Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.986
Filtrar
1.
PLoS One ; 19(4): e0297987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578816

RESUMO

Sex identification is a common objective in molecular ecology. While many vertebrates display sexual dimorphism, determining the sex can be challenging in certain situations, such as species lacking clear sex-related phenotypic characteristics or in studies using non-invasive methods. In these cases, DNA analyses serve as valuable tools not only for sex determination but also for validating sex assignment based on phenotypic traits. In this study, we developed a bioinformatic framework for sex assignment using genomic data obtained through GBS, and having an available closely related genome assembled at the chromosome level. Our method consists of two ad hoc indexes that rely on the different properties of the mammalian heteromorphic sex chromosomes. For this purpose, we mapped RAD-seq loci to a reference genome and then obtained missingness and coverage depth values for the autosomes and X and Y chromosomes of each individual. Our methodology successfully determined the sex of 165 fur seals that had been phenotypically sexed in a previous study and 40 sea lions sampled in a non-invasive way. Additionally, we evaluated the accuracy of each index in sequences with varying average coverage depths, with Index Y proving greater reliability and robustness in assigning sex to individuals with low-depth coverage. We believe that the approach presented here can be extended to any animal taxa with known heteromorphic XY/ZW sex chromosome systems and that it can tolerate various qualities of GBS sequencing data.


Assuntos
Genoma , Cromossomos Sexuais , Humanos , Animais , Reprodutibilidade dos Testes , Genoma/genética , Cromossomos Sexuais/genética , Cromossomo Y , Genômica , Mamíferos/genética
2.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626722

RESUMO

BACKGROUND: Most currently available reference genomes lack the sequence map of sex-limited (such as Y and W) chromosomes, which results in incomplete assemblies that hinder further research on sex chromosomes. Recent advancements in long-read sequencing and population sequencing have provided the opportunity to assemble sex-limited chromosomes without the traditional complicated experimental efforts. FINDINGS: We introduce the first computational method, Sorting long Reads of Y or other sex-limited chromosome (SRY), which achieves improved assembly results compared to flow sorting. Specifically, SRY outperforms in the heterochromatic region and demonstrates comparable performance in other regions. Furthermore, SRY enhances the capabilities of the hybrid assembly software, resulting in improved continuity and accuracy. CONCLUSIONS: Our method enables true complete genome assembly and facilitates downstream research of sex-limited chromosomes.


Assuntos
Genoma , Cromossomos Sexuais , Cromossomos Sexuais/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
PeerJ ; 12: e17072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525278

RESUMO

Sex determination in chickens at an early embryonic stage has been a longstanding challenge in poultry production due to the unique ZZ:ZW sex chromosome system and various influencing factors. This review has summarized the genes related to the sex differentiation of chicken early embryos (mainly Dmrt1, Sox9, Amh, Cyp19a1, Foxl2, Tle4z1, Jun, Hintw, Ube2i, Spin1z, Hmgcs1, Foxd1, Tox3, Ddx4, cHemgn and Serpinb11 in this article), and has found that these contributions enhance our understanding of the genetic basis of sex determination in chickens, while identifying potential gene targets for future research. This knowledge may inform and guide the development of sex screening technologies for hatching eggs and support advancements in gene-editing approaches for chicken embryos. Moreover, these insights offer hope for enhancing animal welfare and promoting conservation efforts in poultry production.


Assuntos
Galinhas , Diferenciação Sexual , Embrião de Galinha , Animais , Galinhas/genética , Diferenciação Sexual/genética , Processos de Determinação Sexual/genética , Cromossomos Sexuais
4.
Biol Sex Differ ; 15(1): 21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486287

RESUMO

BACKGROUND: Differences in male vs. female immune responses are well-documented and have significant clinical implications. While the immunomodulatory effects of sex hormones are well established, the contributions of sex chromosome complement (XX vs. XY) and gut microbiome diversity on immune sexual dimorphisms have only recently become appreciated. Here we investigate the individual and collaborative influences of sex chromosome complements and gut microbiota on humoral immune activation. METHODS: Male and female Four Core Genotype (FCG) mice were immunized with heat-killed Streptococcus pneumoniae (HKSP). Humoral immune responses were assessed, and X-linked immune-related gene expression was evaluated to explain the identified XX-dependent phenotype. The functional role of Kdm6a, an X-linked epigenetic regulatory gene of interest, was evaluated ex vivo using mitogen stimulation of B cells. Additional influences of the gut microbiome on sex chromosome-dependent B cell activation was also evaluated by antibiotically depleting gut microbiota prior to HKSP immunization. Reconstitution of the depleted microbiome with short-chain fatty acid (SCFA)-producing bacteria tested the impact of SCFAs on XX-dependent immune activation. RESULTS: XX mice exhibited higher HKSP-specific IgM-secreting B cells and plasma cell frequencies than XY mice, regardless of gonadal sex. Although Kdm6a was identified as an X-linked gene overexpressed in XX B cells, inhibition of its enzymatic activity did not affect mitogen-induced plasma cell differentiation or antibody production in a sex chromosome-dependent manner ex vivo. Enhanced humoral responses in XX vs. XY immunized FCG mice were eliminated after microbiome depletion, indicating that the microbiome contributes to the identified XX-dependent immune enhancement. Reconstituting microbiota-depleted mice with select SCFA-producing bacteria enhanced fecal SCFA concentrations and increased humoral responses in XX, but not XY, FCG mice. However, exposure to the SCFA propionate alone did not enhance mitogenic B cell stimulation in ex vivo studies. CONCLUSIONS: FCG mice have been used to assess sex hormone and sex chromosome complement influences on various sexually dimorphic traits. The current study indicates that the gut microbiome impacts humoral responses in an XX-dependent manner, suggesting that the collaborative influence of gut bacteria and other sex-specific factors should be considered when interpreting data aimed at delineating the mechanisms that promote sexual dimorphism.


Male and female immune systems differ in their ability to respond to infectious challenge. While males tend to be more susceptible to infection and produce lower amounts of antibodies in response to vaccination, females are more prone to develop autoimmune and inflammatory diseases. Key contributors to these differences include sex hormones, sex chromosome complement (XX in females vs. XY in males), and distinct gut microbial communities capable of regulating immune activation. While each factor has been studied individually, this research underscores the potential for these factors to collaboratively impact immune activation. Here, possession of an XX vs. XY sex chromosome complement was demonstrated to enhance antibody responses to heat-killed Streptococcus pneumoniae vaccination. While attempting to determine the underlying cause of this immune enhancement, the gut microbiome was identified to play a critical role. In the absence of an intact gut microbiome, XX immune activation was reduced to levels similar to those seen in XY sex chromosome complement-possessing mice. Replacement of the depleted gut microbiomes with select SCFA-producing bacterial species enhanced SCFA levels in antibiotic-treated mice and rescued the XX-dependent immune enhancement, suggesting a SCFA-mediated contribution. Further studies are needed to determine exactly how these select bacteria impact immune activation in a sex chromosome complement-dependent manner. Our findings highlight the need to consider the collaborative effects of individual sex-specific factors when attempting to understand immune sex biases, as a better understanding of these interactions will likely pave the way for improving therapeutics and vaccines tailored to both sexes.


Assuntos
Microbiota , Streptococcus pneumoniae , Masculino , Feminino , Camundongos , Animais , Temperatura Alta , Mitógenos , Cromossomos Sexuais , Genótipo , Hormônios Esteroides Gonadais , Imunidade , Imunização , Histona Desmetilases
5.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526014

RESUMO

To understand the biology of a species, it is often crucial to be able to differentiate males and females. However, many species lack easily identifiable sexually dimorphic traits. In those that possess sex chromosomes, molecular sexing offers a good alternative, and molecular sexing assays can be developed through the comparison of male and female genomic sequences. However, in many nonmodel species, sex chromosomes are poorly differentiated, and identifying sex-linked sequences and developing sexing assays can be challenging. In this study, we highlight a simple transcriptome-based procedure for the detection of sex-linked markers suitable for the development of sexing assays that circumvents limitations of more commonly used approaches. We apply it to the spotted snow skink Carinascincus ocellatus, a viviparous lizard with homomorphic XY chromosomes that has environmentally induced sex reversal. With transcriptomes from three males and three females alone, we identify thousands of putative Y-linked sequences. We confirm linkage through alignment of assembled transcripts to a distantly related lizard genome and readily design multiple single locus polymerase chain reaction primers to sex C. ocellatus and related species. Our approach also facilitates valuable comparisons of sex determining systems on a broad taxonomic scale.


Assuntos
Cromossomos Sexuais , Transcriptoma , Feminino , Masculino , Humanos , Cromossomos Sexuais/genética , Genoma , Genômica
6.
JAMA Netw Open ; 7(3): e244113, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38551561

RESUMO

Importance: The reported phenotypes of men with 47,XXY and 47,XYY syndromes include tall stature, multisystem comorbidities, and poor health-related quality of life (HRQOL). However, knowledge about these sex chromosome aneuploidy (SCA) conditions has been derived from studies in the less than 15% of patients who are clinically diagnosed and also lack diversity in age and genetic ancestry. Objectives: To determine the prevalence of clinically diagnosed and undiagnosed X or Y chromosome aneuploidy among men enrolled in the Million Veteran Program (MVP); to describe military service metrics of men with SCAs; and to compare morbidity and mortality outcomes between men with SCA with and without a clinical diagnosis vs matched controls. Design, Setting, and Participants: This cross-sectional study used a case-control recruitment design to select biological males enrolled in the MVP biobank in the US Veterans Administration health care system from 2011 to 2022. Cases were participants with 47,XXY syndrome or 47,XYY syndrome, matched 1:5 with controls based on sex, age, and genetic ancestry. Data were analyzed from January 2022 to December 2023. Exposure: Genomic identification of an additional X or Y chromosome. Main Outcomes and Measures: Outcomes of interest included prevalence of men with SCAs from genomic analysis; clinical SCA diagnosis; Charlson Comorbidity Index; rates of outpatient, inpatient, and emergency encounters per year; self-reported health outcomes; and standardized mortality ratio. Results: Of 595 612 genotyped males in the MVP, 862 had an additional X chromosome (47,XXY) and 747 had an extra Y chromosome (47,XYY), with the highest prevalence among men with East Asian (47,XXY: 10 of 7313 participants; 47,XYY: 14 of 7313 participants) and European (47,XXY: 725 of 427 143 participants; 47,XYY: 625 of 427 143 participants) ancestry. Mean (SD) age at assessment was 61 (12) years, at which point 636 veterans (74.X%) with 47,XXY and 745 veterans (99%) with 47,XYY remained undiagnosed. Individuals with 47,XXY and 47,XYY had similar military service history, all-cause standardized mortality ratio, and age of death compared with matched controls. Individuals with SCA, compared with controls, had higher Charlson Comorbidity Index scores (47,XXY: mean [SD], 4.30 [2.72] vs controls: mean [SD], 3.90 [2.47]; 47,XYY: mean [SD], 4.45 [2.90] vs controls: mean [SD], 3.82 [2.50]) and health care utilization (eg, median [IQR] outpatient encounters per year: 47,XXY, 22.6 [11.8-37.8] vs controls, 16.8 [9.4-28]; 47,XYY: 21.4 [12.4-33.8] vs controls: 17.0 [9.4-28.2]), while several measures of HRQOL were lower (eg, mean [SD] self-reported physical function: 47,XXY: 34.2 [12] vs control mean [SD] 37.8 [12.8]; 47,XYY: 36.3 [11.6] vs control 37.9 [12.8]). Men with a clinical diagnosis of 47,XXY, compared with individuals without a clinical diagnosis, had higher health care utilization (eg, median [IQR] encounters per year: 26.6 [14.9-43.2] vs 22.2 [11.3-36.0]) but lower Charlson Comorbidity Index scores (mean [SD]: 3.7 [2.7] vs 4.5 [4.1]). Conclusion and Relevance: In this case-control study of men with 47,XXY and 47,XYY syndromes, prevalence of SCA was comparable with estimates in the general population. While these men had successfully served in the military, they had higher morbidity and reported poorer HRQOL with aging. Longer longitudinal follow-up of this sample will be informative for clinical and patient-reported outcomes, the role of ancestry, and mortality statistics.


Assuntos
Transtornos dos Cromossomos Sexuais , Veteranos , Cariótipo XYY , Masculino , Humanos , Feminino , Prevalência , Estudos de Casos e Controles , Estudos Transversais , Qualidade de Vida , Aberrações dos Cromossomos Sexuais , Aneuploidia , Morbidade , Cromossomos Sexuais
7.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38512707

RESUMO

In many animals and flowering plants, sex determination occurs in the diploid phase of the life cycle with XX/XY or ZW/ZZ sex chromosomes. However, in early diverging plants and most macroalgae, sex is determined by female (U) or male (V) sex chromosomes in a haploid phase called the gametophyte. Once the U and V chromosomes unite at fertilization to produce a diploid sporophyte, sex determination no longer occurs, raising key questions about the fate of the U and V sex chromosomes in the sporophyte phase. Here, we investigate genetic and molecular interactions of the UV sex chromosomes in both the haploid and diploid phases of the brown alga Ectocarpus. We reveal extensive developmental regulation of sex chromosome genes across its life cycle and implicate the TALE-HD transcription factor OUROBOROS in suppressing sex determination in the diploid phase. Small RNAs may also play a role in the repression of a female sex-linked gene, and transition to the diploid sporophyte coincides with major reconfiguration of histone H3K79me2, suggesting a more intricate role for this histone mark in Ectocarpus development than previously appreciated.


Assuntos
Estágios do Ciclo de Vida , Feófitas , Animais , Feófitas/genética , Fatores de Transcrição/genética , Cromossomos Sexuais/genética , Haploidia
8.
Mol Ecol Resour ; 24(4): e13946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436617

RESUMO

The ability to sex individuals is an important component of many behavioural and ecological investigations and provides information for demographic models used in conservation and species management. However, many birds are difficult to sex using morphological characters or traditional molecular sexing methods. In this study, we developed probabilistic models for sexing birds using quantitative PCR (qPCR) data. First, we quantified distributions of gene copy numbers at a set of six sex-linked genes, including the sex-determining gene DMRT1, for individuals across 17 species and seven orders of birds (n = 150). Using these data, we built predictive logistic models for sex identification and tested their performance with independent samples from 51 species and 13 orders (n = 209). Models using the two loci most highly correlated with sex had greater accuracy than models using the full set of sex-linked loci, across all taxonomic levels of analysis. Sex identification was highly accurate when individuals to be assigned were of species used in model building. Our analytical approach was widely applicable across diverse neognath bird lineages spanning millions of years of evolutionary divergence. Unlike previous methods, our probabilistic framework incorporates uncertainty around qPCR measurements as well as biological variation within species into decision-making rules. We anticipate that this method will be useful for sexing birds, including those of high conservation concern and/or subsistence value, that have proven difficult to sex using traditional approaches. Additionally, the general analytical framework presented in this paper may also be applicable to other organisms with sex chromosomes.


Assuntos
Aves , Cromossomos Sexuais , Humanos , Animais , Reação em Cadeia da Polimerase , Modelos Logísticos , Aves/genética , Análise para Determinação do Sexo/métodos
9.
PLoS Genet ; 20(3): e1010719, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457441

RESUMO

DNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals. The relatively large numbers of individuals allowed us to identify additional genomic MHM regions on the Z chromosome that were significantly differentially methylated between the sexes. These regions appear to down-regulate local gene expression in males, but not remove it entirely (unlike the lncRNAs identified in the initial MHM regions). These MHM regions were further tested and the most balanced genes appear to show decreased expression in males, whilst methylation appeared to be far more correlated with gene expression in the less balanced, as compared to the most balanced genes. In addition, quantitative trait loci (QTL) that regulate variation in methylation on the Z chromosome, and those loci that regulate methylation on the autosomes that derive from the Z chromosome were mapped. Trans-effect hotspots were also identified that were based on the autosomes but affected the Z, and also one that was based on the Z chromosome but that affected both autosomal and sex chromosome DNA methylation regulation. We show that both cis and trans loci that originate from the Z chromosome never exhibit an interaction with sex, whereas trans loci originating from the autosomes but affecting the Z chromosome always display such an interaction. Our results highlight how additional MHM regions are actually present on the Z chromosome, and they appear to have smaller-scale effects on gene expression in males. Quantitative variation in methylation is also regulated both from the autosomes to the Z chromosome, and from the Z chromosome to the autosomes.


Assuntos
Galinhas , Cromossomos Sexuais , Animais , Masculino , Galinhas/genética , Metilação de DNA/genética , Compensação de Dosagem (Genética) , Genoma , Mamíferos/genética , Cromossomos Sexuais/genética
10.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513111

RESUMO

Spermatogenesis is critical to sexual reproduction yet evolves rapidly in many organisms. High-throughput single-cell transcriptomics promises unparalleled insight into this important process but understanding can be impeded in nonmodel systems by a lack of known genes that can reliably demarcate biologically meaningful cell populations. Tribolium castaneum, the red flour beetle, lacks known markers for spermatogenesis found in insect species like Drosophila melanogaster. Using single-cell sequencing data collected from adult beetle testes, we implement a strategy for elucidating biologically meaningful cell populations by using transient expression stage identification markers, weighted principal component clustering, and SNP-based haploid/diploid phasing. We identify populations that correspond to observable points in sperm differentiation and find species specific markers for each stage. Our results indicate that molecular pathways underlying spermatogenesis in Coleoptera are substantially diverged from those in Diptera. We also show that most genes on the X chromosome experience meiotic sex chromosome inactivation. Temporal expression of Drosophila MSL complex homologs coupled with spatial analysis of potential chromatin entry sites further suggests that the dosage compensation machinery may mediate escape from meiotic sex chromosome inactivation and postmeiotic reactivation of the X chromosome.


Assuntos
Besouros , Tribolium , Animais , Masculino , Tribolium/genética , Drosophila melanogaster/genética , Análise da Expressão Gênica de Célula Única , Sêmen , Cromossomos Sexuais , Espermatogênese/genética , Drosophila/genética , Besouros/genética
11.
Science ; 383(6689): eadk5466, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513029

RESUMO

In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.


Assuntos
60578 , Proteínas HMGB , Laminaria , Feófitas , Cromossomos Sexuais , Processos de Determinação Sexual , Animais , Evolução Biológica , Feófitas/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Cromossomo Y , Proteínas HMGB/genética , Cromossomos de Plantas/genética , Domínios HMG-Box , 60578/genética , Laminaria/genética , Pólen/genética
12.
Genes (Basel) ; 15(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540359

RESUMO

Sex chromosome turnover is the transition between sex chromosomes and autosomes. Although many cases have been reported in poikilothermic vertebrates, their evolutionary causes and genetic mechanisms remain unclear. In this study, we report multiple transitions between the Y chromosome and autosome in the Japanese Tago's brown frog complex. Using chromosome banding and molecular analyses (sex-linked and autosomal single nucleotide polymorphisms, SNPs, from the nuclear genome), we investigated the frogs of geographic populations ranging from northern to southern Japan of two species, Rana tagoi and Rana sakuraii (2n = 26). Particularly, the Chiba populations of East Japan and Akita populations of North Japan in R. tagoi have been, for the first time, investigated here. As a result, we identified three different sex chromosomes, namely chromosomes 3, 7, and 13, in the populations of the two species. Furthermore, we found that the transition between the Y chromosome (chromosome 7) and autosome was repeated through hybridization between two or three different populations belonging to the two species, followed by restricted chromosome introgression. These dynamic sex chromosome turnovers represent the first such findings in vertebrates and imply that speciation associated with inter- or intraspecific hybridization plays an important role in sex chromosome turnover in frogs.


Assuntos
Anuros , Cromossomos Sexuais , Animais , Humanos , Anuros/genética , Cromossomos Sexuais/genética , Ranidae/genética , Evolução Biológica , Cromossomos Humanos Y
13.
Genes (Basel) ; 15(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540430

RESUMO

Karyotype diversification represents an important, yet poorly understood, driver of evolution. Squamate reptiles are characterized by a high taxonomic diversity which is reflected at the karyotype level in terms of general structure, chromosome number and morphology, and insurgence of differentiated simple or multiple-sex-chromosome systems with either male or female heterogamety. The potential of squamate reptiles as unique model organisms in evolutionary cytogenetics has been recognised in recent years in several studies, which have provided novel insights into the chromosome evolutionary dynamics of different taxonomic groups. Here, we review and summarize the resulting complex, but promising, general picture from a systematic perspective, mapping some of the main squamate karyological characteristics onto their phylogenetic relationships. We highlight how all the major categories of balanced chromosome rearrangements contributed to the karyotype evolution in different taxonomic groups. We show that distinct karyotype evolutionary trends may occur, and coexist, with different frequencies in different clades. Finally, in light of the known squamate chromosome diversity and recent research advances, we discuss traditional and novel hypotheses on karyotype evolution and propose a scenario of circular karyotype evolution.


Assuntos
Répteis , Cromossomos Sexuais , Animais , Feminino , Masculino , Filogenia , Répteis/genética , Cariótipo , Cariotipagem , Cromossomos Sexuais/genética
14.
Methods Mol Biol ; 2770: 185-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351455

RESUMO

Somatic cell reprogramming allows the generation of human induced pluripotent stem cells (iPSCs) from patient's cells. The derived iPSCs provide an unlimited source of patient-specific cells that can be virtually differentiated in any cell of the human body. The generation of iPSCs has important implications for all human medicine fields, as they can be used for drug discovery, regenerative medicine, and developmental studies. Klinefelter Syndrome (KS) is the most common chromosome aneuploidy in males. KS is typically characterized by a 47,XXY karyotype, representing 80-90% of KS patients. In rare cases, high-grade sex chromosome aneuploidies (SCAs), 48,XXXY; 48,XXYY; 49,XXXXY, are also observed in males. Since the advent of the reprogramming technique, a few KS-iPSCs have been described. Here, we detail the methodology for generating primary fibroblasts from patients' skin biopsies and the subsequent derivation of iPSCs using an efficient integrative-free mRNA-based somatic reprogramming approach.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Klinefelter , Masculino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/metabolismo , Linhagem Celular , Aneuploidia , Cromossomos Sexuais , Reprogramação Celular/genética
15.
J Evol Biol ; 37(2): 171-188, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305563

RESUMO

When a single species evolves into multiple descendent species, some parts of the genome can play a key role in the evolution of reproductive isolation while other parts flow between the evolving species via interbreeding. Genomic evolution during the speciation process is particularly interesting when major components of the genome-for instance, sex chromosomes vs. autosomes vs. mitochondrial DNA-show widely differing patterns of relationships between three diverging populations. The golden-crowned sparrow (Zonotrichia atricapilla) and the white-crowned sparrow (Zonotrichia leucophrys) are phenotypically differentiated sister species that are largely reproductively isolated despite possessing similar mitochondrial genomes, likely due to recent introgression. We assessed variation in more than 45,000 single nucleotide polymorphisms to determine the structure of nuclear genomic differentiation between these species and between two hybridizing subspecies of Z. leucophrys. The two Z. leucophrys subspecies show moderate levels of relative differentiation and patterns consistent with a history of recurrent selection in both ancestral and daughter populations, with much of the sex chromosome Z and a large region on the autosome 1A showing increased differentiation compared to the rest of the genome. The two species Z. leucophrys and Z. atricapilla show high relative differentiation and strong heterogeneity in the level of differentiation among various chromosomal regions, with a large portion of the sex chromosome (Z) showing highly divergent haplotypes between these species. Studies of speciation often emphasize mitochondrial DNA differentiation, but speciation between Z. atricapilla and Z. leucophrys appears primarily associated with Z chromosome divergence and more moderately associated with autosomal differentiation, whereas mitochondria are highly similar due apparently to recent introgression. These results add to the growing body of evidence for highly heterogeneous patterns of genomic differentiation during speciation, with some genomic regions showing a lack of gene flow between populations many hundreds of thousands of years before other genomic regions.


Assuntos
Pardais , Animais , Pardais/genética , Genética Populacional , Especiação Genética , Cromossomos Sexuais/genética , Fluxo Gênico , DNA Mitocondrial/genética , Mitocôndrias/genética
16.
Am J Bot ; 111(2): e16276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297448

RESUMO

PREMISE: Dioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genus Asparagus (Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. METHODS: We use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genus Asparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. RESULTS: We estimate that dioecy evolved once or twice approximately 2.78-3.78 million years ago in Asparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. CONCLUSIONS: Our findings support previous work implicating a young age and the possibility of two origins of dioecy in Asparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy in Asparagus approximately 2.78-3.78 million years ago.


Assuntos
Evolução Biológica , Cromossomos Sexuais , Filogenia , África , África do Norte
17.
Sci Rep ; 14(1): 4898, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418601

RESUMO

Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.


Assuntos
Variações do Número de Cópias de DNA , Lagartos , Animais , Feminino , Masculino , Cromossomos Sexuais/genética , Sequência de Bases , Lagartos/genética , Mamíferos/genética , Evolução Molecular , Processos de Determinação Sexual/genética
18.
Nat Commun ; 15(1): 1670, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395916

RESUMO

Bird sex chromosomes play a unique role in sex-determination, and affect the sexual morphology and behavior of bird species. Core waterbirds, a major clade of birds, share the common characteristics of being sexually monomorphic and having lower levels of inter-sexual conflict, yet their sex chromosome evolution remains poorly understood. Here, by we analyse of a chromosome-level assembly of a female crested ibis (Nipponia nippon), a typical core waterbird. We identify neo-sex chromosomes resulting from fusion of microchromosomes with ancient sex chromosomes. These fusion events likely occurred following the divergence of Threskiornithidae and Ardeidae. The neo-W chromosome of the crested ibis exhibits the characteristics of slow degradation, which is reflected in its retention of abundant gametologous genes. Neo-W chromosome genes display an apparent ovary-biased gene expression, which is largely driven by genes that are retained on the crested ibis W chromosome but lost in other bird species. These results provide new insights into the evolutionary history and expression patterns for the sex chromosomes of bird species.


Assuntos
Aves , Cromossomos Sexuais , Animais , Feminino , Aves/genética , Cromossomos Sexuais/genética
19.
Genes (Basel) ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397247

RESUMO

Vanellus (Charadriidae; Charadriiformes) comprises around 20 species commonly referred to as lapwings. In this study, by integrating cytogenetic and genomic approaches, we assessed the satellite DNA (satDNA) composition of one typical species, Vanellus chilensis, with a highly conserved karyotype. We additionally underlined its role in the evolution, structure, and differentiation process of the present ZW sex chromosome system. Seven distinct satellite DNA families were identified within its genome, accumulating on the centromeres, microchromosomes, and the W chromosome. However, these identified satellite DNA families were not found in two other Charadriiformes members, namely Jacana jacana and Calidris canutus. The hybridization of microsatellite sequences revealed the presence of a few repetitive sequences in V. chilensis, with only two out of sixteen displaying positive hybridization signals. Overall, our results contribute to understanding the genomic organization and satDNA evolution in Charadriiform birds.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , DNA Satélite/genética , Aves/genética , Cromossomos Sexuais , Sequências Repetitivas de Ácido Nucleico
20.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306314

RESUMO

Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.


Assuntos
Evolução Molecular , Smegmamorpha , Humanos , Animais , Cromossomo Y/genética , Cromossomos Sexuais , Cromossomos Humanos Y , Cromossomos Humanos X , Smegmamorpha/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...