Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2098, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055390

RESUMO

Much remains to be explored regarding the diversity of uncultured, host-associated microbes. Here, we describe rectangular bacterial structures (RBSs) in the mouths of bottlenose dolphins. DNA staining revealed multiple paired bands within RBSs, suggesting the presence of cells dividing along the longitudinal axis. Cryogenic transmission electron microscopy and tomography showed parallel membrane-bound segments that are likely cells, encapsulated by an S-layer-like periodic surface covering. RBSs displayed unusual pilus-like appendages with bundles of threads splayed at the tips. We present multiple lines of evidence, including genomic DNA sequencing of micromanipulated RBSs, 16S rRNA gene sequencing, and fluorescence in situ hybridization, suggesting that RBSs are bacterial and distinct from the genera Simonsiella and Conchiformibius (family Neisseriaceae), with which they share similar morphology and division patterning. Our findings highlight the diversity of novel microbial forms and lifestyles that await characterization using tools complementary to genomics such as microscopy.


Assuntos
Golfinho Nariz-de-Garrafa , Neisseriaceae , Animais , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Neisseriaceae/genética , Boca , Estruturas Bacterianas
2.
J Hazard Mater ; 442: 130063, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182879

RESUMO

Heavy metal pollution caused by mining activities can be harmful to soil microbiota, which are highly sensitive to heavy metal stress. This study aimed to investigate the response of soil bacterial communities to varying levels of heavy metal pollution in four types of habitats (i.e., tailing, remediation, natural recovery, and undisturbed areas) at an abandoned polymetallic mine by high-throughput 16 S rRNA gene sequencing, and to determine the dominant ecological processes and major factors driving the variations in bacterial community composition. The diversity and composition of bacterial communities varied significantly between soil habitats (p < 0.05). Heterogeneous selection played a crucial role in shaping the difference of bacterial community composition between distinct soil habitats. Redundancy analysis and Pearson correlation analysis revealed that the total contents of Cu and Zn were key factors causing the difference in bacterial community composition in the tailing and remediation areas, whereas bioavailable Mn and Cd, total nitrogen, available nitrogen, soil organic carbon, vegetation coverage, and plant diversity were key factors shaping the soil bacterial structure in the undisturbed and natural recovery areas. These findings provide insights into the distribution patterns of bacterial communities in soil habitats with different levels of heavy metal pollution, and the dominant ecological processes and the corresponding environmental drivers, and expand knowledge in bacterial assembly mechanisms in mining regions.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carbono/análise , Cádmio/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Bactérias/genética , Nitrogênio/análise , Estruturas Bacterianas/química , China
3.
Bioresour Technol ; 368: 128359, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423768

RESUMO

This study aimed to evaluate the impacts of inoculation with bacterial inoculum containing three thermotolerant nitrifying bacteria strains on nitrogenous gas (mainly NH3 and N2O) emissions and bacterial structure during the sludge composting. The results of physicochemical parameters indicated that inoculation could prolong the thermophilic phase, accelerate degradation of organic substances and improve compost quality. Compared with the non-inoculated treatment, the addition of bacterial agents not only increased the total nitrogen content by 8.7% but also reduced the cumulative NH3 and N2O emissions by 32.2% and 34.6%, respectively. The bacterial inoculation changed the structure and diversity of the microbial community in composting. Additionally, the relative abundances (RA) of bacteria and correlation analyses revealed that inoculation increased the RA of bacteria involved in nitrogen fixation. These results suggested that inoculation of thermotolerant nitrifying bacteria was beneficial for reducing nitrogen loss, nitrogenous gas emissions and regulating the bacterial community during the composting.


Assuntos
Compostagem , Esgotos , Estruturas Bacterianas , Bactérias , Nitrogênio
4.
Sci Total Environ ; 850: 158083, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985604

RESUMO

The occurrence of para-chloro-meta-xylenol (PCMX, as largely consumed antimicrobial chemicals) in waste activated sludge (WAS) would pose environmental risks for WAS utilization. This study revealed that PCMX principally prompted the abundances and diversity of antibiotic resistance genes (ARGs), particularly for the multidrug- genes (i.e., acrB and mexW), and reshaped the resistance mechanism categories during WAS fermentation process. The genotype and phenotype results indicated that PCMX upregulated abundances of transposase and increased cell permeability via disrupting WAS structure, which further facilitated the horizontal transfer of ARGs. The network and correlation analysis among ARGs, mobile genetic elements (MGEs) and genera (i.e., Sphingopyxis and Pseudoxanthomonas) verified that PCMX enriched the potential ARGs hosts associated with multidrug resistance mechanism. Also, PCMX upregulated the genes involved in ARGs-associated metabolic pathways, such as two-component (i.e., phoP and vcaM) and quorum sensing systems (i.e., lasR and cciR), which determined the ARGs proliferation via multidrug efflux pump and outer membrane proteins, and facilitated the recognition between ARGs hosts. Variance partitioning analysis (VPA) implied that the shift of microbial community contributed predominantly to the dissemination of ARGs. These findings unveiled the environmental behaviors and risks of exogenous pollutants in WAS with insightful understanding, which could guide the WAS utilization for resource recovery.


Assuntos
Poluentes Ambientais , Esgotos , Antibacterianos/análise , Estruturas Bacterianas/química , Permeabilidade da Membrana Celular , Resistência Microbiana a Medicamentos/genética , Poluentes Ambientais/análise , Fermentação , Genes Bacterianos , Proteínas de Membrana/genética , Esgotos/microbiologia , Transposases/genética , Xilenos
5.
Bioresour Technol ; 361: 127720, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914673

RESUMO

Four simulated bioreactors were loaded with only MSW, 5 % BA + MSW, 10 % BA + MSW and 20 % BA + MSW to investigate the leachate property and bacterial community change trends during the colandfilling process. The results showed that with increasing BA addition proportion (5 %∼20 %), the leachate oxidation-reduction potential (ORP) was lower, the leachate pH quickly entered the neutral stage, and the chemical oxygen demand (COD), volatile fatty acids (VFA), NH4+-N, Ca2+ and SO42- presented faster downward trends. The leachate SUVA254 and E300/400 confirmed that BA can accelerate the leachate humification process. BA can quickly increase bacterial diversity, and the higher the addition proportion of BA, the more significant the change in microbial community structure during the landfilling process. The leachate pH and COD greatly influenced the bacterial community structure. A low BA proportion can increase metabolism pathway abundance during the initial stage, but a high BA proportion had an inhibitory effect on the metabolism pathway.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Estruturas Bacterianas/química , Cinza de Carvão/química , Incineração/métodos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos
6.
J Bacteriol ; 204(8): e0014422, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862756

RESUMO

The bacterial flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic proteins responsible for building the flagellar motility machinery. Homologous nonflagellar (NF-T3SS) proteins form the injectisome machinery that bacteria use to deliver effector proteins into eukaryotic cells, and other family members were recently reported to be involved in the formation of membrane nanotubes. Here, we describe a novel, evolutionarily widespread, hat-shaped structure embedded in the inner membranes of bacteria, of yet-unidentified function, that is present in species containing fT3SS. Mutant analysis suggests a relationship between this novel structure and the fT3SS, but not the NF-T3SS. While the function of this novel structure remains unknown, we hypothesize that either some of the fT3SS proteins assemble within the hat-like structure, perhaps including the fT3SS core complex, or that fT3SS components regulate other proteins that form part of this novel structure. IMPORTANCE The type III secretion system (T3SS) is a fascinating suite of proteins involved in building diverse macromolecular systems, including the bacterial flagellar motility machine, the injectisome machinery that bacteria use to inject effector proteins into host cells, and probably membrane nanotubes which connect bacterial cells. Here, we accidentally discovered a novel inner membrane-associated complex related to the flagellar T3SS. Examining our lab database, which is comprised of more than 40,000 cryo-tomograms of dozens of species, we discovered that this novel structure is both ubiquitous and ancient, being present in highly divergent classes of bacteria. Discovering a novel, widespread structure related to what are among the best-studied molecular machines in bacteria will open new venues for research aiming at understanding the function and evolution of T3SS proteins.


Assuntos
Flagelos , Sistemas de Secreção Tipo III , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Estruturas Bacterianas , Flagelos/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
7.
J Plant Physiol ; 271: 153666, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35303514

RESUMO

There is an increasing awareness of the adverse environmental effects of the intensive practices used in modern crop farming, such as those that cause greenhouse gas emissions and nutrient leaching. Harnessing beneficial microbes by changing planting practices presents a promising strategy for optimizing plant growth and agricultural sustainability. However, the characteristics of soil microorganisms under different planting patterns remain uncertain. We conducted a study of soil bacterial structure and function under monoculture vs. polyculture planting regimes using 16S rRNA gene sequencing on the Qinghai-Tibet Plateau. We observed substantial variations in bacterial richness, diversity, and relative abundances of taxa between gramineous and leguminous monocultures, as well as between gramineae-legume polycultures. The number of operational taxonomic units and alpha and beta diversity were markedly higher in the leguminous monocultures than in the gramineous monocultures; conversely, network analysis revealed that the interactions among the bacterial genera in the gramineous monocultures were more complex than those in the other two planting regimes. Moreover, nitrogen fixation, soil detoxification, and productivity were increased under the gramineous monocultures; more importantly, low soil-borne diseases (e.g., animals parasitic or symbiont) also facilitated strongly suppressive effects toward soil-borne pathogens. Nevertheless, the gramineae-legume polycultures were prone to nitrate seepage contamination, and leguminous monocultures exhibited strong denitrification effects. These results revealed that the gramineous monoculture is a more promising cropping pattern on the Qinghai-Tibetan Plateau. Understanding the bacterial distribution patterns and interactions of crop-sensitive microbes presents a basis for developing microbial management strategies for smart farming.


Assuntos
Microbiologia do Solo , Solo , Estruturas Bacterianas , RNA Ribossômico 16S/genética , Solo/química , Tibet
8.
Sci Total Environ ; 813: 152495, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34968614

RESUMO

Agricultural soils contribute a significant amount of anthropogenic CO2 emission, a greenhouse gas of global environmental concern. Hence, discovering sustainable materials that can capture CO2 in cultivated soils is paramount. Since the effect of biochar on C mineralization/retention in fertilized soils is unclear, we produced biochar-based MgO and sepiolite-nanocomposites with CO2 capture potential. The field-scale impacts of the modified-biochars were evaluated on net C exchange rate (NCER) periodically for 3 months in fertilized plots. The effects of the modified-biochar on organic-C mineralization, the activities, and dynamics of C-cycling-related 16S rRNA which are unknown, were investigated. Results revealed an initial rapid and higher cumulative CO2 emission from the sole fertilizer treatment (F). Unlike the biochar treatment (BF), the successful incorporation of MgO/Mg(OH)2 nanoparticles into the matrix and surface of biochar, and the potential formation of MgCO3 with soil CO2, mitigated CO2 emission, especially in the MgO-modified biochar (MgOBF), compared to the sepiolite-biochar treatment (SBF). Compared to F and BF, the higher C retention as MgCO3 in the modified biochar treatments led to an increase in cellulase activity, stimulation of key C-cycling-related bacteria, and the expression of genes associated with starch, sucrose, amino sugar, nucleotide sugar, ascorbate, aldarate, cellulose, and chitin degradation, thus, increasing organic C mineralization. Among the modified-biochar treatments, higher C mineralization was recorded in SBF, resulting in increased cumulative CO2 emission, despite its initial capture for up to 42 days. However, MgOBF was effective in capturing soil-derived CO2, despite the increased C mineralization compared to biochar. The changes in soil moisture and temperature significantly regulated NCER. Also, the modified biochars positively influenced the distribution of C-cycling-related bacteria by improving soil pH and available nutrients. Among the modified biochars, the observed higher mitigation effect of MgOBF on NCER indicated that it could be preferably applied in agricultural soils.


Assuntos
Dióxido de Carbono , Solo , Estruturas Bacterianas , Carvão Vegetal , Óxido de Magnésio , Silicatos de Magnésio , RNA Ribossômico 16S
9.
Sci Total Environ ; 806(Pt 2): 150267, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600206

RESUMO

Anammox is sensitive to temperature, which can limit its practical application in wastewater treatment. In this study, a step-feed anoxic-oxic (A/O) process coupled with PD/A was operated steadily from 26.8 °C to 13.1 °C for wastewater treatment for 200 days. The effluent total inorganic nitrogen (TIN) and phosphorus concentrations were 10.2 mg/L and 0.29 mg/L at C/N ratio of 4.6 and 15.0 °C even with increasing nitrogen loading rate (NLR). The anammox activity was 5.60 mg NH4+-N/gMLSS/d even at 14 °C, moreover, anammox abundance on the biocarriers increased with decreasing temperature. It was observed that the effect of partial denitrification (PD) was enhanced under low temperature, thus the contribution of anammox for nitrogen removal was improved. The pathway of anammox for nitrogen removal accounted for 48% and the effect of effluent did not deteriorate under low temperature. This study states that PD/A has advantages under low temperature operation, which is suitable for treatment of wastewater with low C/N ratio.


Assuntos
Desnitrificação , Esgotos , Estruturas Bacterianas , Reatores Biológicos , Nitrogênio , Oxirredução , Temperatura , Águas Residuárias
10.
Sci Rep ; 11(1): 23497, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873246

RESUMO

Selection for bacteria which are K-strategists instead of r-strategists has been shown to improve fish health and survival in aquaculture. We considered an experiment where microcosms were inoculated with natural seawater and the selection regime was switched from K-selection (by continuous feeding) to r-selection (by pulse feeding) and vice versa. We found the networks of significant co-occurrences to contain clusters of taxonomically related bacteria having positive associations. Comparing this with the time dynamics, we found that the clusters most likely were results of similar niche preferences of the involved bacteria. In particular, the distinction between r- or K-strategists was evident. Each selection regime seemed to give rise to a specific pattern, to which the community converges regardless of its prehistory. Furthermore, the results proved robust to parameter choices in the analysis, such as the filtering threshold, level of random noise, replacing absolute abundances with relative abundances, and the choice of similarity measure. Even though our data and approaches cannot directly predict ecological interactions, our approach provides insights on how the selection regime affects the composition of the microbial community, providing a basis for aquaculture experiments targeted at eliminating opportunistic fish pathogens.


Assuntos
Estruturas Bacterianas/fisiologia , Microbiota/fisiologia , Animais , Aquicultura/métodos , Bactérias , Peixes/microbiologia , Água do Mar/microbiologia
11.
Mol Immunol ; 134: 72-85, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33725501

RESUMO

Bacteria release extracellular vesicles (EVs) known as bacterial membrane vesicles (BMVs) during their normal growth. Gram-negative bacteria produce BMVs termed outer membrane vesicles (OMVs) that are composed of a range of biological cargo and facilitate numerous bacterial functions, including promoting pathogenesis and mediating disease in the host. By contrast, less is understood about BMVs produced by Gram-positive bacteria, which are referred to as membrane vesicles (MVs), however their contribution to mediating bacterial pathogenesis has recently become evident. In this review, we summarise the mechanisms whereby BMVs released by Gram-negative and Gram-positive bacteria are produced, in addition to discussing their key functions in promoting bacterial survival, mediating pathogenesis and modulating host immune responses. Furthermore, we discuss the mechanisms whereby BMVs produced by both commensal and pathogenic organisms can enter host cells and interact with innate immune receptors, in addition to how they modulate host innate and adaptive immunity to promote immunotolerance or drive the onset and progression of disease. Finally, we highlight current and emerging applications of BMVs in vaccine design, biotechnology and cancer therapeutics.


Assuntos
Bactérias/imunologia , Estruturas Bacterianas/imunologia , Vesículas Extracelulares/imunologia , Animais , Humanos
12.
Exp Dermatol ; 30(10): 1366-1374, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32347582

RESUMO

BACKGROUND: Skin microbiota are involved in the skin physiological functions and are also affected by the skin physiological characteristics. OBJECTIVE: To better understand the skin microbial characteristics of facial cheek skin and the relationship with skin physiological characteristics. METHODS: By bacterial 16S rRNA gene sequencing, the authors studied the facial cheek skin microbial characteristics of 85 cases of young women aged 18-25 years. RESULTS: Healthy young woman's cheek skin bacterial composition was relatively stable. Dry skin has high bacterial diversity and richness, and oily skin has low bacterial diversity and richness. Cutibacterium was significantly enriched in oily skin and was significantly negatively correlated with other genera such as Streptococcus (r > 0.5). There were significant positive correlations among other genera of enrichment in dry and neutral skin such as Streptococcus and Rothia (r > 0.8). Skin sebum level was significantly negatively correlated with bacterial alpha diversity index. The combined abundance of Cutibacterium acnes and Staphylococcus epidermidis was significantly positively correlated with sebum secretion (r > 0.5). CONCLUSIONS: The skin sebum secretion and bacterial interaction were the important factors driving the young females' cheek skin bacterial community structure.


Assuntos
Estruturas Bacterianas/fisiologia , Bochecha/microbiologia , Microbiota/fisiologia , Pele/microbiologia , Adolescente , Adulto , China , Feminino , Voluntários Saudáveis , Humanos , Sebo/metabolismo , Adulto Jovem
13.
Laryngoscope ; 130(3): 806-811, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31021431

RESUMO

OBJECTIVES: Otitis media with effusion (OME) is a common disease of childhood that is largely asymptomatic. However, middle ear fluid can persist for months and negatively impact a child's quality of life. Many cases of OME remain chronic and require surgical intervention. Because biofilms are known to contribute to the persistence of many diseases, this study examined effusions collected from children with chronic OME for the presence of essential biofilm structural components, members of the DNABII family of bacterial DNA-binding proteins. METHODS: Middle ear effusions were recovered from 38 children with chronic OME at the time of tympanostomy tube insertion. A portion of each specimen was submitted for microbiology culture. The remaining material was assessed by immunoblot to quantitate individual DNABII proteins, integration host factor (IHF), and histone-like protein (HU). RESULTS: Sixty-five percent of effusions (24 of 37) were culture-positive for bacterial species or yeast, whereas 35% (13 of 37) were culture-negative. IHF was detected in 95% (36 of 38) at concentrations from 2 to 481 ng/µL effusion. HU was detected in 95% (36 of 38) and quantitated from 13 to 5,264 ng/µL effusion (P ≤ 0.05 compared to IHF). CONCLUSION: Because DNABII proteins are essential structural components of bacterial biofilms, these data lend further support to our understanding that biofilms are present in the vast majority of chronic middle ear effusions, despite negative culture results. The presence and ubiquity of DNABII proteins in OME specimens indicated that these proteins can serve as an important clinical target for our novel DNABII-directed strategy to treat biofilm diseases such as chronic OME. LEVEL OF EVIDENCE: NA Laryngoscope, 130:806-811, 2020.


Assuntos
Proteínas de Bactérias/análise , Biofilmes , Exsudatos e Transudatos/química , Otite Média com Derrame , Adolescente , Estruturas Bacterianas , Criança , Pré-Escolar , Exsudatos e Transudatos/microbiologia , Feminino , Humanos , Lactente , Masculino , Otite Média com Derrame/microbiologia , Adulto Jovem
14.
Sci Rep ; 9(1): 1938, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760871

RESUMO

Titanium is commonly used as a biomaterial for dental implants. In this study, we investigated the antibacterial properties of titanium samples following treatment with a non-thermal atmospheric pressure plasma jet (NTAPPJ) on bacteria with two different cell wall structures, including gram-positive and gram-negative bacteria. The hydrophilicity and surface energy of titanium surfaces were significantly increased after NTAPPJ treatment without altering topographical features. Changes in the chemical composition and reductive potential were observed on the NTAPPJ-treated titanium surfaces. The adhesion and biofilm formation rate of bacteria were significantly reduced on the NTAPPJ-treated titanium surfaces compared with the untreated samples, which was confirmed by fluorescent imaging. Regarding the comparison between gram-positive and gram-negative bacteria, both adhesion and the biofilm formation rate were significantly lower for gram-negative bacteria than gram-positive bacteria on samples treated for longer durations with the NTAPPJ. Transmission electron microscopy imaging showed a comparably more disruptive membrane structure of gram-negative bacteria than gram-positive bacteria on the NTAPPJ-treated surfaces. Our results indicated that the NTAPPJ treatment could be useful for preventing bacterial adhesion and biofilm formation on titanium dental implant surfaces, while the reductive potential on surfaces treated by the NTAPPJ could cause oxidation of bacteria, which could be more sensitive to gram-negative bacteria due to differences in the cell wall structure.


Assuntos
Implantes Dentários/microbiologia , Gases em Plasma/farmacologia , Titânio/química , Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Estruturas Bacterianas , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Propriedades de Superfície
15.
Can J Microbiol ; 65(3): 191-200, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30412427

RESUMO

Artificial reefs have significantly altered ecological and environmental conditions compared with natural reefs, but how these changes affect sediment bacteria structure and function is unknown. Here, we compared the structure and function of the sediment bacterial community in the artificial reef area, the future artificial reef area, and the control area in Bohai Bay by 16S rRNA genes sequencing. Our results indicated that bacteria communities in the sediment were both taxonomically and functionally different between the reef area and control area. In the artificial reef area, the α-diversity was significantly lower, whereas the ß-diversity was significantly higher. Functional genes related to chemo-heterotrophy, nitrate reduction, hydrocarbon degradation, and the human pathogens and human gut were more abundant, whereas genes related to the metabolism of sulfur compounds were less abundant in the artificial reef than in the control area. The differences in bacterial communities were primarily determined by depth in the artificial reef area, and by total organic carbon in the future reef area and control area. This study provides the first overview of molecular ecology to assess the impacts of artificial reefs on the bacteria community.


Assuntos
Bactérias/crescimento & desenvolvimento , Recifes de Corais , Sedimentos Geológicos/microbiologia , Microbiota , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Estruturas Bacterianas , Baías , Ecologia , RNA Ribossômico 16S/genética
16.
Eur J Pharm Biopharm ; 125: 124-130, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29353018

RESUMO

Reduced infectivity of phage due to the nebulization process has been reported previously, but no visual evidence on structural change upon nebulization has been established, or whether these structural changes can be attributed to the titer reduction. In this study, transmission electron microscopy (TEM) was employed to assess the impact of three different types of nebulizers, air-jet, vibrating-mesh and static-mesh nebulizers, on the structural stability of a Myoviridae phage, PEV44, active against Pseudomonas aeruginosa. The morphology of the phage in the nebulized samples was categorized into two groups: "whole" (the capsid and tail held together) and "broken" (the capsid separated from the tail) phages. The "whole" phage group was further divided into three sub-groups: (1) intact, (2) contracted tail and (3) empty capsid. The starting stock suspension was found to contain considerable portions of "broken" phages (35.5 ±â€¯6.7%), "whole" phages with contracted tails (9.9 ±â€¯5.4%) and empty capsids (19.3 ±â€¯8.9%). The fraction of "broken" phages was significantly increased after nebulization, with the air-jet nebulizer (83%) being more pronounced than the mesh type nebulizers (50-60%). While the amount of intact phages (2-10%) and whole phages with contracted tails (0-3%) were significantly decreased, the proportion of phages with empty capsids (15-36%) were not significantly different. Phages with broken features obtained by TEM quantification were 92.9 ±â€¯3.2%, 74.8 ±â€¯10.4% and 71.2 ±â€¯11.0% for the jet, vibrating-mesh and static-mesh nebulizers, respectively. These results were found to be comparable with the titer loss obtained by the conventional plaque assay results. The in vitro aerosol performance and viable phage delivery of the three nebulizers was also assessed. The Omron nebulizer achieved a significantly higher viable respirable fraction (VRF) than the SideStream and Aeroneb Go (15.1 ±â€¯5.8%, 2.4 ±â€¯2.0%, 4.1 ±â€¯2.7% respectively). In conclusion, this study identified various changes in the phage structure and viability of phage from different types of nebulizers. Understanding these effects and the phage tolerance to nebulization stresses can potentially improve our choice of the delivery method for inhaled phage therapy.


Assuntos
Bacteriófagos/química , Nebulizadores e Vaporizadores , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/virologia , Administração por Inalação , Estruturas Bacterianas , Bacteriófagos/fisiologia , Microscopia Eletrônica de Transmissão/métodos , Myoviridae/química , Myoviridae/fisiologia , Pseudomonas aeruginosa/fisiologia
17.
Sci Rep ; 7(1): 6498, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747653

RESUMO

Leptothrix species produce microtubular organic-inorganic materials that encase the bacterial cells. The skeleton of an immature sheath, consisting of organic exopolymer fibrils of bacterial origin, is formed first, then the sheath becomes encrusted with inorganic material. Functional carboxyl groups of polysaccharides in these fibrils are considered to attract and bind metal cations, including Fe(III) and Fe(III)-mineral phases onto the fibrils, but the detailed mechanism remains elusive. Here we show that NH2 of the amino-sugar-enriched exopolymer fibrils is involved in interactions with abiotically generated Fe(III) minerals. NH2-specific staining of L. cholodnii OUMS1 detected a terminal NH2 on its sheath skeleton. Masking NH2 with specific reagents abrogated deposition of Fe(III) minerals onto fibrils. Fe(III) minerals were adsorbed on chitosan and NH2-coated polystyrene beads but not on cellulose and beads coated with an acetamide group. X-ray photoelectron spectroscopy at the N1s edge revealed that the terminal NH2 of OUMS1 sheaths, chitosan and NH2-coated beads binds to Fe(III)-mineral phases, indicating interaction between the Fe(III) minerals and terminal NH2. Thus, the terminal NH2 in the exopolymer fibrils seems critical for Fe encrustation of Leptothrix sheaths. These insights should inform artificial synthesis of highly reactive NH2-rich polymers for use as absorbents, catalysts and so on.


Assuntos
Amino Açúcares/metabolismo , Estruturas Bacterianas/metabolismo , Compostos Férricos/metabolismo , Leptothrix/metabolismo , Substâncias Macromoleculares/metabolismo , Polissacarídeos Bacterianos/metabolismo
18.
J Bacteriol ; 199(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28373274

RESUMO

Although mycoplasmas have small genomes, many of them, including the HIV-associated opportunist Mycoplasma penetrans, construct a polar attachment organelle (AO) that is used for both adherence to host cells and gliding motility. However, the irregular phylogenetic distribution of similar structures within the mycoplasmas, as well as compositional and ultrastructural differences among these AOs, suggests that AOs have arisen several times through convergent evolution. We investigated the ultrastructure and protein composition of the cytoskeleton-like material of the M. penetrans AO with several forms of microscopy and biochemical analysis, to determine whether the M. penetrans AO was constructed at the molecular level on principles similar to those of other mycoplasmas, such as Mycoplasma pneumoniae and Mycoplasma mobile We found that the M. penetrans AO interior was generally dissimilar from that of other mycoplasmas, in that it exhibited considerable heterogeneity in size and shape, suggesting a gel-like nature. In contrast, several of the 12 potential protein components identified by mass spectrometry of M. penetrans detergent-insoluble proteins shared certain distinctive biochemical characteristics with M. pneumoniae AO proteins, although not with M. mobile proteins. We conclude that convergence between M. penetrans and M. pneumoniae AOs extends to the molecular level, leading to the possibility that the less organized material in both M. pneumoniae and M. penetrans is the substance principally responsible for the organization and function of the AO.IMPORTANCEMycoplasma penetrans is a bacterium that infects HIV-positive patients and may contribute to the progression of AIDS. It attaches to host cells through a structure called an AO, but it is not clear how it builds this structure. Our research is significant not only because it identifies the novel protein components that make up the material within the AO that give it its structure but also because we find that the M. penetrans AO is organized unlike AOs from other mycoplasmas, suggesting that similar structures have evolved multiple times. From this work, we derive some basic principles by which mycoplasmas, and potentially all organisms, build structures at the subcellular level.


Assuntos
Estruturas Bacterianas/química , Estruturas Bacterianas/ultraestrutura , Mycoplasma penetrans/química , Mycoplasma penetrans/ultraestrutura , Organelas/química , Organelas/ultraestrutura , Evolução Biológica , Espectrometria de Massas , Mycoplasma pneumoniae/química , Mycoplasma pneumoniae/fisiologia , Mycoplasma pneumoniae/ultraestrutura
19.
Appl Environ Microbiol ; 82(18): 5653-60, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422829

RESUMO

UNLABELLED: Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE: Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health.


Assuntos
Biota , Enterococcus faecium/isolamento & purificação , Sedimentos Geológicos/microbiologia , Esgotos , Enterococos Resistentes à Vancomicina/isolamento & purificação , Microbiologia da Água , Poluição da Água , Carga Bacteriana , Proteínas de Bactérias/genética , Estruturas Bacterianas , Carbono-Oxigênio Ligases/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Enterococcus faecium/classificação , Enterococcus faecium/genética , Humanos , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Tempo , Estados Unidos , Enterococos Resistentes à Vancomicina/classificação , Enterococos Resistentes à Vancomicina/genética
20.
PLoS Biol ; 14(3): e1002399, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26959993

RESUMO

Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen.


Assuntos
Estruturas Bacterianas/enzimologia , Coenzima A/metabolismo , Fosfato Acetiltransferase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Dados de Sequência Molecular , Conformação Proteica , Salmonella enterica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...