Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.266
Filtrar
1.
Nature ; 623(7986): 347-355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914934

RESUMO

Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.


Assuntos
Adenosina Trifosfatases , Centrômero , Proteínas de Ligação a DNA , Complexos Multiproteicos , Animais , Feminino , Camundongos/classificação , Camundongos/genética , Adenosina Trifosfatases/metabolismo , Aneuploidia , Centrômero/genética , Centrômero/metabolismo , Segregação de Cromossomos , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hibridização Genética , Infertilidade Feminina/genética , Meiose/genética , Complexos Multiproteicos/metabolismo , Oócitos/metabolismo , Prófase/genética , Núcleo Celular/genética
2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685974

RESUMO

The organization of the genome nucleotide (AT/GC) composition in vertebrates remains poorly understood despite the numerous genome assemblies available. Particularly, the origin of the AT/GC heterogeneity in amniotes, in comparison to the homogeneity in anamniotes, is controversial. Recently, several exceptions to this dichotomy were confirmed in an ancient fish lineage with mammalian AT/GC heterogeneity. Hence, our current knowledge necessitates a reevaluation considering this fact and utilizing newly available data and tools. We analyzed fish genomes in silico with as low user input as possible to compare previous approaches to assessing genome composition. Our results revealed a disparity between previously used plots of GC% and histograms representing the authentic distribution of GC% values in genomes. Previous plots heavily reduced the range of GC% values in fish to comply with the alleged AT/GC homogeneity and AT-richness of their genomes. We illustrate how the selected sequence size influences the clustering of GC% values. Previous approaches that disregarded chromosome and genome sizes, which are about three times smaller in fish than in mammals, distorted their results and contributed to the persisting confusion about fish genome composition. Chromosome size and their transposons may drive the AT/GC heterogeneity apparent on mammalian chromosomes, whereas far less in fishes.


Assuntos
Peixes , Isocoros , Animais , Isocoros/genética , Peixes/genética , Tamanho do Genoma , Cromossomos de Mamíferos , Análise por Conglomerados , Mamíferos
3.
Sci Adv ; 9(34): eadi4148, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624885

RESUMO

Shelterin and nucleosomes are the key players that organize mammalian chromosome ends into the protective telomere caps. However, how they interact with each other at telomeres remains unknown. We report cryo-electron microscopy structures of a human telomeric nucleosome both unbound and bound to the shelterin factor TRF1. Our structures reveal that TRF1 binds unwrapped nucleosomal DNA ends by engaging both the nucleosomal DNA and the histone octamer. Unexpectedly, TRF1 binding shifts the register of the nucleosomal DNA by 1 bp. We discovered that phosphorylation of the TRF1 C terminus and a noncanomical DNA binding surface on TRF1 are critical for its association with telomeric nucleosomes. These insights into shelterin-chromatin interactions have crucial implications for understanding telomeric chromatin organization and other roles of shelterin at telomeres including replication and transcription.


Assuntos
Nucleossomos , Telômero , Animais , Humanos , Cromatina , Cromossomos de Mamíferos , Microscopia Crioeletrônica , Mamíferos , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo
4.
Curr Opin Struct Biol ; 81: 102622, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302180

RESUMO

Mammalian chromosomes are organized at different length scales within the cell nucleus. Topologically Associating Domains (TADs) are structural units of 3D genome organization with functions in gene regulation, DNA replication, recombination and repair. Whereas TADs were initially interpreted as insulated domains, recent studies are revealing that these domains should be interpreted as dynamic collections of actively extruding loops. This process of loop extrusion is subsequently blocked at dedicated TAD boundaries, thereby promoting intra-domain interactions over their surroundings. In this review, we discuss how mammalian TAD structure can emerge from this dynamic process and we discuss recent evidence that TAD boundaries can have regulatory functions.


Assuntos
Núcleo Celular , Cromatina , Animais , Regulação da Expressão Gênica , Cromossomos de Mamíferos , Genoma , Mamíferos/genética
5.
Curr Protoc ; 3(5): e785, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200525

RESUMO

The analysis of chromosomes by flow cytometry is termed flow cytogenetics, and it involves the analysis and sorting of single mitotic chromosomes in suspension. The study of flow karyograms provides insight into chromosome number and structure to provide information on chromosomal DNA content and can enable the detection of deletions, translocations, or any forms of aneuploidy. Beyond its clinical applications, flow cytogenetics greatly contributed to the Human Genome Project through the ability to sort pure populations of chromosomes for gene mapping, cloning, and the construction of DNA libraries. Maximizing the potential of these important applications of flow cytogenetics relies on precise instrument setup and optimal sample processing, both of which impact the accuracy and quality of the data that are generated. This article is a compilation of the existing protocols that describe the stepwise methodology of accumulating, isolating, and staining metaphase chromosomes to prepare single-chromosome suspensions for flow cytometric analysis and sorting. Although the chromosome preparation protocols have remained largely unchanged, cytometer technology has advanced dramatically since these protocols were originally developed. Advances in cytometry technologies offer new and exciting approaches for understanding and monitoring chromosomal aberrations, but the hallmark of these protocols remains their simplicity in methodologies and reagent requirements and the accuracy of data resolvable to every chromosome of the cell. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Mitotic block and cell harvesting Basic Protocol 2: Propidium iodide isolation Support Protocol 1: Swelling test Basic Protocol 3: MgSO4 low-molecular-weight isolation Basic Protocol 4: Polyamine high-molecular-weight isolation Support Protocol 2: Molecular-weight determination of chromosomal DNA Basic Protocol 5: Chromosome analysis and sorting.


Assuntos
Cromossomos de Mamíferos , DNA , Animais , Humanos , Cariotipagem , Citometria de Fluxo/métodos , Citogenética , DNA/análise , Cromossomos de Mamíferos/química , Mamíferos
6.
DNA Repair (Amst) ; 126: 103491, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37018982

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging and a life expectancy of about 14 years. HGPS is commonly caused by a point mutation in the LMNA gene which codes for lamin A, an essential component of the nuclear lamina. The HGPS mutation alters splicing of the LMNA transcript, leading to a truncated, farnesylated form of lamin A termed "progerin." Progerin is also produced in small amounts in healthy individuals by alternative splicing of RNA and has been implicated in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting alteration of DNA repair. DSB repair normally occurs by either homologous recombination (HR), an accurate, templated form of repair, or by nonhomologous end-joining (NHEJ), a non-templated rejoining of DNA ends that can be error-prone; however a good portion of NHEJ events occurs precisely with no alteration to joined sequences. Previously, we reported that over-expression of progerin correlated with increased NHEJ relative to HR. We now report on progerin's impact on the nature of DNA end-joining. We used a model system involving a DNA end-joining reporter substrate integrated into the genome of cultured thymidine kinase-deficient mouse fibroblasts. Some cells were engineered to express progerin. Two closely spaced DSBs were induced in the integrated substrate through expression of endonuclease I-SceI, and DSB repair events were recovered through selection for thymidine kinase function. DNA sequencing revealed that progerin expression correlated with a significant shift away from precise end-joining between the two I-SceI sites and toward imprecise end-joining. Additional experiments revealed that progerin did not reduce HR fidelity. Our work suggests that progerin suppresses interactions between complementary sequences at DNA termini, thereby shifting DSB repair toward low-fidelity DNA end-joining and perhaps contributing to accelerated and normal aging through compromised genome stability.


Assuntos
Lamina Tipo A , Progéria , Camundongos , Animais , Lamina Tipo A/genética , Timidina Quinase , Progéria/genética , DNA , Cromossomos de Mamíferos , Mamíferos/genética
7.
Proc Natl Acad Sci U S A ; 120(11): e2210480120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897969

RESUMO

Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Animais , Camundongos , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Mamíferos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Mamíferos/genética
8.
Cells ; 12(5)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36899925

RESUMO

Preimplantation genetic testing for aneuploidy (PGT-A) is widespread, but controversial, in humans and improves pregnancy and live birth rates in cattle. In pigs, it presents a possible solution to improve in vitro embryo production (IVP), however, the incidence and origin of chromosomal errors remains under-explored. To address this, we used single nucleotide polymorphism (SNP)-based PGT-A algorithms in 101 in vivo-derived (IVD) and 64 IVP porcine embryos. More errors were observed in IVP vs. IVD blastocysts (79.7% vs. 13.6% p < 0.001). In IVD embryos, fewer errors were found at blastocyst stage compared to cleavage (4-cell) stage (13.6% vs. 40%, p = 0.056). One androgenetic and two parthenogenetic embryos were also identified. Triploidy was the most common error in IVD embryos (15.8%), but only observed at cleavage, not blastocyst stage, followed by whole chromosome aneuploidy (9.9%). In IVP blastocysts, 32.8% were parthenogenetic, 25.0% (hypo-)triploid, 12.5% aneuploid, and 9.4% haploid. Parthenogenetic blastocysts arose from just three out of ten sows, suggesting a possible donor effect. The high incidence of chromosomal abnormalities in general, but in IVP embryos in particular, suggests an explanation for the low success of porcine IVP. The approaches described provide a means of monitoring technical improvements and suggest future application of PGT-A might improve embryo transfer success.


Assuntos
Aneuploidia , Fertilização In Vitro , Testes Genéticos , Sus scrofa , Sus scrofa/embriologia , Sus scrofa/genética , Sus scrofa/fisiologia , Fertilização In Vitro/veterinária , Testes Genéticos/métodos , Desenvolvimento Embrionário , Blastocisto/fisiologia , Embrião de Mamíferos/fisiologia , Transferência Embrionária/veterinária , Polimorfismo de Nucleotídeo Único , Algoritmos , Animais , Cromossomos de Mamíferos/genética
9.
Proc Natl Acad Sci U S A ; 119(40): e2209139119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161960

RESUMO

Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.


Assuntos
Evolução Molecular , Cariótipo , Mamíferos , Sintenia , Animais , Bovinos/genética , Cromossomos de Mamíferos/genética , Eutérios/genética , Humanos , Mamíferos/genética , Filogenia , Bichos-Preguiça/genética , Sintenia/genética
10.
Sci Rep ; 12(1): 9837, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701443

RESUMO

We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870-61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.


Assuntos
Cromossomos de Mamíferos , alfa-Sinucleína , Proteínas rab27 de Ligação ao GTP , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas rab27 de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP/metabolismo
11.
Gigascience ; 112022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640223

RESUMO

BACKGROUND: The Syrian hamster (Mesocricetus auratus) has been suggested as a useful mammalian model for a variety of diseases and infections, including infection with respiratory viruses such as SARS-CoV-2. The MesAur1.0 genome assembly was generated in 2013 using whole-genome shotgun sequencing with short-read sequence data. Current more advanced sequencing technologies and assembly methods now permit the generation of near-complete genome assemblies with higher quality and greater continuity. FINDINGS: Here, we report an improved assembly of the M. auratus genome (BCM_Maur_2.0) using Oxford Nanopore Technologies long-read sequencing to produce a chromosome-scale assembly. The total length of the new assembly is 2.46 Gb, similar to the 2.50-Gb length of a previous assembly of this genome, MesAur1.0. BCM_Maur_2.0 exhibits significantly improved continuity, with a scaffold N50 that is 6.7 times greater than MesAur1.0. Furthermore, 21,616 protein-coding genes and 10,459 noncoding genes are annotated in BCM_Maur_2.0 compared to 20,495 protein-coding genes and 4,168 noncoding genes in MesAur1.0. This new assembly also improves the unresolved regions as measured by nucleotide ambiguities, where ∼17.11% of bases in MesAur1.0 were unresolved compared to BCM_Maur_2.0, in which the number of unresolved bases is reduced to 3.00%. CONCLUSIONS: Access to a more complete reference genome with improved accuracy and continuity will facilitate more detailed, comprehensive, and meaningful research results for a wide variety of future studies using Syrian hamsters as models.


Assuntos
Cromossomos de Mamíferos , Mesocricetus , Animais , Cromossomos de Mamíferos/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mesocricetus/genética , Sequenciamento Completo do Genoma
12.
Cell Rep ; 38(7): 110352, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172152

RESUMO

Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.


Assuntos
Cromatina/metabolismo , Histona Desacetilase 1/metabolismo , Neurônios/metabolismo , Animais , Sinalização do Cálcio , Cromatina/ultraestrutura , Cromossomos de Mamíferos/metabolismo , Metabolismo Energético , Hipocampo/citologia , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Ratos Wistar , Transcrição Gênica
13.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35171230

RESUMO

The molecular circuitry that causes stem cells to exit from pluripotency remains largely uncharacterized. Using chromatin RNA in situ reverse transcription sequencing, we identified Peln1 as a novel chromatin RNA component in the promoter complex of Oct4, a stem cell master transcription factor gene. Peln1 was negatively associated with pluripotent status during somatic reprogramming. Peln1 overexpression caused E14 cells to exit from pluripotency, while Peln1 downregulation induced robust reprogramming. Mechanistically, we discovered that Peln1 interacted with the Oct4 promoter and recruited the DNA methyltransferase DNMT3A. By de novo altering the epigenotype in the Oct4 promoter, Peln1 dismantled the intrachromosomal loop that is required for the maintenance of pluripotency. Using RNA reverse transcription-associated trap sequencing, we showed that Peln1 targets multiple pathway genes that are associated with stem cell self-renewal. These findings demonstrate that Peln1 can act as a new epigenetic player and use a trans mechanism to induce an exit from the pluripotent state in stem cells.


Assuntos
Cromossomos de Mamíferos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Reprogramação Celular/genética , Metilação de DNA/genética , DNA Metiltransferase 3A/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Fator 3 de Transcrição de Octâmero , Ligação Proteica , RNA Longo não Codificante/genética
14.
Cell Mol Life Sci ; 79(1): 22, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981210

RESUMO

The three-dimensional configuration of the genome ensures cell type-specific gene expression profiles by placing genes and regulatory elements in close spatial proximity. Here, we used in situ high-throughput chromosome conformation (in situ Hi-C), RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to characterize the high-order chromatin structure signature of female germline stem cells (FGSCs) and identify its regulating key factor based on the data-driven of multiple omics data. By comparison with pluripotent stem cells (PSCs), adult stem cells (ASCs), and somatic cells at three major levels of chromatin architecture, A/B compartments, topologically associating domains, and chromatin loops, the chromatin architecture of FGSCs was most similar to that of other ASCs and largely different from that of PSCs and somatic cells. After integrative analysis of the three-dimensional chromatin structure, active compartment-associating loops (aCALs) were identified as a signature of high-order chromatin organization in FGSCs, which revealed that CCCTC-binding factor was a major factor to maintain the properties of FGSCs through regulation of aCALs. We found FGSCs belong to ASCs at chromatin structure level and characterized aCALs as the high-order chromatin structure signature of FGSCs. Furthermore, CTCF was identified to play a key role in regulating aCALS to maintain the biological functions of FGSCs. These data provide a valuable resource for future studies of the features of chromatin organization in mammalian stem cells and further understanding of the fundamental characteristics of FGSCs.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Genoma , Imageamento Tridimensional , Células-Tronco de Oogônios/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Sequência de Bases , Forma Celular , Cromatina/metabolismo , Cromossomos de Mamíferos/metabolismo , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco de Oogônios/citologia
15.
Cells ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943883

RESUMO

Although the pericentromeric regions of chromosomes that are enriched in tandemly repeated satellite DNA represent a significant part of eukaryotic genomes, they remain understudied, which is mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability, and evolution. Thus, the idea of satellite DNA as a junk part of the genome has been refuted. The integration of data regarding molecular composition, chromosome behaviour, and the details of the in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions between pericentromeric regions from non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between centromeric regions of the X chromosome and autosomes and the associations between the centromeric regions of the autosomal bivalents that form chromocenters. We concluded that the X chromosome forms temporary synaptic associations with different autosomes in early meiotic prophase I, which can normally be found until the pachytene-diplotene, without signs of pachytene arrest. These associations are formed between the satellite-DNA-rich centromeric regions of the X chromosome and different autosomes but do not involve the satellite-DNA-poor centromeric region of the Y chromosome. We suggest the hypothetical model of X chromosome competitive replacement from such associations during synaptic correction. We showed that the centromeric region of the X chromosome in association remains free of γH2Ax-dependent chromatin inactivation, while the Y chromosome is completely inactivated. This finding highlights the predominant role of associations between satellite DNA-rich regions of different chromosomes, including the X chromosome. We suppose that X-autosomal transient associations are a manifestation of an additional synaptic disorder checkpoint. These associations are normally corrected before the late diplotene stage. We revealed that the intense spreading conditions that were applied to the spermatocyte I nuclei did not lead to the destruction of stretched chromatin fibers of elongated chromocenters enriched in satellite DNA. The tight associations that we revealed between the pericentromeric regions of different autosomal bivalents and the X chromosome may represent the basis for a mechanism for maintaining the repeats stability in the autosomes and in the X chromosome. The consequences of our findings are discussed.


Assuntos
Centrômero/metabolismo , Cromossomos de Mamíferos/metabolismo , DNA/metabolismo , Animais , DNA Satélite/metabolismo , Histonas/metabolismo , Meiose , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Cromossomo X
16.
Nat Commun ; 12(1): 6858, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824214

RESUMO

Muntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), female and male M. crinifrons (2n = 8/9) and a contig-level genome for M. gongshanensis (2n = 8/9). These high-quality genomes combined with Hi-C data allowed us to reveal the evolution of 3D chromatin architectures during mammalian chromosome evolution. We find that the chromosome fusion events of muntjac species did not alter the A/B compartment structure and topologically associated domains near the fusion sites, but new chromatin interactions were gradually established across the fusion sites. The recently borne neo-Y chromosome of M. crinifrons, which underwent male-specific inversions, has dramatically restructured chromatin compartments, recapitulating the early evolution of canonical mammalian Y chromosomes. We also reveal that a complex structure containing unique centromeric satellite, truncated telomeric and palindrome repeats might have mediated muntjacs' recurrent chromosome fusions. These results provide insights into the recurrent chromosome tandem fusion in muntjacs, early evolution of mammalian sex chromosomes, and reveal how chromosome rearrangements can reshape the 3D chromatin regulatory conformations during species evolution.


Assuntos
Aberrações Cromossômicas/veterinária , Cromossomos de Mamíferos/genética , Cervo Muntjac/genética , Animais , Cromatina/genética , Aberrações Cromossômicas/estatística & dados numéricos , Mapeamento de Sequências Contíguas , Cervos/classificação , Cervos/genética , Demografia , Evolução Molecular , Feminino , Genoma/genética , Masculino , Cervo Muntjac/classificação , Filogenia , Cromossomos Sexuais/genética , Sintenia
17.
Cell ; 184(24): 5970-5984.e18, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34793701

RESUMO

Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.


Assuntos
Deleção de Genes , Duplicação Gênica , Células Germinativas/metabolismo , Recombinação Genética/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Cromátides/metabolismo , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Quebras de DNA de Cadeia Dupla , DNA Circular/genética , Feminino , Genoma , Haplótipos/genética , Recombinação Homóloga/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutagênese Insercional/genética , Mutação/genética
18.
Genes (Basel) ; 12(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34828303

RESUMO

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability. The Dp10(1)Yey (Dp10) is a mouse model of DS that is trisomic for orthologs of 25% of the Hsa21 protein-coding genes, the entirety of the Hsa21 syntenic region on mouse chromosome 10. Trisomic genes include several involved in brain development and function, two that modify and regulate the activities of sex hormones, and two that produce sex-specific phenotypes as null mutants. These last four are the only Hsa21 genes with known sexually dimorphic properties. Relatively little is known about the potential contributions to the DS phenotype of segmental trisomy of Mmu10 orthologs. Here, we have tested separate cohorts of female and male Dp10 mice, at 3 and 9 months of age, in an open field elevated zero maze, rotarod, and balance beam, plus the learning and memory tasks, spontaneous alternation, puzzle box, double-H maze, context fear conditioning, and acoustic startle/prepulse inhibition, that depend upon the function of the prefrontal cortex, striatum, hippocampus, and cerebellum. We show that there are age and sex-specific differences in strengths and weaknesses, suggesting that genes within the telomere proximal region of Hsa21 influence the DS phenotype.


Assuntos
Cromossomos de Mamíferos/genética , Síndrome de Down , Aprendizagem/fisiologia , Camundongos/genética , Fatores Etários , Animais , Comportamento Animal , Mapeamento Cromossômico , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/patologia , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Fenótipo , Caracteres Sexuais
19.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830152

RESUMO

Phase-separated condensates participate in various biological activities. Liquid-liquid phase separation (LLPS) can be driven by collective interactions between multivalent and intrinsically disordered proteins. The manner in which chromatin-with various morphologies and activities-is organized in a complex and small nucleus still remains to be fully determined. Recent findings support the claim that phase separation is involved in the regulation of chromatin organization and chromosome behavior. Moreover, phase separation also influences key events during mitosis and meiosis. This review elaborately dissects how phase separation regulates chromatin and chromosome organization and controls mitotic and meiotic chromosome behavior.


Assuntos
Ciclo Celular , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Cromossomos de Mamíferos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Animais , Cromatina/genética , Cromossomos de Mamíferos/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Extração Líquido-Líquido , Transição de Fase
20.
Physiol Genomics ; 53(12): 534-545, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755572

RESUMO

Increased arterial stiffness is an independent risk factor for hypertension, stroke, and cardiovascular morbidity. Thus, understanding the factors contributing to vascular stiffness is of critical importance. Here, we used a rat model containing a known quantitative trait locus (QTL) on chromosome 3 (RNO3) for vasoreactivity to assess potential genetic elements contributing to blood pressure, arterial stiffness, and their downstream effects on cardiac structure and function. Although no differences were found in blood pressure at any time point between parental spontaneously hypertensive rats (SHRs) and congenic SHR.BN3 rats, the SHRs showed a significant increase in arterial stiffness measured by pulse wave velocity. The degree of arterial stiffness increased with age in the SHRs and was associated with compensatory cardiac changes at 16 wk of age, and decompensatory changes at 32 wk, with no change in cardiac structure or function in the SHR.BN3 hearts at these time points. To evaluate the arterial wall structure, we used multiphoton microscopy to quantify cells and collagen content within the adventitia and media of SHR and SHR.BN3 arteries. No difference in cell numbers or proliferation rates was found, although phenotypic diversity was characterized in vascular smooth muscle cells. Herein, significant anatomical and physiological differences related to arterial structure and cardiovascular tone including collagen, pulse wave velocity (PWV), left ventricular (LV) geometry and function, and vascular smooth muscle cell (VSMC) contractile apparatus proteins were associated with the RNO3 QTL, thus providing a novel platform for studying arterial stiffness. Future studies delimiting the RNO3 QTL could aid in identifying genetic elements responsible for arterial structure and function.


Assuntos
Cromossomos de Mamíferos/genética , Hipertensão/genética , Hipertensão/fisiopatologia , Locos de Características Quantitativas , Rigidez Vascular/genética , Fatores Etários , Animais , Artérias/fisiopatologia , Pressão Sanguínea/genética , Proteínas Contráteis/metabolismo , Masculino , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Fenótipo , Análise de Onda de Pulso , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Transdução de Sinais/genética , Remodelação Ventricular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...