Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.591
Filtrar
1.
Food Res Int ; 184: 114215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609213

RESUMO

The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.


Assuntos
Bacillus , Esporos Bacterianos , Esporos Bacterianos/genética , Bactérias , Cognição , Gema de Ovo
2.
Food Microbiol ; 120: 104490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431333

RESUMO

Sporeforming bacteria are a concern in some food raw materials, such as cocoa powder. Samples (n = 618) were collected on two farms and at several stages during cocoa powder manufacture in three commercial processing lines to determine the impact of each stage on bacterial spore populations. Mesophilic aerobic, mesophilic anaerobic, thermophilic aerobic, and Bacillus cereus spore populations were enumerated in all the samples. Genetic diversity in B. cereus strains (n = 110) isolated from the samples was examined by M13 sequence-based PCR typing, partial sequencing of the panC gene, and the presence/absence of ces and cspA genes. The counts of different groups of sporeforming bacteria varied amongst farms and processing lines. For example, the counts of mesophilic aerobic spore-forming (MAS) populations of cocoa bean fermentation were lower than 1 log spore/g in Farm 1 but higher than 4 log spore/g in Farm 2. B. cereus isolated from cocoa powder was also recovered from cocoa beans, nibs, and samples after roasting, refining, and pressing, which indicated that B. cereus spores persist throughout cocoa processing. Phylogenetic group IV was the most frequent (73%), along with processing. Strains from phylogenetic group III (14 %) did not show the ces gene's presence.


Assuntos
Bacillus cereus , Chocolate , Bacillus cereus/genética , Filogenia , Anaerobiose , Esporos Bacterianos/genética , Microbiologia de Alimentos , Contagem de Colônia Microbiana
3.
Adv Food Nutr Res ; 108: 265-287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461001

RESUMO

This chapter provides a summary of the effect of thermal and non-thermal processing technologies on Bacillus cereus spores, a well-known pathogenic bacterium associated with foodborne illnesses. B. cereus has been frequently detected in rice, milk products, infant food, liquid eggs products and meat products all over the world. This Gram positive, rod-shaped, facultative anaerobe can produce endospores that can withstand pasteurization, UV radiation, and chemical reagents commonly used for sanitization. B. cereus spores can germinate into vegetative cells that can produce toxins. The conventional regime for eliminating spores from food is retorting which uses the application of high temperature (121 °C). However, at this temperature, there could be a significant amount of loss in the organoleptic and functional qualities of the food components, especially proteins. This leads to the research on the preventive measures against germination and if possible, to reduce the resistance before using a non-thermal technology (temperatures less than retorting-121 °C) for inactivation. This chapter reviews the development and success of several food processing technologies in their ability to inactivate B. cereus spores in food.


Assuntos
Bacillus cereus , Produtos da Carne , Humanos , Bacillus cereus/metabolismo , Manipulação de Alimentos , Esporos Bacterianos/metabolismo , Microbiologia de Alimentos
4.
Bioresour Technol ; 398: 130534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452953

RESUMO

Bacillus licheniformis is widely utilized in disease prevention and environmental remediation. Spore quantity is a critical factor in determining the quality of microbiological agents containing vegetative cells. To improve the understanding of Bacillus licheniformis BF-002 strain culture, a hybrid model integrating traditional dynamic modeling and recurrent neural network was developed. This model enabled the optimization of carbon/nitrogen source feeding rates, pH, temperature and agitation speed using genetic algorithms. Carbon and nitrogen source consumption in the optimal duplicate batches showed no significant difference compared to the control batch. However, the spore quantity in the broth increased by 16.2% and 35.2% in the respective duplicate batches. Overall, the hybrid model outperformed the traditional dynamic model in accurately tracking the cultivation dynamics of Bacillus licheniformis, leading to increased spore production when used for optimizing cultivation conditions.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Esporos Bacterianos/genética , Temperatura , Carbono , Nitrogênio
5.
Sci Rep ; 14(1): 6422, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494525

RESUMO

Persistent diarrhea is a severe gastroenteric disease with relatively high risk of pediatric mortality in developing countries. We conducted a randomized, double-blind, controlled clinical trial to evaluate the efficacy of liquid-form Bacillus clausii spore probiotics (LiveSpo CLAUSY; 2 billion CFU/5 mL ampoule) at high dosages of 4-6 ampoules a day in supporting treatment of children with persistent diarrhea. Our findings showed that B. clausii spores significantly improved treatment outcomes, resulting in a 2-day shorter recovery period (p < 0.05) and a 1.5-1.6 folds greater efficacy in reducing diarrhea symptoms, such as high frequency of bowel movement of ≥ 3 stools a day, presence of fecal mucus, and diapered infant stool scale types 4-5B. LiveSpo CLAUSY supportive treatment achieved 3 days (p < 0.0001) faster recovery from diarrhea disease, with 1.6-fold improved treatment efficacy. At day 5 of treatment, a significant decrease in blood levels of pro-inflammatory cytokines TNF-α, IL-17, and IL-23 by 3.24% (p = 0.0409), 29.76% (p = 0.0001), and 10.87% (p = 0.0036), respectively, was observed in the Clausy group. Simultaneously, there was a significant 37.97% decrease (p = 0.0326) in the excreted IgA in stool at day 5 in the Clausy group. Overall, the clinical study demonstrates the efficacy of B. clausii spores (LiveSpo CLAUSY) as an effective symptomatic treatment and immunomodulatory agent for persistent diarrhea in children.Trial registration: NCT05812820.


Assuntos
Bacillus clausii , Probióticos , Lactente , Humanos , Criança , Esporos Bacterianos , Diarreia/terapia , Citocinas , Probióticos/uso terapêutico
6.
Food Res Int ; 182: 114064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519157

RESUMO

Bacillus subtilis spores are important food spoilage agents and are occasionally involved in food poisoning. In foods that are not processed with intense heat, such bacterial spores are controlled by a combination of different hurdles, such as refrigeration, acidification, and low water activity (aw), which inhibit or delay germination and/or growth. Sporulation temperature has long been regarded as a relevant factor for the assessment of germination in chemically defined media, but little is known about its impact on food preservation environments. In this study, we compared germination dynamics of B. subtilis spores produced at optimal temperature (37 °C) with others incubated at suboptimal (20 °C) and supraoptimal (43 °C) temperatures in a variety of nutrients (rich-growth medium, L-alanine, L-valine, and AGFK) under optimal conditions as well as under food-related stresses (low aw, pH, and temperature). Spores produced at 20 °C had a lower germination rate and efficiency than those incubated at 37 °C in all the nutrients, while those sporulated at 43 °C displayed a higher germination rate and/or efficiency in response to rich-growth medium and mostly to L-alanine and AGFK under optimal environmental conditions. However, differences in germination induced by changes in sporulation temperature decreased when spores were activated by heat, mainly due to the greater benefit of heat for spores produced at 20 °C and 37 °C than at 43 °C, especially in AGFK. Non-heat-activated spores produced at 43 °C still displayed superior germination fitness under certain stresses that had considerably impaired the germination of the other two populations, such as reduced temperature and aw. Moreover, they presented lower temperature and pH boundaries for the inhibition of germination in rich-growth medium, while requiring a higher NaCl concentration threshold compared to spores obtained at optimal and suboptimal temperature. Sporulation temperature is therefore a relevant source of variability in spore germination that should be taken into account for the accurate prediction of spore behaviour under variable food preservation conditions with the aim of improving food safety and stability.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Temperatura , Temperatura Alta , Meios de Cultura , Alanina
7.
Vet Med Sci ; 10(3): e1410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501344

RESUMO

BACKGROUND: Probiotic strains have the potential to modulate immune responses, reduce intestinal inflammation, normalize intestinal mucosal function and decrease allergic reactions. OBJECTIVE: This study aimed to investigate the effect of oral probiotic supplements containing Bacillus subtilis and Bacillus coagulans spores on clinical symptoms, haematological factors and immune responses to allergic contact dermatitis in dogs induced by dinitrochlorobenzene (DNCB). METHODS: DNCB was injected subcutaneously into the scapular region of 20 healthy adult dogs of both sexes, divided into four groups, to induce experimental allergic contact dermatitis. Dogs in Group 1 received food without probiotics or medication. Oral prednisolone was administered to Group 2 for 30 days at a dosage of 0.25 mg/kg every other day. The dogs in Group 3 were treated with a combination of oral prednisolone and probiotics. The dogs in Group 4 were fed daily with a mixture of 109 B. subtilis and B. coagulans bacteria for 30 days. The immune system responses and related gene expression were analysed in the treated animals. RESULTS: The administration of probiotics for 30 days resulted in a reduction in clinical symptoms and duration of wound repair. The probiotics treatment also significantly increased the serum bactericidal effects against Staphylococcus aureus and Escherichia coli. It enhanced both the classic and alternative activity of the complement, as well as lysozyme activity. Additionally, the probiotics led to higher total immunoglobulin levels and significant reductions in anti-trypsin and C-reactive protein levels. Furthermore, the expression of IgE, induction of interferon-gamma and IL-4 genes were also reduced. CONCLUSIONS: According to the results, B. subtilis and B. coagulans can be further investigated as a viable alternative to corticosteroids in treating allergic contact dermatitis in dogs.


Assuntos
Bacillus coagulans , Dermatite Alérgica de Contato , Doenças do Cão , Masculino , Feminino , Cães , Animais , Bacillus subtilis/genética , Dinitroclorobenzeno , Esporos Bacterianos/genética , Dermatite Alérgica de Contato/terapia , Dermatite Alérgica de Contato/veterinária , Prednisolona , Doenças do Cão/induzido quimicamente , Doenças do Cão/terapia
8.
J Microorg Control ; 29(1): 9-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508764

RESUMO

Mechanical bead disruption is an efficient DNA extraction method from spore cells for subsequent quantification of the spore population by quantitative polymerase chain reaction(qPCR). In this study, to validate spore DNA localization and extraction efficiencies, the fractionated DNA included the total DNA(tDNA)extracted from spore cells and intracellular(iDNA)and extracellular DNA(eDNA)extracted from fractionated spores through chemical decoating and alkaline lysis buffers, each followed by bead disruption. Furthermore, alkaline lysis buffer-treated spore cells were intensively washed three and five times after each centrifugation to determine how the amount of DNA is affected by repeated centrifugation. This process was achieved through fractionated spore pellet and suspension treatments with propidium monoazide xx(PMAxx)before mechanical bead disruption. Three fractionated and extracted DNAs were assessed with qPCR. The amount of eDNA was higher than that of iDNA, and closer to tDNA levels in the qPCR assay. These results indicted the following: 1)amount of eDNA was more than iDNA and responsible for majority of amount of tDNA through the combination method involving alkaline lysis buffer and bead disruption, 2)lysis buffer partially eliminated the eDNA fragments through multiple washing steps, but it was not largely independent of the number of times centrifugation was performed.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Reação em Cadeia da Polimerase em Tempo Real , Bacillus subtilis/genética , Esporos Bacterianos/genética , DNA Bacteriano/genética , DNA
9.
Proc Natl Acad Sci U S A ; 121(13): e2400584121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502707

RESUMO

When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/metabolismo , Ativação Transcricional , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Divisão Celular/genética , Fator sigma/genética , Fator sigma/metabolismo
10.
mBio ; 15(4): e0242423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470267

RESUMO

Two growth modes have been described for the filamentous Streptomyces bacteria. Their classic developmental life cycle culminates in the formation of dormant spores, where movement to new environments is mediated through spore dispersal. In contrast, exploratory growth proceeds as a rapidly expanding vegetative mycelium that leads to extensive surface colonization and is associated with the release of volatile compounds that promote alkalinization (and reduced iron bioavailability) of its surrounding environment. Here, we report that exploratory growth in Streptomyces venezuelae can proceed in tandem with classic sporulating development in response to specific nutritional cues. Sporulating exploration is not accompanied by a rise in environmental pH but has the same iron acquisition requirements as conventional exploration. We found that mutants that were defective in their ability to sporulate were unaffected in exploration, but mutants undergoing precocious sporulation were compromised in their exploratory growth and this appeared to be mediated through premature activation of the developmental regulator WhiI. Cell envelope integrity was also found to be critical for exploration, as mutations in the cell envelope stress-responsive extracytoplasmic function sigma factor SigE led to a failure to explore robustly under all exploration-promoting conditions. Finally, in expanding the known exploration-promoting conditions, we discovered that the model species Streptomyces lividans exhibited exploration capabilities, supporting the proposal that exploration is conserved across diverse streptomycetes. IMPORTANCE: Streptomyces bacteria have evolved diverse developmental and metabolic strategies to thrive in dynamic environmental niches. Here, we report the amalgamation of previously disparate developmental pathways, showing that colony expansion via exploration can proceed in tandem with colony sporulation. This developmental integration extends beyond phenotype to include shared genetic elements, with sporulation-specific repressors being required for successful exploration. Comparing this new exploration mode with previously identified strategies has revealed key differences (e.g., no need for environmental alkalinization), and simultaneously allowed us to define unifying requirements for Streptomyces exploration. The "reproductive exploration" phenomenon reported here represents a unique bet-hedging strategy, with the Streptomyces colony engaging in an aggressive colonization strategy while transporting a protected genetic repository.


Assuntos
Streptomyces , Animais , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo , Ferro/metabolismo , Estágios do Ciclo de Vida , Esporos Bacterianos , Proteínas de Bactérias/metabolismo
11.
mBio ; 15(4): e0224823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477571

RESUMO

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Assuntos
Bacillus , Histidina , Histidina Quinase/genética , Histidina Quinase/metabolismo , Histidina/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Bacillus/metabolismo , Clostridium/genética , Clostridium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica
12.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38544331

RESUMO

AIMS: Indole and mucin are compounds found in the host environment as they are produced by the host or by the host-associated microbiota. This study investigated whether indole and mucin impact Clostridium perfringens growth and sporulation, as well as enterotoxin production and biofilm formation. METHODS AND RESULTS: There was no impact on growth of Cl. perfringens for up to 400 µM indole and 240 mg/l mucin, and neither indole nor mucin affected sporulation. Reverse-transcriptase qPCR showed that mucin strongly upregulated the expression of Cl. perfringens enterotoxin (up to 121-fold increase), whereas indole had a much more modest effect (2-fold). This was also reflected in increased Cl. perfringens enterotoxin levels in mucin-treated Cl. perfringens (as assessed by a reversed passive latex agglutination assay). Finally, mucin and indole significantly increased biofilm formation of Cl. perfringens, although the effect size was relatively small (less than 1.5 fold). CONCLUSION: These results indicate that Cl. perfringens can sense its presence in a host environment by responding to mucin, and thereby markedly increased enterotoxin production.


Assuntos
Clostridium perfringens , Enterotoxinas , Clostridium perfringens/genética , Enterotoxinas/genética , Mucinas/metabolismo , Esporos Bacterianos , Biofilmes
13.
Genes Dev ; 38(1-2): 1-3, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316519

RESUMO

Germination is the process by which spores emerge from dormancy. Although spores can remain dormant for decades, the study of germination is an active field of research. In this issue of Genes & Development, Gao and colleagues (pp. 31-45) address a perplexing question: How can a dormant spore initiate germination in response to environmental cues? Three distinct complexes are involved: GerA, a germinant-gated ion channel; 5AF/FigP, a second ion channel required for amplification; and SpoVA, a channel for dipicolinic acid (DPA). DPA release is followed by rehydration of the spore core, thus allowing the resumption of metabolic activity.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Esporos/metabolismo , Canais Iônicos/metabolismo , Bacillus subtilis/metabolismo
14.
J Phys Chem B ; 128(7): 1638-1646, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38326108

RESUMO

The ability to detect and inactivate spore-forming bacteria is of significance within, for example, industrial, healthcare, and defense sectors. Not only are stringent protocols necessary for the inactivation of spores but robust procedures are also required to detect viable spores after an inactivation assay to evaluate the procedure's success. UV radiation is a standard procedure to inactivate spores. However, there is limited understanding regarding its impact on spores' spectral and morphological characteristics. A further insight into these UV-induced changes can significantly improve the design of spore decontamination procedures and verification assays. This work investigates the spectral and morphological changes to Bacillus thuringiensis spores after UV exposure. Using absorbance and fluorescence spectroscopy, we observe an exponential decay in the spectral intensity of amino acids and protein structures, as well as a logistic increase in dimerized DPA with increased UV exposure on bulk spore suspensions. Additionally, using micro-Raman spectroscopy, we observe DPA release and protein degradation with increased UV exposure. More specifically, the protein backbone's 1600-1700 cm-1 amide I band decays slower than other amino acid-based structures. Last, using electron microscopy and light scattering measurements, we observe shriveling of the spore bodies with increased UV radiation, alongside the leaking of core content and disruption of proteinaceous coat and exosporium layers. Overall, this work utilized spectroscopy and electron microscopy techniques to gain new understanding of UV-induced spore inactivation relating to spore degradation and CaDPA release. The study also identified spectroscopic indicators that can be used to determine spore viability after inactivation. These findings have practical applications in the development of new spore decontamination and inactivation validation methods.


Assuntos
Esporos Bacterianos , Raios Ultravioleta , Esporos Bacterianos/química , Bacillus subtilis/química , Análise Espectral Raman/métodos , Aminoácidos/metabolismo
15.
Analyst ; 149(6): 1861-1871, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38348676

RESUMO

Many strains among spore-forming bacteria species are associated with food spoilage, foodborne disease, and hospital-acquired infections. Understanding the impact of environmental conditions and decontamination techniques on the metabolic activity, viability, and biomarkers of these spores is crucial for combatting them. To distinguish and track spores and to understand metabolic mechanisms, spores must be labeled. Staining or genetic modification are current methods for this, however, these methods can be time-consuming, and affect the viability and function of spore samples. In this work, we investigate the use of heavy water for permanent isotope labeling of spores and Raman spectroscopy for tracking sporulation/germination mechanisms. We also discuss the potential of this method in observing decontamination. We find that steady-state deuterium levels in the spore are achieved after only ∼48 h of incubation with 30% D2O-infused broth and sporulation, generating Raman peaks at cell silent region of 2200 and 2300 cm-1. These deuterium levels then decrease rapidly upon spore germination in non-deuterated media. We further find that unlike live spores, spores inactivated using various methods do not lose these Raman peaks upon incubation in growth media, suggesting these peaks may be used to indicate the viability of a spore sample. We further observe several Raman peaks exclusive to deuterated DPA, a spore-specific chemical biomarker, at e.g. 988 and 2300 cm-1, which can be used to track underlying changes in spores involving DPA. In conclusion, permanent spore labeling using deuterium offers a robust and non-invasive way of labeling bacterial spores for marking, viability determination, and characterising spore activity.


Assuntos
Ácidos Picolínicos , Esporos Bacterianos , Deutério , Ácidos Picolínicos/química , Esporos Bacterianos/química , Bacillus subtilis/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(10): e2320763121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416680

RESUMO

Bacterial spores have outstanding properties from the materials science perspective, which allow them to survive extreme environmental conditions. Recent work by [S. G. Harrellson et al., Nature 619, 500-505 (2023)] studied the mechanical properties of Bacillus subtilis spores and the evolution of these properties with the change of humidity. The experimental measurements were interpreted assuming that the spores behave as water-filled porous solids, subjected to hydration forces. Here, we revisit their experimental data using literature data on vapor sorption on spores and ideas from polymer physics. We demonstrate that upon the change of humidity, the spores behave like rubber with respect to their swelling, elasticity, and relaxation times. This picture is consistent with the knowledge of the materials comprising the bacterial cell walls-cross-linked peptidoglycan. Our results provide an interpretation of the mechanics of bacterial spores and can help in developing synthetic materials mimicking the mechanical properties of the spores.


Assuntos
Hidrogéis , Esporos Bacterianos , Umidade , Elasticidade , Fenômenos Químicos , Bacillus subtilis
17.
J Environ Manage ; 354: 120286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354613

RESUMO

The threat of bioterrorism has spurred research on the decontamination and containment of different agents. Anthrax [causative agent Bacillus anthracis (Ba)] is a disease that can lead to severe infections within human and animals, particularly when inhaled. This research investigated the use of spore-contaminated simulated runoff events into stormwater control measures (SCMs), which are designed to retain and improve the quality of runoff and may have the potential to filter and contain the spores. In this study, the effectiveness of a bioretention cell (BRC) and high flow media filter (HFMF) in Huron, Ohio, were evaluated for removal of Bacillus globigii (Bg) spores (a harmless cognate of Ba). Three 4-8 mm simulated runoff events were created for each SCM using a fire hydrant and Bg spores were injected into the runoff upstream of the SCM inlets. The BRC significantly (p < 0.001) outperformed the HFMF in reducing Bg concentrations and loads, with an average load reduction of 1.9 log (∼99% reduction) compared to 0.4 (∼60% reduction), respectively. A probable critical design factor leading to these differences was the infiltration rate of the media and subsequent retention time within the filters, which was supported by similar disparities in suspended solids reductions. Differences in spore removal may also have been due to particle size distribution of the HFMF, which was more gravelly than the bioretention cell. At 3 and 6 months after the-simulated runoff tests, soil samples taken from both SCMs, yielding detectable Bg spores within the top 15 cm of media, with increased spore concentrations where ponding occurred for longer durations during the tests. This suggests that forebays and areas near inlets may be hotspots for spore cleanup in a real-world bioterrorism incident.


Assuntos
Bacillus anthracis , Bacillus , Animais , Humanos , Esporos Bacterianos , Bacillus subtilis
18.
Int J Food Microbiol ; 413: 110608, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308875

RESUMO

During thermal processing of braised sauce beef, the lipid content of circularly used sauce increased accordingly because of lipid migration from beef to sauce, which may impact the bacterial heat resistance in the products. This study aims to characterize the heat resistance of Clostridium sporogenes spores in braised sauce beef, and investigate the effects of oil on the spore surface characteristics and microstructure. The results indicated that the heat resistance of C. sporogenes spores in beef was significantly higher than that in sauce. Oil addition remarkably enhanced the spore heat resistance in sauce, with D95°C value three times more than that without oil added, and even higher than that in beef. The results of spore surface characteristics indicated that oil addition led to an increase of hydrophobicity and a decrease of zeta potential, which ultimately increased spore heat resistance. Microstructure analysis indicated that exosporium maintenance and cortex expansion induced by oil addition might contribute to the increase of spore heat resistance. This study has sufficiently verified the importance of oil content on the heat resistance of C. sporogenes spores, which should be taken into consideration when developing thermal processes for controlling the spores in food matrices.


Assuntos
Clostridium botulinum , Temperatura Alta , Animais , Bovinos , Microbiologia de Alimentos , Esporos Bacterianos , Clostridium , Lipídeos/farmacologia
19.
Protein Expr Purif ; 218: 106448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38373510

RESUMO

Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Desidrogenases de Carboidrato , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/química
20.
J Bacteriol ; 206(3): e0042823, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38353530

RESUMO

In Streptomyces, multiple paralogs of SsgA-like proteins (SALPs) are involved in spore formation from aerial hyphae. However, the functions of SALPs have not yet been elucidated in other actinobacterial genera. Here, we report the primary function of an SsgB ortholog (AmSsgB) in Actinoplanes missouriensis, which develops terminal sporangia on the substrate mycelia via short sporangiophores. Importantly, AmSsgB is the sole SALP in A. missouriensis. The transcription of AmssgB was upregulated during sporangium formation, consistent with our previous findings that AmssgB is a member of the AmBldD regulon. The AmssgB null mutant (ΔAmssgB) strain formed non-globose irregular structures on the substrate mycelium. Transmission electron microscopy revealed that the irregular structures contained abnormally septate hypha-like cells, without an intrasporangial matrix. These phenotypic changes were restored by complementation with AmssgB. Additionally, analysis of the heterologous expression of seven SALP-encoding genes from Streptomyces coelicolor A3(2) (ssgA-G) in the ΔAmssgB strain revealed that only ssgB could compensate for AmSsgB deficiency. This indicated that SsgB of S. coelicolor A3(2) and AmSsgB have comparable functions in A. missouriensis. In contrast to the ΔAmssgB strain, the ftsZ-disrupted strain showed a severe growth defect and produced small sporangium-like structures that swelled to some extent. These findings indicate that AmSsgB is crucial for the early stages of sporangium formation, not for spore septum formation in the late stages. We propose that AmSsgB is involved in sporangium formation by promoting the expansion of the "presporangium" structures formed on the tips of the substrate hyphae. IMPORTANCE: SsgB has been proposed as an archetypical SsgA-like protein with an evolutionarily conserved function in the morphological development of spore-forming actinomycetes. SsgB in Streptomyces coelicolor A3(2) is involved in spore septum formation. However, it is unclear whether this is the primary function of SsgBs in actinobacteria. This study demonstrated that the SsgB ortholog (AmSsgB) in Actinoplanes missouriensis is essential for sporangium expansion, which does not seem to be related to spore septum formation. However, the heterologous expression of ssgB from S. coelicolor A3(2) restored morphological abnormalities in the ΔAmssgB mutant. We propose that the primary function of SsgB is to initiate sporulation in differentiating cells (e.g., aerial hyphae in Streptomyces and "presporangium" cells in A. missouriensis) although its molecular mechanism remains unknown.


Assuntos
Actinobacteria , Actinoplanes , Streptomyces coelicolor , Streptomyces , Esporângios/metabolismo , Streptomyces/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...