Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.793
Filtrar
1.
Pestic Biochem Physiol ; 199: 105795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458689

RESUMO

Fusarium head blight in wheat is caused by Fusarium graminearum, resulting in significant yield losses and grain contamination with deoxynivalenol (DON), which poses a potential threat to animal health. Cyclobutrifluram, a newly developed succinate dehydrogenase inhibitor, has shown excellent inhibition of Fusarium spp. However, the resistance risk of F. graminearum to cyclobutrifluram and the molecular mechanism of resistance have not been determined. In this study, we established the average EC50 of a range of F. graminearum isolates to cyclobutrifluram to be 0.0110 µg/mL. Six cyclobutrifluram-resistant mutants were obtained using fungicide adaptation. All mutants exhibited impaired fitness relative to their parental isolates. This was evident from measurements of mycelial growth, conidiation, conidial germination, virulence, and DON production. Interestingly, cyclobutrifluram did not seem to affect the DON production of either the sensitive isolates or the resistant mutants. Furthermore, a positive cross-resistance was observed between cyclobutrifluram and pydiflumetofen. These findings suggest that F. graminearum carries a moderate to high risk of developing resistance to cyclobutrifluram. Additionally, point mutations H248Y in FgSdhB and A73V in FgSdhC1 of F. graminearum were observed in the cyclobutrifluram-resistant mutants. Finally, an overexpression transformation assay and molecular docking indicated that FgSdhBH248Y or FgSdhC1A73V could confer resistance of F. graminearum to cyclobutrifluram.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Micélio , Doenças das Plantas
2.
Med Mycol ; 62(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38429972

RESUMO

Hyphal pellet formation by Aspergillus species in liquid cultures is one of the main obstacles to high-throughput anti-Aspergillus reagent screening. We previously constructed a hyphal dispersion mutant of Aspergillus fumigatus by disrupting the genes encoding the primary cell wall α-1,3-glucan synthase Ags1 and putative galactosaminogalactan synthase Gtb3 (Δags1Δgtb3). Mycelial growth of the mutant in liquid cultures monitored by optical density was reproducible, and the dose-response of hyphal growth to antifungal agents has been quantified by optical density. However, Δags1Δgtb3 still forms hyphal pellets in some rich growth media. Here, we constructed a disruptant lacking all three α-1,3-glucan synthases and galactosaminogalactan synthase (Δags1Δags2Δags3Δgtb3), and confirmed that its hyphae were dispersed in all the media tested. We established an automatic method to monitor hyphal growth of the mutant in a 24-well plate shaken with a real-time plate reader. Dose-dependent growth suppression and unique growth responses to antifungal agents (voriconazole, amphotericin B, and micafungin) were clearly observed. A 96-well plate was also found to be useful for the evaluation of mycelial growth by optical density. Our method is potentially applicable to high-throughput screening for anti-Aspergillus agents.


Assuntos
Antifúngicos , Aspergillus fumigatus , Animais , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Hifas/genética , Micélio , Anfotericina B
3.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505899

RESUMO

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Assuntos
Agaricales , Agaricales/metabolismo , Suplementos Nutricionais , Fermentação , Fibras na Dieta , Micélio
4.
Nat Commun ; 15(1): 2099, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485948

RESUMO

Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives. Our toolkit includes a CRISPR-Cas9 method for gene integration, neutral loci, and tunable promoters. We use these tools to elevate intracellular levels of the nutraceutical ergothioneine and the flavor-and color molecule heme in the edible biomass. The strain overproducing heme is red in color and is readily formulated into imitation meat patties with minimal processing. These findings highlight the promise of synthetic biology to enhance fungal foods and provide useful genetic tools for applications in food production and beyond.


Assuntos
Aspergillus oryzae , Biologia Sintética , Biologia Sintética/métodos , Edição de Genes , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Micélio/genética , Heme/metabolismo
5.
PLoS One ; 19(2): e0297816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319941

RESUMO

In their natural environment, fungi are subjected to a wide variety of environmental stresses which they must cope with by constantly adapting the architecture of their growing network. In this work, our objective was to finely characterize the thallus development of the filamentous fungus Podospora anserina subjected to different constraints that are simple to implement in vitro and that can be considered as relevant environmental stresses, such as a nutrient-poor environment or non-optimal temperatures. At the Petri dish scale, the observations showed that the fungal thallus is differentially affected (thallus diameter, mycelium aspect) according to the stresses but these observations remain qualitative. At the hyphal scale, we showed that the extraction of the usual quantities (i.e. apex, node, length) does not allow to distinguish the different thallus under stress, these quantities being globally affected by the application of a stress in comparison with a thallus having grown under optimal conditions. Thanks to an original geomatics-based approach based on the use of automatized Geographic Information System (GIS) tools, we were able to produce maps and metrics characterizing the growth dynamics of the networks and then to highlight some very different dynamics of network densification according to the applied stresses. The fungal thallus is then considered as a map and we are no longer interested in the quantity of material (hyphae) produced but in the empty spaces between the hyphae, the intra-thallus surfaces. This study contributes to a better understanding of how filamentous fungi adapt the growth and densification of their network to potentially adverse environmental changes.


Assuntos
Podospora , Fungos , Hifas , Micélio , Estresse Fisiológico , Proteínas Fúngicas
6.
BMC Biotechnol ; 24(1): 9, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331794

RESUMO

BACKGROUND: The production of Pleurotus ostreatus mycelium as a promising object for use in food and other industries is hampered by a lack of information about the strain-specificity of this fungus mycelium growth and its acquisition of various biological activities. Therefore, this research aimed to investigate mycelial growth of different P. ostreatus strains on varies solid and liquid media as well as to evaluate strains antagonistic, antibacterial, antiradical scavenging activities, and total phenolic content. RESULTS: Potato Dextrose Agar medium was suitable for all strains except P. ostreatus strain 2460. The best growth rate of P. ostreatus 2462 strain on solid culture media was 15.0 ± 0.8 mm/day, and mycelia best growth on liquid culture media-36.5 ± 0.2 g/l. P. ostreatus strains 551 and 1685 were more susceptible to positive effect of plant growth regulators Ivin, Methyur and Kamethur. Using of nutrient media based on combination of natural waste (amaranth flour cake and wheat germ, wheat bran, broken vermicelli and crumbs) has been increased the yield of P. ostreatus strains mycelium by 2.2-2.9 times compared to the control. All used P. ostreatus strains displayed strong antagonistic activity in co-cultivation with Aspergillus niger, Candida albicans, Issatchenkia orientalis, Fusarium poae, Microdochium nivale in dual-culture assay. P. ostreatus 2462 EtOAc mycelial extract good inhibited growth of Escherichia coli (17.0 ± 0.9 mm) while P. ostreatus 2460 suppressed Staphylococcus aureus growth (21.5 ± 0.5 mm) by agar well diffusion method. The highest radical scavenging effect displayed both mycelial extracts (EtOH and EtOAc) of P. ostreatus 1685 (61 and 56%) by DPPH assay as well as high phenolic content (7.17 and 6.73 mg GAE/g) by the Folin-Ciocalteu's method. The maximal total phenol content (7.52 mg GAE/g) demonstrated of P. ostreatus 2461 EtOH extract. CONCLUSIONS: It is found that the growth, antibacterial, antiradical scavenging activity as well as total phenolic content were dependent on studied P. ostreatus strains in contrast to antagonistic activity. The proposed culture mediums of natural waste could be an alternative to commercial mediums for the production mycelial biomass of P. ostreatus strains.


Assuntos
Pleurotus , Ágar/análise , Ágar/farmacologia , Antibacterianos/farmacologia , Meios de Cultura/química , Extratos Vegetais/farmacologia , Micélio
7.
Sci Total Environ ; 919: 170771, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336045

RESUMO

Tomato gray mold, caused by Botrytis cinerea, is an important disease in tomato. Pantoea jilinensis D25, isolated form tomato rhizosphere soil, can prevent B. cinerea infection in tomato. To determine the underlying biocontrol mechanism, the transcriptome of P. jilinensis D25 was assessed. Differential expression analysis revealed that 941 genes were upregulated and 997 genes were downregulated. Through transcriptome analysis, the suhB gene was knocked out. ΔPj-suhB exhibited lower swimming motility and colonization abilities than strain D25. After 4 days of co-cultivation, ΔPj-suhB could reduce the colony diameter, mycelial weight, and spore production of B. cinerea with the inhibitory rates of 31.72 %, 39.62 %, and 47.42 %, respectively, compared with control. However, the inhibitory rates of strain D25 were 52.91 %, 60.09 %, and 76.85 %, respectively, compared with control. Strain D25 could significantly downregulate pathogenesis-related genes in B. cinerea, whereas the expression level of these genes in B. cinerea was higher after treatment with ΔPj-suhB than after that with strain D25. In vitro experiments revealed that the lesion area and disease control efficacy were 1.520 and 0.038 cm2 and 68.7 % and 99.0 %, respectively, after ΔPj-suhB and strain D25 treatments. Pot experiments revealed that ΔPj-suhB and strain D25 could prevent tomato plants from B. cinerea infection with the disease reduction rate of 37.5 % and 75.0 %, respectively. Though the activities of defense-related enzymes and expression level of defense related genes in tomato plants were increased under ΔPj-suhB treatment, these effects were higher after strain D25 treatment. Thus, these results demonstrated that suhB was the key gene in strain D25 underlying its biocontrol effect and mobility.


Assuntos
Botrytis , Pantoea , Solanum lycopersicum , Doenças das Plantas/prevenção & controle , Micélio , Perfilação da Expressão Gênica
8.
Sci Total Environ ; 922: 171201, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417506

RESUMO

Mycelial pellets formed by Penicillium thomii ZJJ were applied as efficient biosorbents for the removal of polycyclic aromatic hydrocarbons (PAHs), which are a type of ubiquitous harmful hydrophobic pollutants. The live mycelial pellets were able to remove 93.48 % of pyrene at a concentration of 100 mg/L within 48 h, demonstrating a maximum adsorption capacity of 285.63 mg/g. Meanwhile, the heat-killed one also achieved a removal rate of 65.01 %. Among the six typical PAHs (pyrene, phenanthrene, fluorene, anthracene, fluoranthene, benzo[a]pyrene), the mycelial pellets preferentially adsorbed the high molecular weight PAHs, which also have higher toxicity, resulting in higher removal efficiency. The experimental results showed that the biosorption of mycelial pellets was mainly a spontaneous physical adsorption process that occurred as a monolayer on a homogeneous surface, with mass transfer being the key rate-limiting step. The main adsorption sites on the surface of mycelia were carboxyl and N-containing groups. Extracellular polymeric substances (EPS) produced by mycelial pellets could enhance adsorption, and its coupling with dead mycelia could achieve basically the same removal effect to that of living one. It can be concluded that biosorption by mycelial pellets occurred due to the influence of electrostatic and hydrophobic interactions, consisting of five steps. Furthermore, the potential applicability of mycelial pellets has been investigated considering diverse factors. The mycelia showed high environmental tolerance, which could effectively remove pyrene across a wide range of pH and salt concentration. And pellets diameters and humic acid concentration had a significant effect on microbial adsorption effect. Based on a cost-effectiveness analysis, mycelium pellets were found to be a low-cost adsorbent. The research outcomes facilitate a thorough comprehension of the adsorption process of pyrene by mycelial pellets and their relevant applications, proposing a cost-effective method without potential environmental issues (heat-killed mycelial pellets plus EPS) to removal PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Adsorção , Pirenos , Micélio
9.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305262

RESUMO

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Assuntos
Agaricales , Ascomicetos , Hepatopatias Alcoólicas , Selênio , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Ascomicetos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Agaricales/metabolismo , Micélio/metabolismo
10.
J Trace Elem Med Biol ; 83: 127381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38211406

RESUMO

BACKGROUND: Fungi absorb and solubilize a broad spectrum of heavy metals such as vanadium (V), which makes them a main route of its entry into the biosphere. V as vanadate (V5+) is a potential medical agent due to its many metabolic actions such as interaction with phosphates in the cell, and especially its insulin-mimetic activity. Antidiabetic activity of V-enriched fungi has been studied in recent years, but the biological and chemical bases of vanadium action and status in fungi in general are poorly understood, with almost no information on edible fungi. METHODS: This manuscript gives a deeper insight into the interaction of V5+ with Coprinellus truncorum, an edible autochthonous species widely distributed in Europe and North America. Vanadium uptake and accumulation as V5+ was studied by 51V NMR, while the reducing abilities of the mycelium were determined by EPR. 31P NMR was used to determine its effects on the metabolism of phosphate compounds, with particular focus on phosphate sugars identified using HPLC. RESULTS: Vanadate enters the mycelium in monomeric form and shows no immediate detrimental effects on intracellular pH or polyphosphate (PPc) levels, even when applied at physiologically high concentrations (20 mM Na3VO4). Once absorbed, it is partially reduced to less toxic vanadyl (V4+) with notable unreduced portion, which leads to a large increase in phosphorylated sugar levels, especially glucose-1-phosphate (G1P) and fructose-6-phosphate (F6P). CONCLUSIONS: Preservation of pH and especially PPc reflects maintenance of the energy status of the mycelium, i.e., its tolerance to high V5+ concentrations. Rise in G1P and F6P levels implies that the main targets of V5+ are most likely phosphoglucomutase and phosphoglucokinase(s), enzymes involved in early stages of G6P transformation in glycolysis and glycogen metabolism. This study recommends C. truncorum for further investigation as a potential antidiabetic agent.


Assuntos
Agaricales , Vanadatos , Vanádio , Vanádio/análise , Vanadatos/química , Biomassa , Fosfatos/análise , Micélio/metabolismo
11.
Nutrients ; 16(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201981

RESUMO

Clostridium butyricum (CB) and Phellinus igniarius (PI) have anti-inflammatory, immune regulation, anti-tumor, and other functions. This study aimed to explore the therapeutic effect of CB and mycelium of PI (MPI) alone and in combination on colitis mice induced by dextran sodium sulfate (DSS). Mice were randomly assigned to five groups: (1) control (CTRL), (2) DSS, (3) CB, (4) MPI, and (5) CB + MPI (CON). The weight of the mice was recorded daily during the experiment, and the length of the colon was measured on the last day of the experiment. The colons were collected for hematoxylin and eosin staining, colon contents were collected for intestinal flora analysis, and serum was collected for metabolite analysis. The results showed that compared with the DSS group, CB, MPI, and CON treatments inhibited the weight loss and colon length shortening caused by DSS, significantly increased the concentrations of interleukin (IL)-4, IL-10, and superoxide dismutase, and significantly decreased the concentrations of IL-6, tumor necrosis factor-α, and myeloperoxidase. Gene sequence analysis of 16S rRNA showed that CB, MPI, and CON treatments changed the composition and structure of intestinal microorganisms. Metabolome results showed that CB, MPI, and CON treatments changed serum metabolites in DSS-treated mice, including dodecenoylcarnitine, L-urobilinogen, and citric acid. In conclusion, CB, MPI, and CON treatments alleviated DSS-induced colitis in mice by regulating intestinal flora and metabolites, with the CON group having the best effect.


Assuntos
Clostridium butyricum , Colite , Microbioma Gastrointestinal , Phellinus , Animais , Camundongos , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Micélio
12.
Waste Manag ; 175: 245-253, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219462

RESUMO

Gentamicin mycelium residues (GMRs) abundant in organic substances were generated during the production of gentamicin. Inappropriate handling techniques not only waste valuable resources, they could also result in residual gentamicin into the natural environment, leading to the generation of antibiotic resistance genes (ARGs), which would cause a significant threat to ecological system and human health. In the present work, the effects of thermal treatment on the removal of residual gentamicin in GMRs, as well as the changes of associated ARGs abundance, antimicrobial activity and bioresources properties were investigated. The results indicated that the hazards of GMRs was significantly reduced through thermal treatment. The degradation rate of residual gentamicin in GMRs reached 100 %, the total abundance of gentamicin resistance genes declined from 8.20 to 1.14 × 10-5 and the antibacterial activity of the decomposition products of GMRs on Vibrio fischeri was markedly reduced at 200 °C for 120 min. Additionally, the thermal treatment remarkably influenced the bioresource properties of GMRs-decomposition products. The release of soluble organic matters including soluble carbohydrates and soluble proteins have been enhanced in GMRs, while excessively high temperatures could lead to a reduction of nutrient substances. Generally, thermal treatment technology was a promising strategy for synergistic reducing hazards and utilizing bioresources of GMRs.


Assuntos
Antibacterianos , Gentamicinas , Humanos , Gentamicinas/farmacologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Nutrientes , Micélio/metabolismo , Genes Bacterianos
13.
J Agric Food Chem ; 72(2): 1361-1375, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166381

RESUMO

Light affects the morphology and physiology of Pleurotus ostreatus. However, the underlying molecular mechanism of this effect remains unclear. In this study, a label-free comparative proteomic analysis was conducted to investigate the global protein expression profile of the mycelia and fruiting bodies of P. ostreatus PH11 growing under four different light quality treatments. Among all the 2234 P. ostreatus proteins, 1349 were quantifiable under all tested conditions. A total of 1100 differentially expressed proteins were identified by comparing the light group data with those of the darkness group. GO and KEGG enrichment analyses indicated that the oxidative phosphorylation, proteasome, and mRNA surveillance pathways were the most related pathways under the light condition. qRT-PCR verified that the expression of the white collar 1 protein was significantly enhanced under white light. Additionally, glutamine synthetase and aldehyde dehydrogenase played important roles during light exposure. This study provides valuable insight into the P. ostreatus light response mechanism, which will lay the foundation for improved cultivation.


Assuntos
Pleurotus , Carpóforos , Micélio , Proteômica
14.
J Agric Food Chem ; 72(5): 2697-2707, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38054424

RESUMO

There is a need for transformational innovation within the existing food system to achieve United Nations Sustainable Development Goal 2 of ending hunger within a sustainable agricultural system by 2030. Mycelium, the vegetative growth form of filamentous fungi, may represent a convergence of several features crucial for the development of food products that are nutritious, desirable, scalable, affordable, and environmentally sustainable. Mycelium has gained interest as technology advances demonstrate its ability to provide scalable biomass for food production delivering good flavor and quality protein, fiber, and essential micronutrients urgently needed to improve public health. We review the potential of mycelium as an environmentally sustainable food to address malnutrition and undernutrition, driven by food insecurity and caloric dense diets with less than optimal macro- and micronutrient density.


Assuntos
Promoção da Saúde , Desnutrição , Humanos , Fome , Micronutrientes , Micélio , Abastecimento de Alimentos
15.
Int J Biol Macromol ; 254(Pt 2): 127834, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926312

RESUMO

Hirsutella sinensis is the anamorph of Ophiocordyceps sinensis, and its mycelia has been used to effectively treat a variety of hepatobiliary diseases in clinical practice. In the present study, we performed a systematic study on the composition and structure of its polysaccharides, and then employed a TGF-ß1-induced human intrahepatic bile duct epithelial cell-epithelial-mesenchymal transition (HIBEC-EMT) model to investigate their effects on treating primary biliary cholangitis (PBC) based on hepatic bile duct fibrosis. Four polysaccharide fractions were obtained from H. sinensis mycelia by hot-water extraction, DEAE-cellulose column and gradient ethanol precipitation separation. HSWP-1a was an α-(1,4)-D-glucan; HSWP-1b and HSWP-1d mainly consisted of mannoglucans with a backbone composed of 1,4-linked α-D-Glcp and 1,4,6-linked α-D-Manp residues branched at O-6 of the 1,4-linked α-D-Glcp with a 1-linked α-D-Glcp as a side chain; and HSWP-1c mainly contained galactomannoglucans. These polysaccharide fractions protected HIBECs from a TGF-ß1-induced EMT, according to HIBEC morphological changes, cell viability, decreased E-cadherin and ZO-1 expression, and increased vimentin and collagen I expression. Furthermore, the effects of the polysaccharides might be mediated by inhibiting the activation of the TGF-ß/Smad signaling pathway, which attenuated hepatic bile duct fibrosis and potential PBC effects.


Assuntos
Cordyceps , Hepatopatias , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Cordyceps/metabolismo , Transição Epitelial-Mesenquimal , Células Epiteliais , Ductos Biliares Intra-Hepáticos/metabolismo , Hepatopatias/metabolismo , Fibrose , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Micélio/metabolismo , Caderinas/metabolismo
16.
Microb Pathog ; 187: 106517, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159617

RESUMO

Atractylodes chinensis is one of the most commonly used bulk herbs in East Asia; however, root rot can seriously affect its quality and yields. In contrast to chemical pesticides, biological control strategies are environmentally compatible and safe. For this study, 68 antagonistic bacterial strains were isolated from the rhizospheres of healthy Atractylodes chinensis. Strain SY42 exhibited the most potent fungicidal activities, with inhibition rates against F. oxysporum, F. solani, and F. redolens of 67.07 %, 63.40 % and 68.45 %, respectively. Through morphological observation and molecular characterization, strain SY42 was identified as Paenibacillus polymyxa. The volatile organic components (VOCs) produced by SY42 effectively inhibited the mycelial growth of pathogenic fungi through diffusion. SY42 significantly inhibited the germination of pathogenic fungal spores. Following co-culturing with SY42, the mycelium of the pathogenic fungus was deformed, folded, and even ruptured. SY42 could produce cellulases and proteases to degrade fungal cell walls. Pot experiments demonstrated the excellent biocontrol efficacy of SY42. This study revealed that P. polymyxa SY42 inhibited pathogenic fungi through multiple mechanisms, which verified its utility as a biocontrol agent for the control of A. chinensis root rot.


Assuntos
Atractylodes , Fusarium , Paenibacillus polymyxa , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Micélio
17.
PLoS One ; 18(12): e0295573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127967

RESUMO

The aim of this study was to investigate the effect of zinc sulphate on the activities of different enzymes and metabolites of Pholiota adiposa. In the experiment, we used the conventional enzyme activity assay to determine the changes of six indicators, including protein content, laccase activity, cellulase activity, amylase activity and polyphenol oxidase activity, under different concentrations of zinc sulphate treatment. The results showed that the activities of amylase, laccase, cellulase and peroxidase were Zn2+(200)>Zn2+(0)>Zn2+(400)>Zn2+(800).The activities of catalase and superoxide dismutase were Zn2+(200)>Zn2+(400)>Zn2+(800), and zinc sulfate could significantly affect the activity of polylipic squamase in a dose-dependent manner. Further correlation analysis showed that all six enzyme activities were significantly correlated with each other (P<001); the results of the statistical model test showed that the regression model constructed was statistically significant; overall the residuals met the conditions of normal distribution, and the corresponding points of different enzyme activities Q-Q' were more evenly distributed around y = x, and all fell in the 90% acceptance interval, thus the series was considered to obey normal distribution; the results of the principal The results of the principal component analysis showed that principal component 1 was positively correlated with amylase, laccase and cellulase. Principal component 2 was positively correlated with superoxide dismutase and catalase, and negatively correlated with peroxidase. The analysis of Metabonomic data revealed that zinc sulfate had a significant impact on the expression of metabolites in the mycelium. Moreover, varying concentrations of zinc sulfate exerted significant effects on the levels of amino acids, organic acids, and gluconic acid. This conclusion was confirmed by other experimental data. The results of the study provide a scientific reference for better research, development and utilization of Pholiota adiposa.


Assuntos
Celulases , Sulfato de Zinco , Sulfato de Zinco/farmacologia , Catalase/metabolismo , Lacase , Superóxido Dismutase/metabolismo , Peroxidases , Peroxidase , Zinco , Amilases , Micélio/metabolismo
18.
J Agric Food Chem ; 71(49): 19422-19433, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37915214

RESUMO

Chitinase, a crucial component of the fungal cell wall and septa, plays an important role in fungal germination by hydrolyzing chitin to provide carbon and energy for fungal growth and reproduction. In this study, we initially screened dibenzylideneacetone (DBA), a small molecule with inhibitory activity against Botrytis cinerea Chitinase, exhibiting an IC50 of 13.10 µg/mL. By constructing a three-dimensional (3D) model of the B. cinerea Chitinase and utilizing computational biology approaches, we found DBA bound to the active site pocket and formed strong π-π interactions and hydrophobic interactions with Chitinase, indicative of its competitive inhibitory mode. Site-directed mutagenesis also revealed that TRP-382, TRP-135, and ALA-215 were key amino acid residues involved in DBA binding. Subsequent antifungal assays showed that DBA had an MIC of 32 µg/mL against B. cinerea and EC50 values of 16.29 and 14.64 µg/mL in inhibiting mycelial growth and spore germination, respectively. Importantly, in vivo experiments demonstrated that DBA treatment significantly extended the shelf life of cherry tomatoes by 2-fold. Therefore, DBA represents a promising antifungal agent for fruit preservation applications.


Assuntos
Quitinases , Fungicidas Industriais , Solanum lycopersicum , Antifúngicos/farmacologia , Micélio , Botrytis , Quitinases/genética , Doenças das Plantas/microbiologia , Fungicidas Industriais/farmacologia
19.
Microbiol Spectr ; 11(6): e0260723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37943049

RESUMO

IMPORTANCE: In addition to being considered a biocontrol agent, the fungus Trichoderma atroviride is a relevant model for studying mechanisms of response to injury conserved in plants and animals that opens a new landscape in relation to regeneration and cell differentiation mechanisms. Here, we reveal the co-functionality of a lipoxygenase and a patatin-like phospholipase co-expressed in response to wounding in fungi. This pair of enzymes produces oxidized lipids that can function as signaling molecules or oxidative stress signals that, in ascomycetes, induce asexual development. Furthermore, we determined that both genes participate in the regulation of the synthesis of 13-HODE and the establishment of the physiological responses necessary for the formation of reproductive aerial mycelium ultimately leading to asexual development. Our results suggest an injury-induced pathway to produce oxylipins and uncovered physiological mechanisms regulated by LOX1 and PLP1 to induce conidiation, opening new hypotheses for the novo regeneration mechanisms of filamentous fungi.


Assuntos
Trichoderma , Animais , Trichoderma/genética , Transdução de Sinais , Micélio , Reprodução , Estresse Oxidativo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
20.
Int J Med Mushrooms ; 25(12): 55-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37947064

RESUMO

This research aimed to use a novel and effective ultrasound (US) approach for obtaining high bio-compound production, hence proposing strategies for boosting active ingredient biosynthesis. Furthermore, the US promotes several physiological effects on the relevant organelles in the cell, morphological effects on the structure of Phellinus igniarius mycelium, and increases the transfer of nutrients and metabolites. One suitable US condition for flavonoid fermentation was determined as once per day for 7-9 days at a frequency 22 + 40 kHz, power density 120 W/L, treated 10 min, treatment off time 7 s. The flavonoid content and production increased about 47.51% and 101.81%, respectively, compared with the untreated fermentation (P < 0.05). SEM showed that sonication changes the morphology and structure of Ph. igniarius mycelium; TEM reveals the ultrasonic treatment causes organelle aggregation. The ultrasound could affect the metabolism of the biosynthesis of the active ingredients.


Assuntos
Agaricales , Basidiomycota , Salix , Agaricales/química , Flavonoides/análise , Fermentação , Basidiomycota/química , Micélio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...