address this issue, cellular responses of an industrial CHO cell line to different types of hydrodynamic stress in benchtop perfusion bioreactors originating from agitation, sparging, and hollow fibers (HF) in the cell retention devices were systematically investigated here with the analysis of cell lysis. It was found that cell lysis was very common and most associated with the sparging stress, followed by the HF and lastly the agitation, consequently heavily impacting the estimation of process descriptors related to biomass. The results indicated that the agitation stress led to a reduced cell growth with a shift toward a more productive phenotype, suggesting an energy redirection from biomass formation to product synthesis, whereas the sparging stress had a small impact on the intracellular metabolic flux distribution but increased the cell death rate drastically. For HF stress, a similar cell maintenance profile was found as the sparging while the activity of glycolysis and the TCA cycle was significantly impeded, potentially leading to the lack of energy and thus a substantial decrease in cell-specific productivity. Moreover, a novel concept of volume average shear stress was developed to further understand the relations of different types of stress and the observed responses for an improved insight for the perfusion cell culture.


Assuntos
Reatores Biológicos , Hidrodinâmica , Cricetinae , Animais , Técnicas de Cultura de Células/métodos , Células CHO , Cricetulus , Perfusão
6.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542369

RESUMO

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Assuntos
Arrestina , Histamina , Animais , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacologia , Histamina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais
7.
J Chromatogr A ; 1721: 464806, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38518514

RESUMO

Monoclonal antibodies (mAbs) continue to dominate the biopharmaceutical industry. Certain mAbs are prone to fragmentation and clipping and in these cases, adequate removal of these species is critical during manufacturing. Fragments can be generated during fermentation, purification, storage, formulation, and administration. Their addition to the acidic charge-variant of the purified mAb has been reported to decrease stability and potency of the final product. However, contrary to mAb aggregation, manufacturers have not given much attention to removal of fragments and clipped species and as a result most conventional mAb platforms offer at best limited capabilities for their removal. In this study, we propose a novel purification platform that uses multimodal chromatography and achieves complete removal of a range of mAb fragments and clipped products (25-120 kDa). The utility of the platform has been successfully demonstrated for 2 IgG1s and 2 IgG4s. Further, adequate removal of the various host cell impurities such as host cell proteins (<10 ppm) and host cell DNA (<5 ppb) has been achieved. Finally, the platform was able to deliver adequate removal of high molecular weight impurities (<1 %) and a 30 % clearance of the acidic charge variant. The proposed single step has been shown to deliver what the polishing chromatography and intermediate purification chromatography steps deliver in a traditional mAb platform.


Assuntos
Anticorpos Monoclonais , Cromatografia , Cricetinae , Animais , Peso Molecular , Comércio , Células CHO , Cricetulus
8.
Biotechnol Bioeng ; 121(5): 1716-1728, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454640

RESUMO

Host cell proteins (HCPs) are process-related impurities of therapeutic proteins produced in for example, Chinese hamster ovary (CHO) cells. Protein A affinity chromatography is the initial capture step to purify monoclonal antibodies or Fc-based proteins and is most effective for HCP removal. Previously proposed mechanisms that contribute to co-purification of HCPs with the therapeutic protein are either HCP-drug association or leaching from chromatin heteroaggregates. In this study, we analyzed protein A eluates of 23 Fc-based proteins by LC-MS/MS to determine their HCP content. The analysis revealed a high degree of heterogeneity in the number of HCPs identified in the different protein A eluates. Among all identified HCPs, the majority co-eluted with less than three Fc-based proteins indicating a drug-specific co-purification for most HCPs. Only ten HCPs co-purified with over 50% of the 23 Fc-based proteins. A correlation analysis of HCPs identified across multiple protein A eluates revealed their co-elution as HCP groups. Functional annotation and protein interaction analysis confirmed that some HCP groups are associated with protein-protein interaction networks. Here, we propose an additional mechanism for HCP co-elution involving protein-protein interactions within functional networks. Our findings may help to guide cell line development and to refine downstream purification strategies.


Assuntos
Proteína Estafilocócica A , Espectrometria de Massas em Tandem , Cricetinae , Animais , Cricetulus , Cromatografia Líquida , Células CHO , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química
9.
Appl Microbiol Biotechnol ; 108(1): 274, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530495

RESUMO

The pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA). PQAs may affect the products' efficacy via stability, bioavailability, or in vivo bioactivity. Variations in manufacturing process may introduce heterogeneity in the products by altering the type and extent of N-glycosylation, which is a PQA of therapeutic proteins. We investigated the effect of different cell densities representing increasing process intensification in a perfusion cell culture on the production of an IgG1-κ monoclonal antibody from a CHO-K1 cell line. This antibody is glycosylated both on light chain and heavy chain. Our results showed that the contents of glycosylation of IgG1-κ mAb increased in G0F and fucosylated type glycans as a group, whereas sialylated type glycans decreased, for the mAb whole protein. Overall, significant differences were observed in amounts of G0F, G1F, G0, G2FS1, and G2FS2 type glycans across all process intensification levels. G2FS2 and G2 type N-glycans were predominantly quantifiable from light chain rather than heavy chain. It may be concluded that there is a potential impact to product quality attributes of therapeutic proteins during process intensification via perfusion cell culture that needs to be assessed. Since during perfusion cell culture the product is collected throughout the duration of the process, lot allocation needs careful attention to process parameters, as PQAs are affected by the critical process parameters (CPPs). KEY POINTS: • Molecular integrity may suffer with increasing process intensity. • Galactosylated and sialylated N-glycans may decrease. • Perfusion culture appears to maintain protein charge structure.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Cricetinae , Animais , Células CHO , Cricetulus , Perfusão , Polissacarídeos/química
10.
Proc Natl Acad Sci U S A ; 121(14): e2304897121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547061

RESUMO

While the existence and functional role of class C G-protein-coupled receptors (GPCR) dimers is well established, there is still a lack of consensus regarding class A and B GPCR multimerization. This lack of consensus is largely due to the inherent challenges of demonstrating the presence of multimeric receptor complexes in a physiologically relevant cellular context. The C-X-C motif chemokine receptor 4 (CXCR4) is a class A GPCR that is a promising target of anticancer therapy. Here, we investigated the potential of CXCR4 to form multimeric complexes with other GPCRs and characterized the relative size of the complexes in a live-cell environment. Using a bimolecular fluorescence complementation (BiFC) assay, we identified the ß2 adrenergic receptor (ß2AR) as an interaction partner. To investigate the molecular scale details of CXCR4-ß2AR interactions, we used a time-resolved fluorescence spectroscopy method called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS can resolve membrane protein density, diffusion, and multimerization state in live cells at physiological expression levels. We probed CXCR4 and ß2AR homo- and heteromultimerization in model cell lines and found that CXCR4 assembles into multimeric complexes larger than dimers in MDA-MB-231 human breast cancer cells and in HCC4006 human lung cancer cells. We also found that ß2AR associates with CXCR4 multimers in MDA-MB-231 and HCC4006 cells to a higher degree than in COS-7 and CHO cells and in a ligand-dependent manner. These results suggest that CXCR4-ß2AR heteromers are present in human cancer cells and that GPCR multimerization is significantly affected by the plasma membrane environment.


Assuntos
Neoplasias , Receptores Adrenérgicos beta 2 , Receptores CXCR4 , Transdução de Sinais , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Multimerização Proteica
11.
Monoclon Antib Immunodiagn Immunother ; 43(2): 67-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512465

RESUMO

C-C motif chemokine receptor 1 (CCR1/CD191) is a member of G-protein-coupled receptors and is expressed on myeloid cells, such as neutrophils and macrophages. Because the CCR1 signaling promotes tumor expansion in the tumor microenvironment (TME), the modification of TME is an effective strategy for cancer therapy. Although CCR1 is an attractive target for solid tumors and hematological malignancies, therapeutic agents for CCR1 have not been approved. Here, we established a novel anti-mouse CCR1 (mCCR1) monoclonal antibody (mAb), C1Mab-6 (rat IgG2b, kappa), using the Cell-Based Immunization and Screening method. Flow cytometry and Western blot analyses showed that C1Mab-6 recognizes mCCR1 specifically. The dissociation constant of C1Mab-6 for mCCR1-overexpressed Chinese hamster ovary-K1 was determined as 3.9 × 10-9 M, indicating that C1Mab-6 possesses a high affinity to mCCR1. These results suggest that C1Mab-6 could be a useful tool for targeting mCCR1 in preclinical mouse models.


Assuntos
Anticorpos Monoclonais , Macrófagos , Animais , Cricetinae , Camundongos , Ratos , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetulus
12.
J Hazard Mater ; 469: 133989, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461660

RESUMO

Drinking water disinfection can result in the formation disinfection byproducts (DBPs, > 700 have been identified to date), many of them are reportedly cytotoxic, genotoxic, or developmentally toxic. Analyzing the toxicity levels of these contaminants experimentally is challenging, however, a predictive model could rapidly and effectively assess their toxicity. In this study, machine learning models were developed to predict DBP cytotoxicity based on their chemical information and exposure experiments. The Random Forest model achieved the best performance (coefficient of determination of 0.62 and root mean square error of 0.63) among all the algorithms screened. Also, the results of a probabilistic model demonstrated reliable model predictions. According to the model interpretation, halogen atoms are the most prominent features for DBP cytotoxicity compared to other chemical substructures. The presence of iodine and bromine is associated with increased cytotoxicity levels, while the presence of chlorine is linked to a reduction in cytotoxicity levels. Other factors including chemical substructures (CC, N, CN, and 6-member ring), cell line, and exposure duration can significantly affect the cytotoxicity of DBPs. The similarity calculation indicated that the model has a large applicability domain and can provide reliable predictions for DBPs with unknown cytotoxicity. Finally, this study showed the effectiveness of data augmentation in the scenario of data scarcity.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cricetinae , Desinfecção , Desinfetantes/toxicidade , Desinfetantes/análise , Halogenação , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Halogênios , Cloro , Água Potável/análise , Células CHO
13.
Vaccine ; 42(10): 2530-2542, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503664

RESUMO

Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinas de Partículas Semelhantes a Vírus , Cricetinae , Animais , Humanos , Células CHO , Cricetulus , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Herpesvirus Humano 3 , Vacinas de Subunidades
14.
J Pharm Biomed Anal ; 242: 116009, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354541

RESUMO

Many methods using liquid chromatography-mass spectrometry (LC-MS) have been established for identifying residual host cell proteins (HCPs) to aid in the process development and quality control of therapeutic proteins. However, the use of MS-based techniques for adeno-associated virus (AAV) is still in its infancy, with few methods reported and minimal information available on potentially problematic HCPs. In this study, we developed a highly sensitive and effective differential digestion method to profile residual HCPs in AAV. Unlike direct digestion, which completely digests both AAV and HCPs, our differential digestion method takes advantage of AAV's unique characteristics to maintain the integrity of AAV while preferentially digesting HCPs under denaturing and reducing conditions. This differential digestion method requires only several micrograms of sample and significantly enhances the identification of HCPs. Furthermore, this method can be applied to all five different AAV serotypes for comprehensive HCP profiling. Our work fills a gap in AAV HCP analysis by providing a sensitive and robust strategy for detecting, monitoring, and measuring HCPs.


Assuntos
Dependovirus , 60705 , Animais , Cricetinae , Cromatografia Líquida/métodos , Dependovirus/genética , Espectrometria de Massas em Tandem , Proteínas/análise , Digestão , Cricetulus , Células CHO
15.
J Biol Chem ; 300(3): 105763, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367671

RESUMO

The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain. To determine what changes in receptor function are induced by such extracellular domain mutations, we analyzed the binding and biological response to the seven different EGF receptor ligands in three common glioblastoma mutants-R84K, A265V, and G574V. Our data indicate that all three mutations significantly increase the binding affinity of all seven ligands. In addition, the mutations increase the potency of all ligands for stimulating receptor autophosphorylation, phospholipase Cγ, Akt, and MAP kinase activity. In all mutants, the rank order of ligand potency seen at the wild-type receptor was retained, suggesting that the receptors still discriminate among the different ligands. However, the low-affinity ligands, EPR and EPG, did show larger than average enhancements of potency for stimulating Akt and MAPK but not receptor autophosphorylation and phospholipase Cγ activation. Relative to the wild-type receptor, these changes lead to an increase in the responsiveness of these mutants to physiological concentrations of ligands and an alteration in the ratio of activation of the different pathways. This may contribute to their oncogenic potential. In the context of recent findings, our data also suggest that so-called "high"-affinity biological responses arise from activation by isolated receptor dimers, whereas "low"-affinity biological responses require clustering of receptors which occurs at higher concentrations of ligand.


Assuntos
Receptores ErbB , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ligantes , Mutação , Fosfolipases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Domínios Proteicos/genética , Células CHO , Animais , Cricetinae , Humanos , Glioblastoma/genética
16.
Biotechnol Bioeng ; 121(5): 1674-1687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372655

RESUMO

Hollow fiber filter fouling is a common issue plaguing perfusion production process for biologics therapeutics, but the nature of filter foulant has been elusive. Here we studied cell culture materials especially Chinese hamster ovary (CHO) cell-derived extracellular vesicles in perfusion process to determine their role in filter fouling. We found that the decrease of CHO-derived small extracellular vesicles (sEVs) with 50-200 nm in diameter in perfusion permeates always preceded the increase in transmembrane pressure (TMP) and subsequent decrease in product sieving, suggesting that sEVs might have been retained inside filters and contributed to filter fouling. Using scanning electron microscopy and helium ion microscopy, we found sEV-like structures in pores and on foulant patches of hollow fiber tangential flow filtration filter (HF-TFF) membranes. We also observed that the Day 28 TMP of perfusion culture correlated positively with the percentage of foulant patch areas. In addition, energy dispersive X-ray spectroscopy-based elemental mapping microscopy and spectroscopy analysis suggests that foulant patches had enriched cellular materials but not antifoam. Fluorescent staining results further indicate that these cellular materials could be DNA, proteins, and even adherent CHO cells. Lastly, in a small-scale HF-TFF model, addition of CHO-specific sEVs in CHO culture simulated filter fouling behaviors in a concentration-dependent manner. Based on these results, we proposed a mechanism of HF-TFF fouling, in which filter pore constriction by CHO sEVs is followed by cake formation of cellular materials on filter membrane.


Assuntos
Anticorpos Monoclonais , Filtração , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão , Filtração/métodos , Reatores Biológicos , Membranas Artificiais
17.
Biotechnol Bioeng ; 121(5): 1688-1701, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393313

RESUMO

Perfusion cell culture has been gaining increasing popularity for biologics manufacturing due to benefits such as smaller footprint, increased productivity, consistent product quality and manufacturing flexibility, cost savings, and so forth. Process Analytics Technologies tools are highly desirable for effective monitoring and control of long-running perfusion processes. Raman has been widely investigated for monitoring and control of traditional fed batch cell culture process. However, implementation of Raman for perfusion cell culture has been very limited mainly due to challenges with high-cell density and long running times during perfusion which cause extremely high fluorescence interference to Raman spectra and consequently it is exceedingly difficult to develop robust chemometrics models. In this work, a platform based on Raman measurement of permeate has been proposed for effective analysis of perfusion process. It has been demonstrated that this platform can effectively circumvent the fluorescence interference issue while providing rich and timely information about perfusion dynamics to enable efficient process monitoring and robust bioreactor feed control. With the highly consistent spectral data from cell-free sample matrix, development of chemometrics models can be greatly facilitated. Based on this platform, Raman models have been developed for good measurement of several analytes including glucose, lactate, glutamine, glutamate, and permeate titer. Performance of Raman models developed this way has been systematically evaluated and the models have shown good robustness against changes in perfusion scale and variations in permeate flowrate; thus models developed from small lab scale can be directly transferred for implementation in much larger scale of perfusion. With demonstrated robustness, this platform provides a reliable approach for automated glucose feed control in perfusion bioreactors. Glucose model developed from small lab scale has been successfully implemented for automated continuous glucose feed control of perfusion cell culture at much larger scale.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão , Glucose/análise , Análise Espectral Raman
18.
J Biotechnol ; 384: 1-11, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340900

RESUMO

Host cell proteins (HCPs) are process-related impurities expressed by the host cells during biotherapeutics' manufacturing, such as monoclonal antibodies (mAbs). Some challenging HCPs evade clearance during the downstream processing and can be co-purified with the molecule of interest, which may impact product stability, efficacy, and safety. Therefore, HCP content is a critical quality attribute to monitor and quantify across the bioprocess. Here we explored a mass spectrometry (MS)-based proteomics tool, the sequential window acquisition of all theoretical fragment-ion spectra (SWATH) strategy, as an orthogonal method to traditional ELISA. The SWATH workflow was applied for high-throughput individual HCP identification and quantification, supporting characterization of a mAb purification platform. The design space of HCP clearance of two polishing resins was evaluated through a design of experiment study. Absolute quantification of high-risk HCPs was achieved (reaching 1.8 and 4.2 ppm limits of quantification, for HCP A and B respectively) using HCP-specific synthetic heavy labeled peptide calibration curves. Profiling of other HCPs was also possible using an average calibration curve (using labeled peptides from different HCPs). The SWATH approach is a powerful tool for HCP assessment during bioprocess development enabling simultaneous monitoring and quantification of different individual HCPs and improving process understanding of their clearance.


Assuntos
Anticorpos Monoclonais , Peptídeos , Cricetinae , Animais , Cricetulus , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Ensaio de Imunoadsorção Enzimática , Células CHO
19.
J Virol ; 98(3): e0185123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353537

RESUMO

Recently, we identified the coxsackie and adenovirus receptor (CAR) as the entry receptor for rhesus enteric calicivirus (ReCV) isolate FT285 and demonstrated that co-expression of the CAR and the type B histo-blood group antigen (HBGA) is required to convert the resistant CHO cell line susceptible to infection. To address whether the CAR is also the functional entry receptor for other ReCV isolates and the requirement for specific HBGAs or other glycans, here we used a panel of recombinant CHO cell lines expressing the CAR and the type A, B, or H HBGAs alone or in combination. Infection studies with three diverse ReCV strains, the prototype GI.1 Tulane virus (TV), GI.2 ReCV-FT285, and GI.3 ReCV-FT7, identified that cell surface expression of the CAR is an absolute requirement for all three strains to promote susceptibility to infection, while the requirement for HBGAs varies among the strains. In addition to the CAR, ReCV-FT285 and TV require type A or B HBGAs for infection. In the absence of HBGAs, TV, but not Re-CV FT285, can also utilize sialic acids, while ReCV-FT7 infection is HBGA-independent and relies on CAR and sialic acid expression. In summary, we demonstrated strain-specific diversity of susceptibility requirements for ReCV infections and that CAR, type A and B HBGA, and sialic acid expression control susceptibility to infection with the three ReCV isolates studied. Our study also indicates that the correlation between in vitro HBGA binding and HBGAs required for infection is relatively high, but not absolute. This has direct implications for human noroviruses.IMPORTANCEHuman noroviruses (HuNoVs) are important enteric pathogens. The lack of a robust HuNoV cell culture system is a bottleneck for HuNoV cell culture-based studies. Often, cell culture-adapted caliciviruses that rapidly replicate in conventional cell lines and recapitulate biological features of HuNoVs are utilized as surrogates. Particularly, rhesus enteric caliciviruses (ReCVs) display remarkable similarities, including the primate host, clinical manifestation of gastroenteritis, genetic/antigenic diversity, and reliance on histo-blood group antigens (HBGAs) for attachment. While the HuNoV entry receptor(s) is unknown, the coxsackie and adenovirus receptor (CAR) has recently been identified as the ReCV entry receptor. Here, we identified the CAR, the type A and B HBGAs, and sialic acids as critical cell surface molecules controlling susceptibility to ReCV infections. The CAR is required for all ReCV isolates studied. However, the requirement for the different carbohydrate molecules varies among different ReCV strains. Our findings have direct implications for HuNoVs.


Assuntos
Infecções por Caliciviridae , Caliciviridae , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Animais , Cricetinae , Humanos , Antígenos de Grupos Sanguíneos/metabolismo , Caliciviridae/fisiologia , Infecções por Caliciviridae/virologia , Células CHO , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Intestino Delgado/virologia , Ácido N-Acetilneuramínico/metabolismo , Norovirus/fisiologia
20.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314757

RESUMO

Host cell proteins (HCPs) are impurities that can adversely affect therapeutic proteins, even in small quantities. To evaluate the potential risks associated with drug products, methods have been developed to identify low-abundance HCPs. A crucial approach for developing a sensitive HCP detection method involves enriching HCPs while simultaneously removing monoclonal antibodies (mAbs) before analysis, utilizing liquid chromatography-mass spectrometry (LC-MS). This protocol offers detailed instructions for enriching host cell proteins using commercially available proteome enrichment beads. These beads contain a diverse library of hexapeptide ligands with specific affinities for different proteins. The protocol also incorporates limited digestion and subsequent peptide detection using nano LC-MS/MS. By employing these techniques, HCPs with low abundance can be enriched over 7000-fold, resulting in an impressive detection limit as low as 0.002 ppm. Significantly, this protocol enables the detection of 850 HCPs with a high level of confidence using a NIST mAb. Moreover, it is designed to be user-friendly and includes a video demonstration to assist with its implementation. By following these steps, researchers can effectively enrich and detect HCPs, enhancing the sensitivity and accuracy of risk assessment for drug products.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Animais , Cricetinae , Cromatografia Líquida/métodos , Peptídeos/análise , Anticorpos Monoclonais/metabolismo , Digestão , Cricetulus , Células CHO
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...