Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.523
Filtrar
1.
Environ Sci Technol ; 58(15): 6519-6531, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578272

RESUMO

Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 µg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.


Assuntos
Bivalves , Dinoflagelados , Animais , Rifampina/metabolismo , alfa-Tocoferol/metabolismo , Frutos do Mar/análise , Colchicina/metabolismo , Dinoflagelados/metabolismo
2.
J Environ Manage ; 357: 120799, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581895

RESUMO

Policies and management decisions in the marine environment are driven in part by public sentiment which can grow more intense during hazard events like Harmful Algae Blooms (HABs). The public conversations on social media sites like Twitter (before X) reveal the polarized nature of HABs through nuanced language and sentiment. This article uses mixed methods of machine learned topic modeling and inductive qualitative coding to describe the ways the long-term 2017-2019 Karenia brevis "red tide" bloom were politicized across Florida's South West coast. It finds that there are topical differences in keywords related to place (e.g. beach, Florida, coast), agent (individual or organization), and epistemic values (reliance on scientific and/or media reports). These topical differences demonstrate different levels of politicization and partisanship in qualitative analysis. Conceptually, this research demonstrates the ways different dimensions of a long-duration marine hazard can be polarized. Regarding management, this research provides insights to political and organizational stakeholders and the gaps in the discourse shaping marine hazards which can be used to strategically guide future social media engagement to manage politicization. What if all the careful work that resource and environmental managers do can be undone by simple, seemingly uncontroversial words? In an era of increased environmental and marine distress-coupled with short format communication-the ways environmental managers choose their words is crucial, even between ostensibly inconsequential nouns like "red tide" or "algae bloom." Policies and management decisions in the marine environment are driven in part by public sentiment which can grow more intense during hazard events like Harmful Algae Blooms (HABs). The public conversations on social media sites like Twitter (before X) reveal the polarized nature of HABs through nuanced language and sentiment. This article relies on mining social media posts, and uses mixed methods of machine-learned topic modeling and human-driven inductive qualitative coding to describe the ways the long-term 2017-2019 Karenia brevis "red tide" blooms were politicized across Florida's South West coast. It finds that there are topical differences in keywords related to place (e.g. beach, Florida, coast), agent (individual or organization), and epistemic values (reliance on scientific and/or media reports). These topical differences demonstrate different levels of politicization and partisanship in qualitative analysis. Conceptually, this research demonstrates the ways different dimensions of a long-duration marine hazard can be polarized. Regarding management, this research provides insights to political and organizational stakeholders and the gaps in the discourse shaping marine hazards which can be used to strategically guide future social media engagement to manage politicization.


Assuntos
Dinoflagelados , Mídias Sociais , Humanos , Proliferação Nociva de Algas , Toxinas Marinhas/análise , Florida
3.
Sci Rep ; 14(1): 8340, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594439

RESUMO

The community structure and co-occurrence pattern of eukaryotic algae in Yuncheng Salt Lake were analyzed based on marker gene analysis of the 18S rRNA V4 region to understand the species composition and their synergistic adaptations to the environmental factors in different salinity waters. The results showed indicated that the overall algal composition of Yuncheng Salt Lake showed a Chlorophyta-Pyrrophyta-Bacillariophyta type structure. Chlorophyta showed an absolute advantage in all salinity waters. In addition, Cryptophyta dominated in the least saline waters; Pyrrophyta and Bacillariophyta were the dominant phyla in the waters with salinity ranging from 13.2 to 18%. Picochlorum, Nannochloris, Ulva, and Tetraselmis of Chlorophyta, Biecheleria and Oxyrrhis of Pyrrophyta, Halamphora, Psammothidium, and Navicula of Bacillariophyta, Guillardia and Rhodomonas of Cryptophyta were not observed in previous surveys of the Yuncheng Salt Lake, suggesting that the algae are undergoing a constant turnover as the water environment of the Salt Lake continues to change. The network diagram demonstrated that the algae were strongly influenced by salinity, NO3-, and pH, changes in these environmental factors would lead to changes in the algal community structure, thus affecting the stability of the network structure.


Assuntos
Clorófitas , Diatomáceas , Dinoflagelados , Lagos/química , Fitoplâncton , Salinidade , Clorófitas/genética , China
4.
Sci Total Environ ; 926: 171688, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492606

RESUMO

Ocean acidification (OA) driven by elevated carbon dioxide (CO2) levels is expected to disturb marine ecological processes, including the formation and control of harmful algal blooms (HABs). In this study, the effects of rising CO2 on the allelopathic effects of macroalgae Ulva pertusa to a toxic dinoflagellate Karenia mikimotoi were investigated. It was found that high level of CO2 (1000 ppmv) promoted the competitive growth of K. mikimotoi compared to the group of present ambient CO2 level (420ppmv), with the number of algal cell increased from 32.2 × 104 cells/mL to 36.75 × 104 cells/mL after 96 h mono-culture. Additionally, rising CO2 level weakened allelopathic effects of U. pertusa on K. mikimotoi, as demonstrated by the decreased inhibition rate (50.6 % under the original condition VS 34.3 % under the acidified condition after 96 h co-culture) and the decreased reactive oxygen species (ROS) level, malondialdehyde (MDA) content, antioxidant enzymes activity (superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT) and non-enzymatic antioxidants (glutathione (GSH) and ascorbic acid (ascorbate, vitamin C). Indicators for cell apoptosis of K. mikimotoi including decreased caspase-3 and -9 protease activity were observed when the co-cultured systems were under rising CO2 exposure. Furthermore, high CO2 level disturbed fatty acid synthesis in U. pertusa and significantly decreased the contents of fatty acids with allelopathy, resulting in the allelopathy weakening of U. pertusa. Collectively, rising CO2 level promoted the growth of K. mikimotoi and weakened allelopathic effects of U. pertusa on K. mikimotoi, indicating the increased difficulties in controlling K. mikimotoi using macroalgae in the future.


Assuntos
Dinoflagelados , Alga Marinha , Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio , Água do Mar , Dinoflagelados/fisiologia , Proliferação Nociva de Algas
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230079, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497261

RESUMO

Coral growth depends on the partnership between the animal hosts and their intracellular, photosynthetic dinoflagellate symbionts. In this study, we used the sea anemone Aiptasia, a laboratory model for coral biology, to investigate the poorly understood mechanisms that mediate symbiosis establishment and maintenance. We found that initial colonization of both adult polyps and larvae by a compatible algal strain was more effective when the algae were able to photosynthesize and that the long-term maintenance of the symbiosis also depended on photosynthesis. In the dark, algal cells were taken up into host gastrodermal cells and not rapidly expelled, but they seemed unable to reproduce and thus were gradually lost. When we used confocal microscopy to examine the interaction of larvae with two algal strains that cannot establish stable symbioses with Aiptasia, it appeared that both pre- and post-phagocytosis mechanisms were involved. With one strain, algae entered the gastric cavity but appeared to be completely excluded from the gastrodermal cells. With the other strain, small numbers of algae entered the gastrodermal cells but appeared unable to proliferate there and were slowly lost upon further incubation. We also asked if the exclusion of either incompatible strain could result simply from their cells' being too large for the host cells to accommodate. However, the size distributions of the compatible and incompatible strains overlapped extensively. Moreover, examination of macerates confirmed earlier reports that individual gastrodermal cells could expand to accommodate multiple algal cells. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Antozoários , Dinoflagelados , Anêmonas-do-Mar , Animais , Simbiose , Fotossíntese , Larva
6.
Harmful Algae ; 133: 102601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485440

RESUMO

The photoperiod, which is defined as the period of time within a 24-hour time frame that light is available, is an important environmental regulator of several physiological processes in phytoplankton, including harmful bloom-forming phytoplankton. The ichthyotoxic raphidophyte Heterosigma akashiwo is a globally distributed bloom-forming phytoplankton. Despite extensive studies on the ecological impact of H. akashiwo, the influence of the photoperiod on crucial biological processes of this species remains unclear. In this study, gene expression in H. akashiwo was analyzed over a 24-hour light-dark (14:10) treatment period. Approximately 36 % of unigenes in H. akashiwo were differentially expressed during this 24-hour treatment period, which is indicative of their involvement in the response to light-dark variation. Notably, the number of differentially expressed genes exhibited an initial increase followed by a subsequent decrease as the sampling time progressed (T0 vs. other time points). Unigenes associated with photosynthesis and photoprotection reached their peak expression levels after 2-4 h of illumination (T12-T14). In contrast, the expression of unigenes associated with DNA replication peaked at the starting point of the dark period (T0). Furthermore, although several unigenes annotated to photoreceptors displayed potential diel periodicity, genes from various photoreceptor families (such as phytochrome and cryptochrome) showed unique expression patterns. Collectively, our findings offer novel perspectives on the response of H. akashiwo to the light-dark cycle, serving as a valuable resource for investigating the physiology and ecology of this species.


Assuntos
Dinoflagelados , Estramenópilas , Fotoperíodo , Dinoflagelados/genética , Fitoplâncton/genética , Perfilação da Expressão Gênica , Fotossíntese , Estramenópilas/genética
7.
Harmful Algae ; 133: 102586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485436

RESUMO

The red Noctiluca scintillans (RNS) blooms often break out near Pingtan Island, in the northern Taiwan Strait from April to June. It is essential to gain insights into their formation mechanism to predict and provide early warnings for these blooms. Previous studies and observations showed that RNS blooms are the most likely to occur when winds are weak and shifting in direction. To explore this phenomenon further, we employed a high-resolution coastal model to investigate the hydrodynamics influencing RNS blooms around Pingtan Island from April to June 2022. The model results revealed that seawater exhibited weak circulation but strong stratification during RNS blooms. Residence time were examined through numerical experiments by releasing passive neutrally buoyant particles in three bays of Pingtan Island. The results showed a significantly longer residence time during RNS blooms, indicating reduced flushing capabilities within the bays, which could give RNS a stable environment to multiply and aggregate. This hydrodynamic condition provided a favorable basis for RNS blooms breakout near Pingtan Island. The shifts and weakening of the prevailing northeast wind contributed substantially to weakening the flow field around Pingtan Island and played a crucial role in creating the hydrodynamics conducive to RNS blooms. Our study offers fresh insights into the mechanisms underpinning RNS blooms formation near Pingtan Island, providing a vital framework for forecasting RNS blooms in this region.


Assuntos
Dinoflagelados , Monitoramento Ambiental , Taiwan , Monitoramento Ambiental/métodos , Estações do Ano , Surtos de Doenças
8.
Harmful Algae ; 133: 102596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485444

RESUMO

OBJECTIVE: The study objective was to evaluate the association between Karenia brevis (K. brevis) exposure during pregnancy and the prevalence of biliary atresia (BA) in offspring. STUDY DESIGN: This was a hospital-based, case-control study in which cases were infants diagnosed with BA at Johns Hopkins All Children's Hospital from October 2001 to December 2019. Cases were matched 1:4 by age to controls who were randomly selected from a pool of healthy infants hospitalized during the study period for common pediatric diagnoses. Infants were excluded if they had congenital anomalies and/or were non-Florida residents. Gestational K. brevis exposure levels (cells/liter) were determined from Florida Fish and Wildlife Conservation Commission exposure data at 10- and 50 mile radii from the mother's zip code of residence. Multivariable conditional logistic regression determined odds of BA in offspring in relation to maternal gestational K. brevis exposure adjusted for infant sex, race/ethnicity, coastal residence, and seasonality. RESULTS: Of 38 cases and 152 controls, no significant inter-group differences were observed for infant race/ethnicity, season of birth, or coastal residence. Median gestational exposure at the 10 mile radius was 0 cells/liter in both groups. A greater proportion of cases had no gestational K. brevis exposure (63.2 %, n = 24) in comparison to controls (37.5 %, n = 57; p = .04) at a 10 mile radius. At a 50 mile radius, cases had a peak median exposure at 6 months of gestation compared to controls' peak at 9 months. After adjustment for sex, seasonality, race/ethnicity, and coastal residence, there was no significant association between BA and maximum K. brevis exposure per trimester of pregnancy observed at a 10- or 50 mile radius. CONCLUSION: In this matched case-control study, we observed no association between gestational K. brevis (cells/liter) exposure at a 10- or 50 mile radius from maternal zip code of residence and BA in offspring.


Assuntos
Atresia Biliar , Dinoflagelados , Animais , Criança , Humanos , Proliferação Nociva de Algas , Atresia Biliar/epidemiologia , Estudos de Casos e Controles , Toxinas Marinhas
9.
Harmful Algae ; 133: 102605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485446

RESUMO

Biotic interactions are a key factor in the development of harmful algal blooms. Recently, a lower abundance of planktonic dinoflagellates has been reported in areas dominated by seagrass beds, suggesting a negative interaction between both groups of organisms. The interaction between planktonic dinoflagellates and marine phanerogams, as well as the way in which bacteria can affect this interaction, was studied in two experiments using a non-axenic culture of the toxic dinoflagellate Alexandrium minutum exposed to increasing additions of eelgrass (Zostera marina) exudates from old and young leaves and to the presence or absence of antibiotics. In these experiments, A. minutum abundance, growth rate and photosynthetic efficiency (Fv/Fm), as well as bacterial abundance, were measured every 48 h. Toxin concentration per cell was determined at the end of both experiments. Our results demonstrated that Z. marina exudates reduced A. minutum growth rate and, in one of the experiments, also the photosynthetic efficiency. These results are not an indirect effect mediated by the bacteria in the culture, although their growth modify the magnitude of the negative impact on the dinoflagellate growth rate. No clear pattern was observed in the variation of toxin production with the treatments.


Assuntos
Dinoflagelados , Zosteraceae , Dinoflagelados/fisiologia , Proliferação Nociva de Algas , Fotossíntese , Toxinas Marinhas/toxicidade , Plâncton/metabolismo , Bactérias/metabolismo
10.
Harmful Algae ; 133: 102608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485442

RESUMO

The study of marine toxins in shellfish is of the utmost importance to ensure people's food safety. Marine toxins in shellfish and microalgae in the water column off the south-central coast of Chile (36°â€’43° S) were studied in a network of 64 stations over a 14-month period. The relative abundance of harmful species Alexandrium catenella, Alexandrium ostenfeldii, Protoceratium reticulatum, Dinophysis acuminata, Dinophysis acuta, Pseudo-nitzschia seriata group and P. delicatissima group was analyzed. The detection and quantification of lipophilic toxins and domoic acid (DA) in shellfish was determined by UHPLC-MS/MS, and for Paralytic Shellfish Toxins (PSTs) by HPLC-FD with post-column oxidation, while for a culture of A. ostenfeldii a Hylic-UHPLC-MS/MS was used. Results showed that DA, gonyautoxin (GTX)-2, GTX-3 and pectenotoxin (PTX)-2 were detected below the permitted limits, while Gymnodimine (GYM)-A and 13-desmethylespirolide C (SPX-1) were below the limit of quantitation. According to the distribution and abundance record of microalgae, DA would be associated to P. seriata and P. delicatissima-groups, PTX-2 to D. acuminata, and GTX-2, GTX-3, GYM-A, and SPX-1 to A. ostenfeldii. However, the toxin analysis of an A. ostenfeldii culture from the Biobío region only showed the presence of the paralytic toxins C2, GTX-2, GTX-3, GTX-5 and saxitoxin, therefore, the source of production of GYM and SPX is still undetermined.


Assuntos
Dinoflagelados , Compostos Heterocíclicos com 3 Anéis , Hidrocarbonetos Cíclicos , Iminas , Microalgas , Humanos , Espectrometria de Massas em Tandem , Chile , Toxinas Marinhas/análise , Frutos do Mar/análise , Alimentos Marinhos/análise
11.
Sci Rep ; 14(1): 6442, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499675

RESUMO

Two gene regions commonly used to characterise the diversity of eukaryotic communities using metabarcoding are the 18S ribosomal DNA V4 and V9 gene regions. We assessed the effectiveness of these two regions for characterising diverisity of coastal eukaryotic microalgae communities (EMCs) from tropical and temperate sites. We binned amplicon sequence variants (ASVs) into the high level taxonomic groups: dinoflagellates, pennate diatoms, radial centric diatoms, polar centric diatoms, chlorophytes, haptophytes and 'other microalgae'. When V4 and V9 generated ASV abundances were compared, the V9 region generated a higher number of raw reads, captured more diversity from all high level taxonomic groups and was more closely aligned with the community composition determined using light microscopy. The V4 region did resolve more ASVs to a deeper taxonomic resolution within the dinoflagellates, but did not effectively resolve other major taxonomic divisions. When characterising these communities via metabarcoding, the use of multiple gene regions is recommended, but the V9 gene region can be used in isolation to provide high-level community biodiversity to reflect relative abundances within groups. This approach reduces the cost of sequencing multiple gene regions whilst still providing important baseline ecosystem function information.


Assuntos
Diatomáceas , Dinoflagelados , Microalgas , Ecossistema , Microalgas/genética , Biodiversidade , Diatomáceas/genética , DNA Ribossômico/genética , Dinoflagelados/genética , RNA Ribossômico 18S/genética , Filogenia
12.
Sci Rep ; 14(1): 6689, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509105

RESUMO

During evolution of Dinophyceae, size reduction of the episome has occurred in several lineages (including unarmoured Amphidiniales and armoured Prorocentrales). One such species is Amphidinium crassum, whose taxonomic identity is elusive though showing morphological similarities with Oxytoxaceae (currently placed in armoured Peridiniales). Plankton samples were taken at the type locality of A. crassum in Kiel Bight (Baltic Sea) in order to establish monoclonal strains. The protist material was examined in detail using light and electron microscopy, and a long (2984 bp) ribosomal RNA sequence gained was part of a taxon sample comprising 206 specimen vouchers and representing the known molecular diversity of Dinophyceae. Cells of A. crassum were ovoid and exhibited a plate pattern po, 4', 1a, 6'', 5c, 4s, 5''', 1''''. In the molecular phylogeny, the species seemed to belong neither to Amphidiniales nor to Peridiniales but to Prorocentrales and clustered with other representatives of Oxytoxaceae. The morphological diversity of Prorocentrales appears thus expanded, and the group may include a number of previously unrecognised representatives unusually having five postcingular and only a single antapical plate. The taxonomic identity of A. crassum is clarified by epitypification, and the species notably exhibits both an apical pore and an additional epithecal pore.


Assuntos
Dinoflagelados , Dinoflagelados/genética , RNA Ribossômico/genética , Filogenia
13.
Mar Environ Res ; 196: 106421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437778

RESUMO

Phosphorus and temperature play an important role in the succession of diatom-dinoflagellate blooms. However, there is little long-term research on interspecific competition based on phosphorus source and temperature. Here, interspecific competition among Skeletonema costatum, Prorocentrum donghaiense and Karenia mikimotoi was studied using trialgal laboratory co-cultures under different phosphorus and temperature conditions. These results suggest that S. costatum and P. donghaiense alternated as competing dominant species during the experimental period, which coincides with the different phosphorus conditions. However, K. mikimotoi growth was significantly inhibited throughout the experiment. We suggest that this may be due to different algal requirements for phosphorus, optimal growth temperatures, and possible allelopathic effects. This study provides a comprehensive mechanism of interspecific competition between diatom-dinoflagellate in response to phosphorus and temperature and elucidates the seasonal succession of diatom-dinoflagellate from late spring to early summer in the Changjiang River Estuary and the adjacent East China Sea.


Assuntos
Diatomáceas , Dinoflagelados , Temperatura , Fósforo , Diatomáceas/fisiologia , China , Ecologia , Proliferação Nociva de Algas
14.
Appl Environ Microbiol ; 90(4): e0193923, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445866

RESUMO

The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.


Assuntos
Antozoários , Dinoflagelados , Microbiota , Animais , Antozoários/microbiologia , Recifes de Corais , Simbiose , Fungos/genética
15.
Mol Ecol ; 33(8): e17318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488669

RESUMO

Increasing ocean temperatures are causing dysbiosis between coral hosts and their symbionts. Previous work suggests that coral host gene expression responds more strongly to environmental stress compared to their intracellular symbionts; however, the causes and consequences of this phenomenon remain untested. We hypothesized that symbionts are less responsive because hosts modulate symbiont environments to buffer stress. To test this hypothesis, we leveraged the facultative symbiosis between the scleractinian coral Oculina arbuscula and its symbiont Breviolum psygmophilum to characterize gene expression responses of both symbiotic partners in and ex hospite under thermal challenges. To characterize host and in hospite symbiont responses, symbiotic and aposymbiotic O. arbuscula were exposed to three treatments: (1) control (18°C), (2) heat (32°C), and (3) cold (6°C). This experiment was replicated with B. psygmophilum cultured from O. arbuscula to characterize ex hospite symbiont responses. Both thermal challenges elicited classic environmental stress responses (ESRs) in O. arbuscula regardless of symbiotic state, with hosts responding more strongly to cold challenge. Hosts also exhibited stronger responses than in hospite symbionts. In and ex hospite B. psygmophilum both down-regulated gene ontology pathways associated with photosynthesis under thermal challenge; however, ex hospite symbionts exhibited greater gene expression plasticity and differential expression of genes associated with ESRs. Taken together, these findings suggest that O. arbuscula hosts may buffer environments of B. psygmophilum symbionts; however, we outline the future work needed to confirm this hypothesis.


Assuntos
Antozoários , Dinoflagelados , Animais , Antozoários/genética , Simbiose/genética , Estresse Fisiológico/genética , Temperatura Alta , Expressão Gênica , Recifes de Corais , Dinoflagelados/genética
16.
Mar Pollut Bull ; 201: 116272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522337

RESUMO

The influence of abiotic variables and anthropogenic pressure on symbiodiniaceans associated with the scleractinian corals Mussismilia hispida and Siderastrea stellata were assessed quarterly at Armação dos Búzios, Brazil, for over 18 months. Thirty-eight Symbiodiniaceae ITS2 rDNA phylotypes were found by metabarcoding, with eight comprising new phylotypes. Both hosts maintained their generalist pattern, with 1-3 dominant lineages. An environmental pressure index and changes in seawater temperature explained the variations in the structure and diversity of Symbiodiniaceae assemblages over time and space. A mild bleaching event affected the photosymbiotic assemblage structure, even in non-bleached colonies. The highly dynamic and diverse photosymbiont assemblages were constantly driven by the influence of environmental variables and human-induced impacts. Furthermore, new strains of Symbiodiniaceae might be associated with lower temperatures caused by upwelling, which is characteristic of this subtropical coral community, highlighting the region's idiosyncrasy and the need for further studies of this coral system.


Assuntos
Antozoários , Dinoflagelados , Animais , Humanos , Recifes de Corais , Simbiose , Temperatura
17.
Mar Pollut Bull ; 201: 116260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522341

RESUMO

This study aimed to investigate the toxic and transcriptomic effects of the ultraviolet filter benzophenone-3 (BP-3) on Acropora tenuis and its symbiotic dinoflagellates while using acetone as a solvent. Seven-day exposure to 50 and 500 µg/L, which is higher than most BP-3 records from coastal waters, did not affect coral colour or dinoflagellate photosynthesis. Differentially expressed genes (DEGs) between seawater and solvent controls were <20 in both corals and dinoflagellates. Eleven coral DEGs were detected after treatment with 50 µg/L BP-3. Fourteen coral DEGs, including several fluorescent protein genes, were detected after treatment with 500 µg/L BP-3. In contrast, no dinoflagellate DEGs were detected in the BP-3 treatment group. These results suggest that the effects of 50-500 µg/L BP-3 on adult A. tenuis and its dinoflagellates are limited. Our experimental methods with lower acetone toxicity provide a basis for establishing standard ecotoxicity tests for corals.


Assuntos
Antozoários , Benzofenonas , Dinoflagelados , Animais , Dinoflagelados/genética , Acetona/metabolismo , Acetona/farmacologia , Perfilação da Expressão Gênica , Transcriptoma , Simbiose , Solventes , Recifes de Corais
18.
J Hazard Mater ; 469: 133896, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428300

RESUMO

Paralytic shellfish toxins (PSTs) produced by some marine dinoflagellates can cause severe human intoxication via vectors like bivalves. Toxic dinoflagellate Gymnodinium catenatum produce a novel group of hydroxybenzoate PSTs named GC toxins, but their biokinetics in bivalves haven't been well examined. In this experiment, we analyzed PSTs in bay scallops Argopecten irradians exposed to G. catenatum (strain MEL11) to determine their accumulation, elimination, anatomical distribution, and biotransformation. To our surprise, up to 30% of the PSTs were accumulated in the adductor muscle of scallops at the end of the experiment, and the toxicity of adductor muscle exceeded the regulatory limit of 800 µg STXeq/kg in only 6 days. High concentration of toxins in the adductor muscle are likely linked to the rapid transfer of GC toxins from viscera to other tissues. Moreover, most GC toxins in scallops were found rapidly transformed to decarbamoyl toxins through enzyme-mediated hydrolysis, which was further supported by the in vitro incubation experiments. Our study demonstrates that GC toxins actively participate in toxin distribution and transformation in scallops, which may increase the risks of food poisoning associated with the consumption of scallop adductor muscle. ENVIRONMENTAL IMPLICATION: The negative impacts of harmful algal blooms (HABs) have become a global environmental concern under the joint effects of cultural eutrophication and climate change. Our study, targeted on the biokinetics of paralytic shellfish toxins in scallops exposed to Gymnodinium catenatum producing unique GC toxins, aims to elucidate potential risks of seafood poisoning associated with GC toxins. The findings of this study will help us to understand the roles of GC toxins in seafood poisoning, and to develop effective management strategies against toxic algal blooms and phycotoxins.


Assuntos
Bivalves , Dinoflagelados , Pectinidae , Intoxicação por Frutos do Mar , Animais , Humanos , Toxinas Marinhas/toxicidade , Intoxicação por Frutos do Mar/etiologia , Pectinidae/metabolismo , Bivalves/metabolismo , Hidroxibenzoatos/metabolismo , Alimentos Marinhos , Frutos do Mar
19.
EMBO Rep ; 25(4): 1859-1885, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499810

RESUMO

Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.


Assuntos
Dinoflagelados , Dinoflagelados/genética , Dinoflagelados/metabolismo , Simbiose/genética , Filogenia , Proteoma/genética , Proteoma/metabolismo , Plastídeos/genética
20.
J Phycol ; 60(2): 541-553, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517088

RESUMO

Harmful algal blooms (HABs) are a global environmental concern, causing significant economic losses in fisheries and posing risks to human health. Algicidal bacteria have been suggested as a potential solution to control HABs, but their algicidal efficacy is influenced by various factors. This study aimed to characterize a novel algicidal bacterium, Maribacter dokdonensis (P4), isolated from a Karenia mikimotoi (Hong Kong strain, KMHK) HAB and assess the impact of P4 and KMHK's doses, growth phase, and algicidal mode and the axenicity of KMHK on P4's algicidal effect. Our results demonstrated that the algicidal effect of P4 was dose-dependent, with the highest efficacy at a dose of 25% v/v. The study also determined that P4's algicidal effect was indirect, with the P4 culture and the supernatant, but not the bacterial cells, showing significant effects. The algicidal efficacy was higher when both P4 and KMHK were in the stationary phase. Furthermore, the P4 culture at the log phase could effectively kill KMHK cells at the stationary phase, with higher algicidal efficacy in the bacterial culture than that of the supernatant alone. Interestingly, P4's algicidal efficacy was significantly higher when co-culturing with xenic KMHK (~90% efficacy at day 1) than that with the axenic KMHK (~50% efficacy at day 1), suggesting the presence of other bacteria could regulate P4's algicidal effect. The bacterial strain P4 also exhibited remarkable algicidal efficacy on four other dinoflagellate species, particularly the armored species. These results provide valuable insights into the algicidal effect of M. dokdonensis on K. mikimotoi and on their interactions.


Assuntos
Dinoflagelados , Flavobacteriaceae , Água , Humanos , Dinoflagelados/fisiologia , Proliferação Nociva de Algas , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...