Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.420
Filtrar
1.
CNS Neurosci Ther ; 30(3): e14673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468459

RESUMO

AIM: We aim to identify the specific CD4+ T-cell subtype influenced by brain-to-CLN signaling and explore their role during the acute phase of traumatic brain injury (TBI). METHOD: Cervical lymphadenectomy or cervical afferent lymphatic ligation was performed before TBI. Cytokine array and western blot were used to detect cytokines, while the motor function was assessed using mNss and rotarod test. CD4+ T-cell subtypes in blood, brain, and CLNs were analyzed with Cytometry by time-of-flight analysis (CyTOF) or fluorescence-activated cell sorting (FACS). Brain edema and volume changes were measured by 9.4T MRI. Neuronal apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. RESULTS: Cervical lymphadenectomy and ligation of cervical lymphatic vessels resulted in a decreased infiltration of CD4+ T cells, specifically CD11b-positive CD4+ T cells, within the affected region. The population of CD4+ CD11b+ T cells increased in ligated CLNs, accompanied by a decrease in the average fluorescence intensity of sphingosine-1-phosphate receptor-1 (S1PR1) on these cells. Administration of CD4+ CD11b+ T cells sorted from CLNs into the lateral ventricle reversed the attenuated neurologic deficits, brain edema, and lesion volume following cervical lymphadenectomy. CONCLUSION: The infiltration of CD4+ CD11b+ T cells exacerbates secondary brain damage in TBI, and this process is modulated by brain-to-CLN signaling.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Vasos Linfáticos , Humanos , Animais , Edema Encefálico/patologia , Linfócitos T , Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Apoptose , Citocinas , Vasos Linfáticos/patologia , Linfócitos T CD4-Positivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Modelos Animais de Doenças
2.
Cell Mol Life Sci ; 81(1): 131, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472405

RESUMO

The discoveries that cerebrospinal fluid participates in metabolic perivascular exchange with the brain and further drains solutes to meningeal lymphatic vessels have sparked a tremendous interest in translating these seminal findings from animals to humans. A potential two-way coupling between the brain extra-vascular compartment and the peripheral immune system has implications that exceed those concerning neurodegenerative diseases, but also imply that the central nervous system has pushed its immunological borders toward the periphery, where cross-talk mediated by cerebrospinal fluid may play a role in a range of neoplastic and immunological diseases. Due to its non-invasive approach, magnetic resonance imaging has typically been the preferred methodology in attempts to image the glymphatic system and meningeal lymphatics in humans. Even if flourishing, the research field is still in its cradle, and interpretations of imaging findings that topographically associate with reports from animals have yet seemed to downplay the presence of previously described anatomical constituents, particularly in the dura. In this brief review, we illuminate these challenges and assess the evidence for a glymphatic-lymphatic coupling. Finally, we provide a new perspective on how human brain and meningeal clearance function may possibly be measured in future.


Assuntos
Vasos Linfáticos , Animais , Humanos , Vasos Linfáticos/metabolismo , Sistema Nervoso Central , Encéfalo/fisiologia , Meninges/fisiologia , Imageamento por Ressonância Magnética
3.
Cells ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474388

RESUMO

Dendritic cell (DC) migration from peripheral tissues via afferent lymphatic vessels to draining lymph nodes (dLNs) is important for the organism's immune regulation and immune protection. Several lymphatic endothelial cell (LEC)-expressed adhesion molecules have thus far been found to support transmigration and movement within the lymphatic vasculature. In this study, we investigated the contribution of CD112, an adhesion molecule that we recently found to be highly expressed in murine LECs, to this process. Performing in vitro assays in the murine system, we found that transmigration of bone marrow-derived dendritic cells (BM-DCs) across or adhesion to murine LEC monolayers was reduced when CD112 was absent on LECs, DCs, or both cell types, suggesting the involvement of homophilic CD112-CD112 interactions. While CD112 was highly expressed in murine dermal LECs, CD112 levels were low in endogenous murine dermal DCs and BM-DCs. This might explain why we observed no defect in the in vivo lymphatic migration of adoptively transferred BM-DCs or endogenous DCs from the skin to dLNs. Compared to murine DCs, human monocyte-derived DCs expressed higher CD112 levels, and their migration across human CD112-expressing LECs was significantly reduced upon CD112 blockade. CD112 expression was also readily detected in endogenous human dermal DCs and LECs by flow cytometry and immunofluorescence. Upon incubating human skin punch biopsies in the presence of CD112-blocking antibodies, DC emigration from the tissue into the culture medium was significantly reduced, indicating impaired lymphatic migration. Overall, our data reveal a contribution of CD112 to human DC migration.


Assuntos
Células de Langerhans , Vasos Linfáticos , Nectinas , Animais , Humanos , Camundongos , Movimento Celular/fisiologia , Endotélio Linfático , Células de Langerhans/fisiologia , Nectinas/metabolismo
4.
J Exp Med ; 221(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442271

RESUMO

Meningeal lymphatics are conduits for cerebrospinal fluid drainage to lymphatics and lymph nodes in the neck. In this issue of JEM, Boisserand et al. (https://doi.org/10.1084/jem.20221983) provide evidence that expansion of meningeal lymphatics protects against ischemic stroke.


Assuntos
Vasos Linfáticos , Acidente Vascular Cerebral , Humanos , Sistema Linfático , Linfonodos
5.
Theranostics ; 14(5): 1886-1908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505621

RESUMO

Rationale: Lymphangiogenesis plays a critical role in the transplanted heart. The remodeling of lymphatics in the transplanted heart and the source of newly formed lymphatic vessels are still controversial, especially the mechanism of lymphangiogenesis remains limited. Methods: Heart transplantation was performed among BALB/c, C57BL/6J, Cag-Cre, Lyve1-CreERT2;Rosa26-tdTomato and Postn(2A-CreERT2-wpre-pA)1;Rosa26-DTA mice. scRNA-seq, Elisa assay, Western blotting, Q-PCR and immunohistochemical staining were used to identify the cells and cell-cell communications of allograft heart. Cell depletion was applied to in vivo and in vitro experiments. Whole-mount staining and three-dimensional reconstruction depicted the cell distribution within transparent transplanted heart. Results: Genetic lineage tracing mice and scRNA-seq analysis have revealed that these newly formed lymphatic vessels mainly originate from recipient LYVE1+ cells. It was found that LECs primarily interact with activated fibroblasts. Inhibition of lymphatic vessel formation using a VEGFR3 inhibitor resulted in a decreased survival time of transplanted hearts. Furthermore, when activated fibroblasts were ablated in transplanted hearts, there was a significant suppression of lymphatic vessel generation, leading to earlier graft failure. Additional investigations have shown that activated fibroblasts promote tube formation of LECs primarily through the activation of various signaling pathways, including VEGFD/VEGFR3, MDK/NCL, and SEMA3C/NRP2. Interestingly, knockdown of VEGFD and MDK in activated fibroblasts impaired cardiac lymphangiogenesis after heart transplantation. Conclusions: Our study indicates that cardiac lymphangiogenesis primarily originates from recipient cells, and activated fibroblasts play a crucial role in facilitating the generation of lymphatic vessels after heart transplantation. These findings provide valuable insights into potential therapeutic targets for enhancing graft survival.


Assuntos
Linfangiogênese , Vasos Linfáticos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Coração
7.
Sci Rep ; 14(1): 6126, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480842

RESUMO

We demonstrate an adaptation of deep learning for label-free imaging of the micro-scale lymphatic vessels and aqueous veins in the eye using optical coherence tomography (OCT). The proposed deep learning-based OCT lymphangiography (DL-OCTL) method was trained, validated and tested, using OCT scans (23 volumetric scans comprising 19,736 B-scans) from 11 fresh ex vivo porcine eyes with the corresponding vessel labels generated by a conventional OCT lymphangiography (OCTL) method based on thresholding with attenuation compensation. Compared to conventional OCTL, the DL-OCTL method demonstrates comparable results for imaging lymphatics and aqueous veins in the eye, with an Intersection over Union value of 0.79 ± 0.071 (mean ± standard deviation). In addition, DL-OCTL mitigates the imaging artifacts in conventional OCTL where the OCT signal modelling was corrupted by the tissue heterogeneity, provides ~ 10 times faster processing based on a rough comparison and does not require OCT-related knowledge for correct implementation as in conventional OCTL. With these favorable features, DL-OCTL promises to improve the practicality of OCTL for label-free imaging of lymphatics and aqueous veins for preclinical and clinical imaging applications.


Assuntos
Aprendizado Profundo , Vasos Linfáticos , Animais , Suínos , Tomografia de Coerência Óptica/métodos , Olho , Vasos Linfáticos/diagnóstico por imagem , Linfografia/métodos
8.
Taiwan J Obstet Gynecol ; 63(2): 174-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485311

RESUMO

Fetal pleural effusion has been reported to be associated with chromosomal abnormalities, genetic syndromes, obstructive uropathy, lymphatic vessel abnormalities such as Noonan syndrome, RASopathy and congenital lymphatic anomalies, thoracic cavity defects, Rh or ABO incompatibility, non-immune hydrops fetalis, infections, congenital cardiac anomalies, metabolic diseases and hematologic diseases such as α-thalassemia. This review provides an overview of syndromic and single gene disorders associated with fetal pleural effusion that is useful for genetic counseling and fetal therapy at prenatal diagnosis of fetal pleural effusion.


Assuntos
Anormalidades Linfáticas , Vasos Linfáticos , Síndrome de Noonan , Derrame Pleural , Gravidez , Feminino , Humanos , Síndrome de Noonan/complicações , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Derrame Pleural/genética , Diagnóstico Pré-Natal , Hidropisia Fetal/diagnóstico , Hidropisia Fetal/genética , Anormalidades Linfáticas/complicações , Anormalidades Linfáticas/genética
9.
J Clin Invest ; 134(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488007

RESUMO

The lymphatic vascular system is gaining recognition for its multifaceted role and broad pathological significance. Once perceived as a mere conduit for interstitial fluid and immune cell transport, recent research has unveiled its active involvement in critical physiological processes and common diseases, including inflammation, autoimmune diseases, and atherosclerosis. Consequently, abnormal development or functionality of lymphatic vessels can result in serious health complications. Here, we discuss lymphatic malformations (LMs), which are localized lesions that manifest as fluid-filled cysts or extensive infiltrative lymphatic vessel overgrowth, often associated with debilitating, even life-threatening, consequences. Genetic causes of LMs have been uncovered, and several promising drug-based therapies are currently under investigation and will be discussed.


Assuntos
Anormalidades Linfáticas , Vasos Linfáticos , Humanos , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/terapia , Sistema Linfático
10.
EMBO J ; 43(5): 868-885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351385

RESUMO

Lymphatic vessel development studies in mice and zebrafish models have demonstrated that lymphatic endothelial cells (LECs) predominantly differentiate from venous endothelial cells via the expression of the transcription factor Prox1. However, LECs can also be generated from undifferentiated mesoderm, suggesting potential diversity in their precursor cell origins depending on the organ or anatomical location. Despite these advances, recapitulating human lymphatic malformations in animal models has been difficult, and considering lymphatic vasculature function varies widely between species, analysis of development directly in humans is needed. Here, we examined early lymphatic development in humans by analyzing the histology of 31 embryos and three 9-week-old fetuses. We found that human embryonic cardinal veins, which converged to form initial lymph sacs, produce Prox1-expressing LECs. Furthermore, we describe the lymphatic vessel development in various organs and observe organ-specific differences. These characterizations of the early development of human lymphatic vessels should help to better understand the evolution and phylogenetic relationships of lymphatic systems, and their roles in human disease.


Assuntos
Estruturas Embrionárias , Células Endoteliais , Vasos Linfáticos , Sistema Porta/embriologia , Humanos , Animais , Camundongos , Filogenia , Peixe-Zebra , Fatores de Transcrição
12.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414014

RESUMO

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo
13.
Dev Cell ; 59(3): 293-294, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320483

RESUMO

In developing embryos, downregulation of lymphatic endothelial proliferation is needed for maturation of lymphatic vessels into a hierarchical network. In this issue of Developmental Cell, Carlantoni discover that phosphodiesterase2A controls lymphatic endothelial growth arrest and maturation via regulation of cGMP, p38 MAP kinase, and Notch pathway.


Assuntos
Vasos Linfáticos , Diester Fosfórico Hidrolases , Diester Fosfórico Hidrolases/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Endotélio Linfático/metabolismo
14.
Neuroreport ; 35(3): 160-169, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305109

RESUMO

To investigate the distribution and characteristics of lymphatic vessels within the central nervous system, we focus on the meninges of the spinal cord and brain parenchyma in mice. Additionally, we aim to provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels, while optimizing the perfusion parameters to improve histomorphological quality. Male C57BL/6J mice were randomly divided into four groups, with each group assigned a specific perfusion parameter based on perfusion volumes and temperatures. Immunofluorescence staining of lymphatics and blood vessels was performed on both meningeal and the brain tissue samples. Statistical analysis was performed using one-way analysis of variance to compare the groups, and a significant level of P < 0.05 was considered statistically significant. Our study reports the presence of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice. We highlight the crucial role of high perfusion volume of paraformaldehyde with low temperature in fixation for achieving optimal results. We provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice, which contribute to our understanding of the distribution and characteristics of lymphatic vessels within the central nervous system. Further research is warranted to explore the functional implications of these lymphatic vessels and their potential therapeutic significance in neurodegenerative and neuroinflammatory diseases.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/fisiologia , Meninges/diagnóstico por imagem , Encéfalo , Perfusão
15.
Physiol Rep ; 12(3): e15950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355142

RESUMO

Lymphatic vessels are actively involved in the recovery process of inflamed tissues. However, the changes in intramuscular lymphatic vessels during inflammation caused by skeletal muscle injury remain unclear. Therefore, the purpose of this study was to clarify the changes in lymphatic vessels after skeletal muscle injury. The left tibialis anterior muscles of male mice were subjected to lengthening contractions (LC) for inducing skeletal muscle injury, and samples were collected on Days 2, 4, and 7 for examining changes in both the skeletal muscles and intramuscular lymphatic vessels. With hematoxylin-eosin staining, the inflammatory response was observed in myofibers on Days 2 and 4 after LC, whereas regeneration of myofibers was found on Day 7 after LC. The number and area of intramuscular lymphatic vessels analyzed by immunohistochemical staining with an antibody against lymphatic vessel endothelial hyaluronan receptor 1 were significantly increased only on Day 4 after LC. Based on the abovementioned results, intramuscular lymphatic vessels undergo morphological changes such as increase under the state of muscle inflammation. This study demonstrated that the morphology of intramuscular lymphatic vessels undergoes significant changes during the initial recovery phase following skeletal muscle injury.


Assuntos
Vasos Linfáticos , Músculo Esquelético , Camundongos , Masculino , Animais , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Vasos Linfáticos/fisiologia , Inflamação/patologia
16.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357924

RESUMO

The rediscovery of meningeal lymphatic vessels (MLVs) has sparked research interest in their function in numerous neurological pathologies. Craniosynostosis (CS) is caused by a premature fusion of cranial sutures during development. In this issue of the JCI, Matrongolo and colleagues show that Twist1-haploinsufficient mice that develop CS exhibit raised intracranial pressure, diminished cerebrospinal fluid (CSF) outflow, and impaired paravascular CSF-brain flow; all features that were associated with MLV defects and exacerbated pathology in mouse models of Alzheimer's disease. Activation of the mechanosensor Piezo1 with Yoda1 restored MLV function and CSF perfusion in CS models and in aged mice, opening an avenue for further development of therapeutics.


Assuntos
Doença de Alzheimer , Craniossinostoses , Vasos Linfáticos , Camundongos , Animais , Encéfalo , Vasos Linfáticos/patologia , Craniossinostoses/genética , Craniossinostoses/patologia , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Canais Iônicos
17.
Commun Biol ; 7(1): 229, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402351

RESUMO

Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, ß-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Vasos Linfáticos/fisiologia , Encéfalo/metabolismo , Sistema Linfático , Meninges
18.
Radiographics ; 44(3): e230065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38386603

RESUMO

The lymphatic system (or lymphatics) consists of lymphoid organs and lymphatic vessels. Despite the numerous previously published studies describing conditions related to perirenal and intrarenal lymphoid organs in the radiology literature, the radiologic findings of conditions related to intrarenal and perirenal lymphatic vessels have been scarcely reported. In the renal cortex, interlobular lymphatic capillaries do not have valves; therefore, lymph can travel along the primary route toward the hilum, as well as toward the capsular lymphatic plexus. These two lymphatic pathways can be opacified by contrast medium via pyelolymphatic backflow at CT urography, which reflects urinary contrast agent leakage into perirenal lymphatic vessels via forniceal rupture. Pyelolymphatic backflow toward the renal hilum should be distinguished from urinary leakage due to urinary injury. Delayed subcapsular contrast material retention via pyelolymphatic backflow, appearing as hyperattenuating subcapsular foci on CT images, mimics other subcapsular cystic diseases. In contrast to renal parapelvic cysts originating from the renal parenchyma, renal peripelvic cysts are known to be of lymphatic origin. Congenital renal lymphangiectasia is mainly seen in children and assessed and followed up at imaging. Several lymphatic conditions, including lymphatic leakage as an early complication and acquired renal lymphangiectasia as a late complication, are sometimes identified at imaging follow-up of kidney transplant. Lymphangiographic contrast material accumulation in the renal hilar lymphatic vessels is characteristic of chylo-urinary fistula. Chyluria appears as a fat-layering fluid-fluid level in the urinary bladder or upper urinary tract. Recognition of the anatomic pathway of tumor spread via lymphatic vessels at imaging is of clinical importance for accurate management at oncologic imaging. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Assuntos
Cistos , Neoplasias Renais , Vasos Linfáticos , Criança , Humanos , Meios de Contraste , Sistema Linfático , Vasos Linfáticos/diagnóstico por imagem
19.
J Gene Med ; 26(2): e3665, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375969

RESUMO

The lymphatic system, crucial for tissue fluid balance and immune surveillance, can be severely impacted by disorders that hinder its activities. Lymphatic malformations (LMs) are caused by fluid accumulation in tissues owing to defects in lymphatic channel formation, the obstruction of lymphatic vessels or injury to lymphatic tissues. Somatic mutations, varying in symptoms based on lesions' location and size, provide insights into their molecular pathogenesis by identifying LMs' genetic causes. In this review, we collected the most recent findings about the role of genetic and inflammatory biomarkers in LMs that control the formation of these malformations. A thorough evaluation of the literature from 2000 to the present was conducted using the PubMed and Google Scholar databases. Although it is obvious that the vascular endothelial growth factor receptor 3 mutation accounts for a significant proportion of LM patients, several mutations in other genes thought to be linked to LM have also been discovered. Also, inflammatory mediators like interleukin-6, interleukin-8, tumor necrosis factor-alpha and mammalian target of rapamycin are the most commonly associated biomarkers with LM. Understanding the mutations and genes expression responsible for the abnormalities in lymphatic endothelial cells could lead to novel therapeutic strategies based on molecular pathways.


Assuntos
Anormalidades Linfáticas , Vasos Linfáticos , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/diagnóstico , Anormalidades Linfáticas/patologia , Vasos Linfáticos/anormalidades , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Biomarcadores/metabolismo
20.
Microsurgery ; 44(3): e31153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376254

RESUMO

BACKGROUND: Identification of the proper lymphatics is important for successful lymphaticovenular anastomosis (LVA) for lymphedema; however, visualization of lymphatic vessels is challenging. Photoacoustic lymphangiography (PAL) can help visualize lymphatics more clearly than other modalities. Therefore, we investigated the usefulness of PAL and determined whether the clear and three-dimensional image of PAL affects LVA outcomes. METHODS: We recruited 22 female patients with lower extremity lymphedema. The operative time, number of incisions, number of anastomoses, lymphatic vessel detection rate (number of functional lymphatics identified during the operation/number of incisions), and limb volume changes preoperatively and 3 months postoperatively were compared retrospectively. The patients were divided according to whether PAL was performed or not, and results were compared between those undergoing PAL (PAL group; n = 10) and those who did not (near-infrared fluorescence [NIRF] group, n = 12). RESULTS: The mean age of the patients was 55.9 ± 15.1 years in the PAL group and 50.7 ± 14.9 years in the NIRF group. One patient in the PAL group and three in the NIRF group had primary lymphedema. Eighteen patients (PAL group, nine; and NIRF group, nine) had secondary lymphedema. Based on preoperative evaluation using the International Society of Lymphology (ISL) classification, eight patients were determined to be in stage 2 and two patients in late stage 2 in the PAL group. In contrast, in the NIRF group, one patient was determined to be in stage 0, three patients each in stage 1 and stage 2, and five patients in late stage 2. Lymphatic vessel detection rates were 93% (42 LVAs and 45 incisions) and 83% (50 LVAs and 60 incisions) in the groups with and without PAL, respectively (p = 0.42). Limb volume change was evaluated in five limbs of four patients and in seven limbs of five patients in the PAL and NIRF groups as 336.6 ± 203.6 mL (5.90% ± 3.27%) and 52.9 ± 260.7 mL (0.71% ± 4.27%), respectively. The PAL group showed a significant volume reduction. (p = .038). CONCLUSIONS: Detection of functional lymphatic vessels on PAL is useful for treating LVA.


Assuntos
Vasos Linfáticos , Linfedema , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Verde de Indocianina , Linfografia/métodos , Projetos Piloto , Estudos Retrospectivos , Linfedema/diagnóstico por imagem , Linfedema/cirurgia , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/cirurgia , Anastomose Cirúrgica/métodos , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...