Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.670
Filtrar
1.
Nat Commun ; 15(1): 3032, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589417

RESUMO

Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.


Assuntos
Proteínas de Escherichia coli , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fímbrias Bacterianas/química
2.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574145

RESUMO

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Assuntos
Pseudomonas , Vírus de RNA , Humanos , Pseudomonas/metabolismo , Microscopia Crioeletrônica , Fímbrias Bacterianas/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
3.
Nat Commun ; 15(1): 2414, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499587

RESUMO

Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.


Assuntos
Anticorpos de Domínio Único , Microscopia Crioeletrônica , Anticorpos de Domínio Único/metabolismo , Fímbrias Bacterianas/metabolismo , Proteínas de Fímbrias/metabolismo , Sequência de Aminoácidos
4.
Front Cell Infect Microbiol ; 14: 1375887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505286

RESUMO

Salmonella enterica is a food-borne pathogen able to cause a wide spectrum of diseases ranging from mild gastroenteritis to systemic infections. During almost all stages of the infection process Salmonella is likely to be exposed to a wide variety of host-derived antimicrobial peptides (AMPs). AMPs are important components of the innate immune response which integrate within the bacterial membrane, thus forming pores which lead ultimately to bacterial killing. In contrast to other AMPs Bactericidal/Permeability-increasing Protein (BPI) displayed only weak bacteriostatic or bactericidal effects towards Salmonella enterica sv. Typhimurium (STM) cultures. Surprisingly, we found that sub-antimicrobial concentrations of BPI fold-containing (BPIF) superfamily members mediated adhesion of STM depending on pre-formed type 1 fimbriae. BPIF proteins directly bind to type 1 fimbriae through mannose-containing oligosaccharide modifications. Fimbriae decorated with BPIF proteins exhibit extended binding specificity, allowing for bacterial adhesion on a greater variety of abiotic and biotic surfaces likely promoting host colonization. Further, fimbriae significantly contributed to the resistance against BPI, probably through sequestration of the AMP before membrane interaction. In conclusion, functional subversion of innate immune proteins of the BPIF family through binding to fimbriae promotes Salmonella virulence by survival of host defense and promotion of host colonization.


Assuntos
Salmonella enterica , Salmonella typhimurium , Fímbrias Bacterianas/metabolismo , Aderência Bacteriana , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo
5.
Microbiol Mol Biol Rev ; 88(1): e0012523, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38466096

RESUMO

SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane. First, the challenges inherent to DNA movement through the cell periphery will be discussed to provide context for DNA transport during natural competence. The following sections will trace the development of a comprehensive model for DNA translocation to the cytoplasmic membrane, highlighting the crucial studies performed over the last century that have contributed to building contemporary DNA import models. Finally, this review will conclude by reflecting on what is still unknown about the process and the possible solutions to overcome these limitations.


Assuntos
Fímbrias Bacterianas , Transformação Bacteriana , Fímbrias Bacterianas/genética , DNA/metabolismo , Bactérias/genética , Membrana Celular
6.
Nat Commun ; 15(1): 2746, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553443

RESUMO

Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.


Assuntos
Acinetobacter , Bacteriófagos , Vírus de RNA , Humanos , Proteínas de Fímbrias/metabolismo , Acinetobacter/metabolismo , Microscopia Crioeletrônica , Fímbrias Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
7.
Methods Mol Biol ; 2793: 185-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526732

RESUMO

Single-stranded RNA bacteriophages (ssRNA phages) are small viruses with a compact genome (~3-4 kb) that infect gram-negative bacteria via retractile pili. These phages have been applied in various fields since their discovery approximately 60 years ago. To understand their biology, it is crucial to analyze the structure of mature virions. Cryo-electron microscopy (cryo-EM) has been employed to determine the structures of two ssRNA phages, MS2 and Qß. This chapter presents a method for purifying these two phages and their receptor, the F-pilus, to allow examination using cryo-EM.


Assuntos
Bacteriófagos , Microscopia Crioeletrônica , Bacteriófagos/genética , RNA Viral/genética , Fímbrias Bacterianas , Levivirus/genética
8.
Biochem Biophys Res Commun ; 706: 149765, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484573

RESUMO

Bacterial chemoreceptors sense the extracellular signals and regulate bacterial motilities, biofilm formation, etc. The periplasmic ligand binding domains of chemoreceptors occur as different structural folds and recognize a diversity of chemical molecules. In Pseudomonas aeruginosa (PAO1), two bacterial chemoreceptors, McpN (PA2788) and PilJ (PA0411), are proposed to both contain a PilJ-like ligand-binding domain (LBD) (Pfam motif PF13675) and involved in nitrate chemotaxis and type IV pilus-mediated motility, respectively. The LBDs of McpN and PilJ consist of 135 and 263 residues, respectively, and share very low sequence identity, suggesting they might occur as different structures. Here, we found that PilJ-LBD folded into an HBM module, the same as the sensor domains of McpS-LBD and TorS-LBD, but it differed from that of McpN-LBD. We also observed a trimer in SEC and AUC and proposed a trimeric model based on the crystal structure. Based on the sequence, we classified the Pfam containing McpN-LBD and PilJ-LBD into three classes: sPilJ (single PilJ) represented by McpN-LBD with only one PilJ domain, dPilJ (dual PilJ) that contained dual PilJ domains, and hPilJ (hybrid PilJ) that comprises of a PilJ domain and another non-PilJ domain. Our work indicates a significant structural difference between the ligand binding domains of PilJ and McpN and will help our further study on both kinds of chemoreceptors.


Assuntos
Proteínas de Bactérias , Fímbrias Bacterianas , Proteínas de Bactérias/metabolismo , Ligantes , Fímbrias Bacterianas/metabolismo , Domínios Proteicos , Quimiotaxia , Bactérias/metabolismo
9.
PLoS Biol ; 22(2): e3002488, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349934

RESUMO

Bacteria live in social communities, where the ability to sense and respond to interspecies and environmental signals is critical for survival. We previously showed the pathogen Pseudomonas aeruginosa detects secreted peptides from bacterial competitors and navigates through interspecies signal gradients using pilus-based motility. Yet, it was unknown whether P. aeruginosa utilizes a designated chemosensory system for this behavior. Here, we performed a systematic genetic analysis of a putative pilus chemosensory system, followed by high-speed live-imaging and single-cell tracking, to reveal behaviors of mutants that retain motility but are blind to interspecies signals. The enzymes predicted to methylate (PilK) and demethylate (ChpB) the putative pilus chemoreceptor, PilJ, are necessary for cells to control the direction of migration. While these findings implicate PilJ as a bona fide chemoreceptor, such function had yet to be experimentally defined, as full-length PilJ is essential for motility. Thus, we constructed systematic genetic modifications of PilJ and found that without the predicted ligand binding domains or predicted methylation sites, cells lose the ability to detect competitor gradients, despite retaining pilus-mediated motility. Chemotaxis trajectory analysis revealed that increased probability and size of P. aeruginosa pilus-mediated steps towards S. aureus peptides, versus steps away, determines motility bias in wild type cells. However, PilJ mutants blind to interspecies signals take less frequent steps towards S. aureus or steps of equal size towards and away. Collectively, this work uncovers the chemosensory nature of PilJ, provides insight into how cell movements are biased during pilus-based chemotaxis, and identifies chemotactic interactions necessary for bacterial survival in polymicrobial communities, revealing putative pathways where therapeutic intervention might disrupt bacterial communication.


Assuntos
Quimiotaxia , Staphylococcus aureus , Quimiotaxia/genética , Staphylococcus aureus/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Movimento Celular , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo
10.
PLoS Biol ; 22(2): e3002205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300958

RESUMO

Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/metabolismo , Biofilmes , Infecções por Pseudomonas/microbiologia , Fímbrias Bacterianas
11.
J Microbiol Biotechnol ; 34(3): 527-537, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346803

RESUMO

Pilins are protein subunits of pili. The pilins of type IV pili (T4P) in pathogenic bacteria are well characterized, but anything is known about the T4P proteins in acidophilic chemolithoautotrophic microorganisms such as the genus Acidithiobacillus. The interest in T4P of A. thiooxidans is because of their possible role in cell recruitment and bacterial aggregation on the surface of minerals during biooxidation of sulfide minerals. In this study we present a successful ad hoc methodology for the heterologous expression and purification of extracellular proteins such as the minor pilin PilV of the T4P of A. thiooxidans, a pilin exposed to extreme conditions of acidity and high oxidation-reduction potentials, and that interact with metal sulfides in an environment rich in dissolved minerals. Once obtained, the model structure of A. thiooxidans PilV revealed the core basic architecture of T4P pilins. Because of the acidophilic condition, we carried out in silico characterization of the protonation status of acidic and basic residues of PilV in order to calculate the ionization state at specific pH values and evaluated their pH stability. Further biophysical characterization was done using UV-visible and fluorescence spectroscopy and the results showed that PilV remains soluble and stable even after exposure to significant changes of pH. PilV has a unique amino acid composition that exhibits acid stability, with significant biotechnology implications such as biooxidation of sulfide minerals. The biophysics profiles of PilV open new paradigms about resilient proteins and stimulate the study of other pilins from extremophiles.


Assuntos
Acidithiobacillus thiooxidans , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Acidithiobacillus thiooxidans/metabolismo , Fímbrias Bacterianas , Sulfetos/metabolismo , Minerais/metabolismo
12.
Sci Adv ; 10(4): eadd9485, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266097

RESUMO

Type IV pili (TFP) are known to be functionally related to cell motilities and natural transformation in many bacteria. However, the molecular and ecological functions of the TFP have rarely been reported for photosynthetic cyanobacteria. Here, by labeling pili in model cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942), we have quantitatively characterized the TFP and its driven twitching motility in situ at the single-cell level. We found an oscillating pattern of TFP in accordance with the light and dark periods during light-dark cycles, which is correlated positively to the oscillating pattern of the natural transformation efficiency. We further showed that the internal circadian clock plays an important role in regulating the oscillating pattern of TFP, which is also supported by evidences at the molecular level by tracking the expression of 16 TFP-related genes. This study adds a detailed picture toward the gap between TFP and its relations to circadian regulations in Syn7942.


Assuntos
Relógios Circadianos , Synechococcus , Synechococcus/genética , Fímbrias Bacterianas , Cabelo
13.
Proc Natl Acad Sci U S A ; 121(4): e2317452121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236729

RESUMO

Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.


Assuntos
Proteínas de Bactérias , Fímbrias Bacterianas , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Bactérias , Flagelos/fisiologia
14.
mBio ; 15(1): e0142323, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38063437

RESUMO

IMPORTANCE: Type IV pili and type II secretion systems are members of the widespread type IV filament (T4F) superfamily of nanomachines that assemble dynamic and versatile surface fibers in archaea and bacteria. The assembly and retraction of T4 filaments with diverse surface properties and functions require the plasma membrane platform proteins of the GspF/PilC superfamily. Generally considered dimeric, platform proteins are thought to function as passive transmitters of the mechanical energy generated by the ATPase motor, to somehow promote insertion of pilin subunits into the nascent pilus fibers. Here, we generate and experimentally validate structural predictions that support the trimeric state of a platform protein PulF from a type II secretion system. The PulF trimers form selective proton or sodium channels which might energize pilus assembly using the membrane potential. The conservation of the channel sequence and structural features implies a common mechanism for all T4F assembly systems. We propose a model of the oligomeric PulF-PulE ATPase complex that provides an essential framework to investigate and understand the pilus assembly mechanism.


Assuntos
Sistemas de Secreção Tipo II , Sistemas de Secreção Tipo II/metabolismo , Klebsiella , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Adenosina Trifosfatases/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
15.
mBio ; 15(1): e0285723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38051116

RESUMO

IMPORTANCE: Bacteria are constantly exchanging DNA, which constitutes horizontal gene transfer. While some of these occurs by a non-specific process called natural transformation, some occurs by a specific mating between a donor and a recipient cell. In specific conjugation, the mating pilus is extended from the donor cell to make contact with the recipient cell, but whether DNA is actually transferred through this pilus or by another mechanism involving the type IV secretion system complex without the pilus has been an open question. Using Escherichia coli, we show that DNA can be transferred through this pilus between a donor and a recipient cell that has not established a tight mating junction, providing a new picture for the role of this pilus.


Assuntos
Escherichia coli , Transferência Genética Horizontal , Escherichia coli/genética , Escherichia coli/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Conjugação Genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Plasmídeos
16.
Protein Expr Purif ; 215: 106411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056514

RESUMO

Pathogenic strains of Escherichia coli F17+ are associated with various intestinal and extra-intestinal pathologies, including diarrhea, and result in significant animal mortality. These infections rely on the expression of virulence factors, such as F17 fimbriae, for adhesion. F17 fimbriae form a protective layer on the surface of E. coli bacteria, consisting of a major structural subunit, F17A, and a minor functional subunit, F17G. Because of the evolution of bacterial resistance, conventional antibiotic treatments have limited efficacy. Therefore, there is a pressing need to develop novel therapeutic tools. In this study, we cloned and produced the F17G protein. We then immunized a camel with the purified F17G protein and constructed a VHH library consisting of 2 × 109 clones. The library was then screened against F17G protein using phage display technology. Through this process, we identified an anti-F17G nanobody that was subsequently linked, via a linker, to an anti-F17A nanobody, resulting in the creation of an effective bispecific nanobody. Comprehensive characterization of this bispecific nanobody demonstrated excellent production, specific binding capacity to both recombinant forms of the two F17 antigens and the E. coli F17+ strain, remarkable stability in camel serum, and superior resistance to pepsin protease. The successful generation of this bispecific nanobody with excellent production, specific binding capacity and stability highlights its potential as a valuable tool for fighting infections caused by pathogenic E. coli F17+ strain.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Escherichia coli/genética , Escherichia coli/química , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Camelus , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Diarreia/metabolismo , Diarreia/microbiologia
17.
Small ; 20(7): e2304754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37632311

RESUMO

Microbial fuel cells (MFCs) are of great potential for wastewater remediation and chemical energy recovery. Nevertheless, limited by inefficient electron transfer between microorganisms and electrode, the remediation capacity and output power density of MFCs are still far away from the demand of practical application. Herein, a pore-matching strategy is reported to develop uniform electroactive biofilms by inoculating microorganisms inside a pore-matched sponge, which is assembled of core-shell polyaniline@carbon nanotube (PANI@CNT). The maximum power density achieved by the PANI@CNT bioanode is 7549.4 ± 27.6 mW m-2 , which is higher than the excellent MFCs with proton exchange membrane reported to date, while the coulombic efficiency also attains a considerable 91.7 ± 1.2%. The PANI@CNT sponge enriches the exoelectrogen Geobacter significantly, and is proved to play the role of conductive pili in direct electron transfer as it down-regulates the gene encoding pilA. This work exemplifies a practicable strategy to develop excellent bioanode to boost electron extraction in MFCs and provides in-depth insights into the enhancement mechanism.


Assuntos
Compostos de Anilina , Fontes de Energia Bioelétrica , Nanotubos de Carbono , Elétrons , Transporte de Elétrons , Fímbrias Bacterianas , Condutividade Elétrica , Eletrodos , Nanotubos de Carbono/química
18.
J Basic Microbiol ; 64(1): 42-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37612794

RESUMO

Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R. solanacearum colony. In the beginning, twitching motility in the microcolonies was observed as a density-dependent phenomenon that influences the shape of the microcolonies. No such phenomenon was observed in Escherichia coli, where twitching motility is absent. In the early phase of colony growth, twitching motility exhibited by the cells at the peripheral region of the colony was more prominent than the cells toward the center of the colony. Using time-lapse photography and merging the obtained photomicrographs into a video, twitching motility was observed as an intermittent phenomenon that progresses in layers in all directions as finger-like projections at the peripheral region of a bacterial colony. Each layer of bacteria twitches on top of the other and produces a multilayered film-like appearance. We found that the duration between the emergence of each layer diminishes progressively as the colony becomes older. This study on twitching motility demonstrates distinctly heterogeneity among the cells within a colony regarding their dynamics and the influence of microcolonies on each other regarding their morphology.


Assuntos
Ralstonia solanacearum , Fímbrias Bacterianas , Virulência , Doenças das Plantas/microbiologia
19.
Immunol Cell Biol ; 102(1): 21-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37795567

RESUMO

The human pathogen Streptococcus pyogenes, or Group A Streptococcus (GAS), is associated with a variety of diseases ranging from mild skin and soft tissue infections to invasive diseases and immune sequelae such as rheumatic heart disease. We have recently reported that one of the virulence factors of this pathogen, the pilus, has inflammatory properties and strongly stimulates the innate immune system. Here we used a range of nonpathogenic Lactococcus lactis gain-of-function mutants, each expressing one of the major pilus types of GAS, to compare the immune responses generated by various types of fully assembled pili. In vitro assays indicated variability in the inflammatory response induced by different pili, with the fibronectin-binding, collagen-binding, T antigen (FCT)-1-type pilus from GAS serotype M6/T6 inducing significantly stronger cytokine secretion than other pili. Furthermore, we established that the same trend of pili-mediated immune response could be modeled in Galleria mellonella larvae, which possess a similar innate immune system to vertebrates. Counterintuitively, across the panel of pili types examined in this study, we observed a negative correlation between the intensity of the immune response demonstrated in our experiments and the disease severity observed clinically in the GAS strains associated with each pilus type. This observation suggests that pili-mediated inflammation is more likely to promote bacterial clearance instead of causing disruptive damages that intensify pathogenesis. This also indicates that pili may not be the main contributor to the inflammatory symptoms seen in GAS diseases. Rather, the immune-potentiating properties of the pilus components could potentially be exploited as a vaccine adjuvant.


Assuntos
Fímbrias Bacterianas , Streptococcus pyogenes , Animais , Humanos , Virulência , Streptococcus pyogenes/fisiologia , Fímbrias Bacterianas/fisiologia , Pele , Proteínas de Bactérias
20.
Nat Rev Microbiol ; 22(3): 170-185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37814112

RESUMO

Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.


Assuntos
Fímbrias Bacterianas , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/química , Fímbrias Bacterianas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , DNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...