Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Mol Genet Genomic Med ; 12(4): e2429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553934

RESUMO

BACKGROUND: Limited research has been conducted regarding the elucidation of genotype-phenotype correlations within the 20q13.33 region. The genotype-phenotype association of 20q13.33 microdeletion remains inadequately understood. In the present study, two novel cases of 20q13.33 microdeletion were introduced, with the objective of enhancing understanding of the genotype-phenotype relationship. METHODS: Two unrelated patients with various abnormal clinical phenotypes from Fujian province Southeast China were enrolled in the present study. Karyotype analysis and chromosomal microarray analysis (CMA) were performed to investigate chromosomal abnormalities and copy number variants. RESULTS: The results of high-resolution G-banding karyotype analysis elicited a 46,XY,der(20)add(20)(q13.3) in Patient 1. This patient exhibited various clinical manifestations, such as global developmental delay, intellectual disability, seizures, and other congenital diseases. Subsequently, a 1.0-Mb deletion was identified in the 20q13.33 region alongside a 5.2-Mb duplication in the 14q32.31q32.33 region. In Patient 2, CMA results revealed a 1.8-Mb deletion in the 20q13.33 region with a 4.8-Mb duplication of 17q25.3. The patient exhibited additional abnormal clinical features, including micropenis, congenital heart disease, and a distinctive crying pattern characterized by a crooked mouth. CONCLUSION: In the present study, for the first time, an investigation was conducted into two novel cases of 20q13.33 microdeletion with microduplications in the 17q25.3 and 14q32.31q32.33 regions in the Chinese population. The presence of micropenis may be attributed to the 20q13.33 microdeletion, potentially expanding the phenotypic spectrum associated with this deletion.


Assuntos
Estruturas Cromossômicas , Doenças dos Genitais Masculinos , Deficiência Intelectual , Pênis/anormalidades , Criança , Humanos , Deficiência Intelectual/genética , Cariotipagem , Cariótipo
2.
Curr Microbiol ; 81(5): 122, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530471

RESUMO

The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transcriptoma , Cromossomos Bacterianos/metabolismo , Estruturas Cromossômicas/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385874

RESUMO

The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.


Assuntos
Bactérias , Estruturas Cromossômicas , Células Procarióticas , Cromossomos Bacterianos/genética , Algoritmos , Escherichia coli/genética
4.
PeerJ ; 12: e16918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371376

RESUMO

Ovarian cancer is a complex polygenic disease in which genetic factors play a significant role in disease etiology. A genome-wide association study (GWAS) identified a novel variant on chromosome 9q22.33 as a susceptibility locus for epithelial ovarian cancer (EOC) in the Han Chinese population. However, the underlying mechanism of this genomic region remained unknown. In this study, we conducted a fine-mapping analysis of 130 kb regions, including 1,039 variants in 200 healthy women. Ten variants were selected to evaluate the association with EOC risk in 1,099 EOC cases and 1,591 controls. We identified two variants that were significantly associated with ovarian cancer risk (rs7027650, P = 1.91 × 10-7; rs1889268, P = 3.71 × 10-2). Expression quantitative trait locus (eQTL) analysis found that rs7027650 was significantly correlated with COL15A1 gene expression (P = 0.009). The Luciferase reporter gene assay confirmed that rs7027650 could interact with the promoter region of COL15A1, reducing its activity. An electrophoretic mobility shift assay (EMSA) showed the allele-specific binding capacity of rs7027650. These findings revealed that rs7027650 could be a potential causal variant at 9q22.33 region and may regulate the expression level of COL15A1. This study offered insight into the molecular mechanism behind a potential causal variant that affects the risk of ovarian cancer.


Assuntos
Predisposição Genética para Doença , Neoplasias Ovarianas , Feminino , Humanos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Neoplasias Ovarianas/genética , Locos de Características Quantitativas/genética , Carcinoma Epitelial do Ovário/genética , Estruturas Cromossômicas
5.
Curr Opin Genet Dev ; 85: 102159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382406

RESUMO

Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.


Assuntos
Proteínas de Ciclo Celular , 60634 , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA/genética , Estruturas Cromossômicas , Cromatina
7.
Genes (Basel) ; 14(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38137016

RESUMO

Large-scale genomic structural variations can have significant clinical implications, depending on the specific altered genomic region. Briefly, 2q37 microdeletion syndrome is a prevalent subtelomeric deletion disorder characterized by variable-sized deletions. Affected patients exhibit a wide range of clinical manifestations, including short stature, facial dysmorphism, and features of autism spectrum disorder, among others. Conversely, isolated duplications of proximal chromosome 2q are rare and lack a distinct phenotype. In this report, we provide an extensive molecular analysis of a 15-day-old newborn referred for syndromic features. Our analysis reveals an 8.5 Mb microdeletion at 2q37.1, which extends to the telomere, in conjunction with an 8.6 Mb interstitial microduplication at 2q34q36.1. Our findings underscore the prominence of 2q37 terminal deletions as commonly reported genomic anomalies. We compare our patient's phenotype with previously reported cases in the literature to contribute to a more refined classification of 2q37 microdeletion syndrome and assess the potential impact of 2q34q36.1 microduplication. We also investigate multiple hypotheses to clarify the genetic mechanisms responsible for the observed genomic rearrangement.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Recém-Nascido , Humanos , Deleção Cromossômica , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Estruturas Cromossômicas , Telômero
8.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847746

RESUMO

MOTIVATION: Reconstruction of 3D structure models is of great importance for the study of chromosome function. Software tools for this task are highly needed. RESULTS: We present a novel reconstruction algorithm, called EVRC, which utilizes co-clustering coefficients and error-vector resultant for chromosome 3D structure reconstruction. As an update of our previous EVR algorithm, EVRC now can deal with both single and multiple chromosomes in structure modeling. To evaluate the effectiveness and accuracy of the EVRC algorithm, we applied it to simulation datasets and real Hi-C datasets. The results show that the reconstructed structures have high similarity to the original/real structures, indicating the effectiveness and robustness of the EVRC algorithm. Furthermore, we applied the algorithm to the 3D conformation reconstruction of the wild-type and mutant Arabidopsis thaliana chromosomes and demonstrated the differences in structural characteristics between different chromosomes. We also accurately showed the conformational change in the centromere region of the mutant compared with the wild-type of Arabidopsis chromosome 1. Our EVRC algorithm is a valuable software tool for the field of chromatin structure reconstruction, and holds great promise for advancing our understanding on the chromosome functions. AVAILABILITY AND IMPLEMENTATION: The software is available at https://github.com/mbglab/EVRC.


Assuntos
Estruturas Cromossômicas , Cromossomos , Cromossomos/genética , Algoritmos , Software , Centrômero , Análise por Conglomerados
9.
FEMS Microbiol Rev ; 47(6)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791401

RESUMO

Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio , Animais , Bdellovibrio bacteriovorus/genética , Bdellovibrio/genética , Estágios do Ciclo de Vida , Replicação do DNA , Bactérias Gram-Negativas/genética , Estruturas Cromossômicas
10.
Genes (Basel) ; 14(8)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37628566

RESUMO

AIM: Smith-Magenis syndrome (SMS) is a rare genetic neurodevelopmental disorder caused by a 17p11.2 deletion or pathogenic variant in the RAI1 gene. SMS is associated with developmental delay, intellectual disability (ID), and major sleep and behavioral disturbances. To explore how genetic variants may affect intellectual functioning and behavior, we compared intellectual and behavioral phenotypes between individuals with a 17p11.2 deletion and pathogenic RAI1 variant. METHOD: We reviewed available clinical records from individuals (aged 0-45 years) with SMS, ascertained through a Dutch multidisciplinary SMS specialty clinic. RESULTS: We included a total of 66 individuals (n = 47, 71.2% with a 17p11.2 deletion and n = 19, 28.8% with a pathogenic RAI1 variant) for whom data were available on intellectual functioning, severity of ID (n = 53), and behavioral problems assessed with the Child Behavior Checklist (CBCL, n = 39). Median full-scale IQ scores were lower (56.0 vs. 73.5, p = 0.001) and the proportion of individuals with more severe ID was higher (p = 0.01) in the 17p11.2 deletion group. Median total CBCL 6-18 scores (73.5 vs. 66.0, p = 0.02) and scores on the sub-scales somatic complaints (68.0 vs. 57.0, p = 0.001), withdrawn/depressed behavior (69.5 vs. 55.0, p = 0.02), and internalizing behavior (66.0 vs. 55.0, p = 0.002) were higher in the RAI1 group. CONCLUSION: The results of this study suggest that 17p11.2 deletions are associated with a lower level of intellectual functioning and less internalizing of problems compared to pathogenic RAI1 variants. The findings of this study may contribute to personalized-management strategies in individuals with SMS.


Assuntos
Deficiência Intelectual , Comportamento Problema , Síndrome de Smith-Magenis , Humanos , Síndrome de Smith-Magenis/genética , Estruturas Cromossômicas , Cognição , Deficiência Intelectual/genética , Fenótipo
11.
Genes (Basel) ; 14(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37628634

RESUMO

We report the first case of a child with 16p11.2 microduplication syndrome with increased fluid in the cisterna magna seen on magnetic resonance imaging (MRI). This finding may correspond to a Blake's Pouch Cyst (BPC) or a Mega Cisterna Magna (MCM), being impossible to differentiate through image examination. The molecular duplication was diagnosed using chromosomal microarray analysis with single nucleotide polymorphism (SNP). We review the clinical and neuroimaging features in published case reports in order to observe the findings described in the literature so far and present a skull three-dimensional model to contribute to a better understanding. Despite the variable expressivity of the syndrome being well known, there is no case described in the available literature that mentions the association of 16p11.2 microduplication and the presence of BPC or MCM seen in neuroimaging exams. This finding may represent an extension of the phenotype not yet reported or may present itself as a coincidence in a child with various malformations.


Assuntos
Estruturas Cromossômicas , Cabeça , Humanos , Neuroimagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Síndrome
12.
Phys Biol ; 20(5)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37442118

RESUMO

Interphase chromosomes are known to organize non-randomly in the micron-sized eukaryotic cell nucleus and occupy certain fraction of nuclear volume, often without mixing. Using extensive coarse-grained simulations, we model such chromosome structures as colloidal particles whose surfaces are grafted by cyclic polymers. This model system is known as Rosetta. The cyclic polymers, with varying polymerization degrees, mimic chromatin loops present in interphase chromosomes, while the rigid core models the chromocenter section of the chromosome. Our simulations show that the colloidal chromosome model provides a well-separated particle distribution without specific attraction between the chain monomers. As the polymerization degree of the grafted cyclic chains decreases while maintaining the total chromosomal length (e.g. the more potent activity of condensin-family proteins), the average chromosomal volume becomes smaller, inter-chromosomal contacts decrease, and chromocenters organize in a quasi-crystalline order reminiscent of a glassy state. This order weakens for polymer chains with a characteristic size on the order of the confinement radius. Notably, linear-polymer grafted particles also provide the same chromocenter organization scheme. However, unlike linear chains, cyclic chains result in less contact between the polymer layers of neighboring chromosome particles, demonstrating the effect of DNA breaks in altering genome-wide contacts. Our simulations show that polymer-grafted colloidal systems could help decipher 3D genome architecture along with the fractal globular and loop-extrusion models.


Assuntos
Estruturas Cromossômicas , Polímeros/química , Ciclização , Coloides/química , Estruturas Cromossômicas/química , Simulação de Dinâmica Molecular
13.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498561

RESUMO

MOTIVATION: The spatial genome organization of a eukaryotic cell is important for its function. The development of single-cell technologies for probing the 3D genome conformation, especially single-cell chromosome conformation capture techniques, has enabled us to understand genome function better than before. However, due to extreme sparsity and high noise associated with single-cell Hi-C data, it is still difficult to study genome structure and function using the HiC-data of one single cell. RESULTS: In this work, we developed a deep learning method ScHiCEDRN based on deep residual networks and generative adversarial networks for the imputation and enhancement of Hi-C data of a single cell. In terms of both image evaluation and Hi-C reproducibility metrics, ScHiCEDRN outperforms the four deep learning methods (DeepHiC, HiCPlus, HiCSR, and Loopenhance) on enhancing the raw single-cell Hi-C data of human and Drosophila. The experiments also show that it can generate single-cell Hi-C data more suitable for identifying topologically associating domain boundaries and reconstructing 3D chromosome structures than the existing methods. Moreover, ScHiCEDRN's performance generalizes well across different single cells and cell types, and it can be applied to improving population Hi-C data. AVAILABILITY AND IMPLEMENTATION: The source code of ScHiCEDRN is available at the GitHub repository: https://github.com/BioinfoMachineLearning/ScHiCEDRN.


Assuntos
Cromossomos , Genoma , Humanos , Reprodutibilidade dos Testes , Estruturas Cromossômicas , Software , Cromatina
14.
Mol Genet Genomic Med ; 11(10): e2248, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37475652

RESUMO

BACKGROUND: We describe a 13-year-old girl with a 11q13.3q13.4 deletion encompassing the SHANK2 gene and a 9q21.13q21.33 duplication. She presented with pre- and postnatal growth retardation, global developmental delay, severe language delay, cardiac abnormalities, and dysmorphisms. Her maternal family members all had histories of reproductive problems. METHODS: Maternal family members with histories of reproductive problems were studied using G-banded karyotyping and optical genome mapping (OGM). Long-range PCR (LR-PCR) and Sanger sequencing were used to confirm the precise break point sequences obtained by OGM. RESULTS: G-banded karyotyping characterized the cytogenetic results as 46,XX,der(9)?del(9)(q21q22)t(9;14)(q22;q24),der(11)ins(11;?9)(q13;?q21q22),der(14)t(9;14). Using OGM, we determined that asymptomatic female family members with reproductive problems were carriers of a four-way balanced chromosome translocation. Their karyotype results were further refined as 46,XX,der(9)del(9)(q21.13q21.33)t(9;14)(q21.33;q22.31),der(11)del(11)(q13.3q13.4)ins(11;9)(q13.3;q21.33q21.13),der(14)t(9:14)ins(14;11)(q23.1;q13.4q13.3). Thus, we confirmed that the affected girl inherited the maternally derived chromosome 11. Furthermore, using LR-PCR, we showed that three disease-related genes (TMC1, NTRK2, and KIAA0586) were disrupted by the breakpoints. CONCLUSIONS: Our case highlights the importance of timely parental origin testing for patients with rare copy number variations, as well as the accurate characterization of balanced chromosomal rearrangements in families with reproductive problems. In addition, our case demonstrates that OGM is a useful clinical application for analyzing complex structural variations within the human genome.


Assuntos
Aberrações Cromossômicas , Translocação Genética , Humanos , Feminino , Adolescente , Variações do Número de Cópias de DNA , Cariotipagem , Estruturas Cromossômicas
15.
Genes (Basel) ; 14(6)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37372471

RESUMO

Partial duplication of the short arm of chromosome 7 is a rare chromosome rearrangement. The phenotype spectrum associated with this rearrangement is extremely variable even if in the last decade the use of high-resolution microarray technology for the investigation of patients carrying this rearrangement allowed for the identification of the 7p22.1 sub-band causative of this phenotype and to recognize the corresponding 7p22.1 microduplication syndrome. We report two unrelated patients that carry a microduplication involving the 7.22.2 sub-band. Unlike 7p22.1 microduplication carriers, both patients only show a neurodevelopmental disorder without malformations. We better characterized the clinical pictures of these two patients providing insight into the clinical phenotype associated with the microduplication of the 7p22.2 sub-band and support for a possible role of this sub-band in the 7p22 microduplication syndrome.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Humanos , Duplicação Cromossômica , Trissomia , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Estruturas Cromossômicas
16.
Sci Rep ; 13(1): 7689, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169815

RESUMO

22q11.2 deletion syndrome, associated with congenital and neuropsychiatric anomalies, is the most common copy number variant (CNV)-associated syndrome. Patient-derived, induced pluripotent stem cell (iPS) models have provided insight into this condition. However, patient-derived iPS cells may harbor underlying genetic heterogeneity that can confound analysis. Furthermore, almost all available models reflect the commonly-found ~ 3 Mb "A-D" deletion at this locus. The ~ 1.5 Mb "A-B" deletion, a variant of the 22q11.2 deletion which may lead to different syndromic features, and is much more frequently inherited than the A-D deletion, remains under-studied due to lack of relevant models. Here we leveraged a CRISPR-based strategy to engineer isogenic iPS models of the 22q11.2 "A-B" deletion. Differentiation to excitatory neurons with subsequent characterization by transcriptomics and cell surface proteomics identified deletion-associated alterations in proliferation and adhesion. To illustrate in vivo applications of this model, we further implanted neuronal progenitor cells into the cortex of neonatal mice and found potential alterations in neuronal maturation. The isogenic models generated here will provide a unique resource to study this less-common variant of the 22q11.2 microdeletion syndrome.


Assuntos
Síndrome de DiGeorge , Animais , Camundongos , Humanos , Síndrome de DiGeorge/genética , Estruturas Cromossômicas , Heterogeneidade Genética , Neurônios , Deleção Cromossômica , Cromossomos Humanos Par 22/genética
17.
Proc Natl Acad Sci U S A ; 120(21): e2300877120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192159

RESUMO

The segregation of chromosomes depends on the centromere. Most species are monocentric, with the centromere restricted to a single region per chromosome. In some organisms, the monocentric organization changed to holocentric, in which the centromere activity is distributed over the entire chromosome length. However, the causes and consequences of this transition are poorly understood. Here, we show that the transition in the genus Cuscuta was associated with dramatic changes in the kinetochore, a protein complex that mediates the attachment of chromosomes to microtubules. We found that in holocentric Cuscuta species, the KNL2 genes were lost; the CENP-C, KNL1, and ZWINT1 genes were truncated; the centromeric localization of CENH3, CENP-C, KNL1, MIS12, and NDC80 proteins was disrupted; and the spindle assembly checkpoint (SAC) degenerated. Our results demonstrate that holocentric Cuscuta species lost the ability to form a standard kinetochore and do not employ SAC to control the attachment of microtubules to chromosomes.


Assuntos
Cuscuta , Cinetocoros , Centrômero/genética , Estruturas Cromossômicas , Microtúbulos/metabolismo , Segregação de Cromossomos
18.
Commun Biol ; 6(1): 557, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225770

RESUMO

Autism spectrum disorders are more common in males, and have a substantial genetic component. Chromosomal 16p11.2 deletions in particular carry strong genetic risk for autism, yet their neurobiological impact is poorly characterised, particularly at the integrated systems level. Here we show that mice reproducing this deletion (16p11.2 DEL mice) have reduced GABAergic interneuron gene expression (decreased parvalbumin mRNA in orbitofrontal cortex, and male-specific decreases in Gad67 mRNA in parietal and insular cortex and medial septum). Metabolic activity was increased in medial septum, and in its efferent targets: mammillary body and (males only) subiculum. Functional connectivity was altered between orbitofrontal, insular and auditory cortex, and between septum and hippocampus/subiculum. Consistent with this circuit dysfunction, 16p11.2 DEL mice showed reduced prepulse inhibition, but enhanced performance in the continuous performance test of attentional ability. Level 1 autistic individuals show similarly heightened performance in the equivalent human test, also associated with parietal, insular-orbitofrontal and septo-subicular dysfunction. The data implicate cortical and septal GABAergic dysfunction, and resulting connectivity changes, as the cause of pre-attentional and attentional changes in autism.


Assuntos
Córtex Auditivo , Transtorno do Espectro Autista , Humanos , Animais , Masculino , Camundongos , Estruturas Cromossômicas , Deleção Cromossômica , Transtorno do Espectro Autista/genética , RNA Mensageiro
19.
Genes (Basel) ; 14(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980813

RESUMO

Phelan-McDermid syndrome (PMS) is a multisystem disorder that is associated with deletions of the 22q13 genomic region or pathogenic variants in the SHANK3 gene. Notable features include developmental issues, absent or delayed speech, neonatal hypotonia, seizures, autism or autistic traits, gastrointestinal problems, renal abnormalities, dolichocephaly, and both macro- and microcephaly. Assessment of the genetic factors that are responsible for abnormal head size in PMS has been hampered by small sample sizes as well as a lack of attention to these features. Therefore, this study was conducted to investigate the relationship between head size and genes on chromosome 22q13. A review of the literature was conducted to identify published cases of 22q13 deletions with information on head size to conduct a pooled association analysis. Across 56 studies, we identified 198 cases of PMS with defined deletion sizes and head size information. A total of 33 subjects (17%) had macrocephaly, 26 (13%) had microcephaly, and 139 (70%) were normocephalic. Individuals with macrocephaly had significantly larger genomic deletions than those with microcephaly or normocephaly (p < 0.0001). A genomic region on 22q13.31 was found to be significantly associated with macrocephaly with CELSR1, GRAMD4, and TBCD122 suggested as candidate genes. Investigation of these genes will aid the understanding of head and brain development.


Assuntos
Transtornos Cromossômicos , Microcefalia , Recém-Nascido , Humanos , Microcefalia/genética , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Deleção Cromossômica , Estruturas Cromossômicas , Proteínas Mitocondriais/genética
20.
Proc Natl Acad Sci U S A ; 120(11): e2222045120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877856

RESUMO

The soil-dwelling filamentous bacteria, Streptomyces, is widely known for its ability to produce numerous bioactive natural products. Despite many efforts toward their overproduction and reconstitution, our limited understanding of the relationship between the host's chromosome three dimension (3D) structure and the yield of the natural products escaped notice. Here, we report the 3D chromosome organization and its dynamics of the model strain, Streptomyces coelicolor, during the different growth phases. The chromosome undergoes a dramatic global structural change from primary to secondary metabolism, while some biosynthetic gene clusters (BGCs) form special local structures when highly expressed. Strikingly, transcription levels of endogenous genes are found to be highly correlated to the local chromosomal interaction frequency as defined by the value of the frequently interacting regions (FIREs). Following the criterion, an exogenous single reporter gene and even complex BGC can achieve a higher expression after being integrated into the chosen loci, which may represent a unique strategy to activate or enhance the production of natural products based on the local chromosomal 3D organization.


Assuntos
Produtos Biológicos , Streptomyces coelicolor , Streptomyces coelicolor/genética , Estruturas Cromossômicas , Empacotamento do DNA , Família Multigênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...