Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.401
Filtrar
1.
Plant Mol Biol ; 114(3): 39, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615069

RESUMO

Plants and microorganisms establish beneficial associations that can improve their development and growth. Recently, it has been demonstrated that bacteria isolated from the skin of amphibians can contribute to plant growth and defense. However, the molecular mechanisms involved in the beneficial effect for the host are still unclear. In this work, we explored whether bacteria isolated from three tropical frogs species can contribute to plant growth. After a wide screening, we identified three bacterial strains with high biostimulant potential, capable of modifying the root structure of Arabidopsis thaliana plants. In addition, applying individual bacterial cultures to Solanum lycopersicum plants induced an increase in their growth. To understand the effect that these microorganisms have over the host plant, we analysed the transcriptomic profile of A. thaliana during the interaction with the C32I bacterium, demonstrating that the presence of the bacteria elicits a transcriptional response associated to plant hormone biosynthesis. Our results show that amphibian skin bacteria can function as biostimulants to improve agricultural crops growth and development by modifying the plant transcriptomic responses.


Assuntos
Arabidopsis , Solanum lycopersicum , Animais , Transcriptoma , Arabidopsis/genética , Solanum lycopersicum/genética , Anfíbios , Bactérias , Hormônios
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230323, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583467

RESUMO

Monitoring the extent to which invasive alien species (IAS) negatively impact the environment is crucial for understanding and mitigating biological invasions. Indeed, such information is vital for achieving Target 6 of the Kunming-Montreal Global Biodiversity Framework. However, to-date indicators for tracking the environmental impacts of IAS have been either lacking or insufficient. Capitalizing on advances in data availability and impact assessment protocols, we developed environmental impact indicators to track realized and potential impacts of IAS. We also developed an information status indicator to assess the adequacy of the data underlying the impact indicators. We used data on 75 naturalized amphibians from 82 countries to demonstrate the indicators at a global scale. The information status indicator shows variation in the reliability of the data and highlights areas where absence of impact should be interpreted with caution. Impact indicators show that growth in potential impacts are dominated by predatory species, while potential impacts from both predation and disease transmission are distributed worldwide. Using open access data, the indicators are reproducible and adaptable across scales and taxa and can be used to assess global trends and distributions of IAS, assisting authorities in prioritizing control efforts and identifying areas at risk of future invasions. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Espécies Introduzidas , Animais , Reprodutibilidade dos Testes , Anfíbios , Ecossistema
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230012, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583476

RESUMO

The Atlantic meridional overturning circulation (AMOC) has caused significant climate changes over the past 90 000 years. Prior work has hypothesized that these millennial-scale climate variations effected past and contemporary biodiversity, but the effects are understudied. Moreover, few biogeographic models have accounted for uncertainties in palaeoclimatic simulations of millennial-scale variability. We examine whether refuges from millennial-scale climate oscillations have left detectable legacies in the patterns of contemporary species richness in eastern North America. We analyse 13 palaeoclimate estimates from climate simulations and proxy-based reconstructions as predictors for the contemporary richness of amphibians, passerine birds, mammals, reptiles and trees. Results suggest that past climate changes owing to AMOC variations have left weak but detectable imprints on the contemporary richness of mammals and trees. High temperature stability, precipitation increase, and an apparent climate fulcrum in the southeastern United States across millennial-scale climate oscillations aligns with high biodiversity in the region. These findings support the hypothesis that the southeastern United States may have acted as a biodiversity refuge. However, for some taxa, the strength and direction of palaeoclimate-richness relationships varies among different palaeoclimate estimates, pointing to the importance of palaeoclimatic ensembles and the need for caution when basing biogeographic interpretations on individual palaeoclimate simulations. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Mamíferos , Animais , Árvores , Anfíbios , América do Norte , Mudança Climática
4.
Zoolog Sci ; 41(2): 177-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587912

RESUMO

Knowledge of the phylogeographic history of organisms is valuable for understanding their evolutionary processes. To the best of our knowledge, the phylogeographic structure of Hokuriku salamander, Hynobius takedai, an endangered species, remains unclear. This study aimed to elucidate the phylogeographic history of H. takedai, which is expected to be strongly influenced by paleogeographic events. Phylogenetic analysis based on partial sequences of the mitochondrial DNA cytochrome b gene confirmed the genetic independence of H. takedai, and the divergence time with closely related species was estimated to be from the Late Pliocene to the Early Pleistocene. In the phylogenetic tree, two clades were identified within H. takedai, and their haplotypes were found in samples collected from the west and east of the distribution range. These intraspecific divergences were strongly influenced by geohistorical subdivisions of the current major distribution areas in the Middle Pleistocene. One clade was further subdivided and its formation may have been influenced by sea level changes in the Late Pleistocene.


Assuntos
Anfíbios , Urodelos , Animais , Urodelos/genética , Filogenia , Filogeografia , DNA Mitocondrial/genética , Variação Genética , Análise de Sequência de DNA
5.
Aquat Toxicol ; 270: 106907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564994

RESUMO

Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Anfíbios/fisiologia , Répteis/fisiologia , Fluorocarbonos/análise
6.
Am Nat ; 203(5): 535-550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635360

RESUMO

AbstractRecoveries of populations that have suffered severe disease-induced declines are being observed across disparate taxa. Yet we lack theoretical understanding of the drivers and dynamics of recovery in host populations and communities impacted by infectious disease. Motivated by disease-induced declines and nascent recoveries in amphibians, we developed a model to ask the following question: How does the rapid evolution of different host defense strategies affect the transient recovery trajectories of hosts following pathogen invasion and disease-induced declines? We found that while host life history is predictably a major driver of variability in population recovery trajectories (including declines and recoveries), populations that use different host defense strategies (i.e., tolerance, avoidance resistance, and intensity-reduction resistance) experience notably different recoveries. In single-species host populations, populations evolving tolerance recovered on average four times slower than populations evolving resistance. Moreover, while populations using avoidance resistance strategies had the fastest potential recovery rates, these populations could get trapped in long transient states at low abundance prior to recovery. In contrast, the recovery of populations evolving intensity-reduction resistance strategies were more consistent across ecological contexts. Overall, host defense strategies strongly affect the transient dynamics of population recovery and may affect the ultimate fate of real populations recovering from disease-induced declines.


Assuntos
Quitridiomicetos , Micoses , Animais , Anfíbios
7.
Proc Biol Sci ; 291(2021): 20232658, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628130

RESUMO

North American salamanders are threatened by intercontinental spread of chytridiomycosis, a deadly disease caused by the fungal pathogen Batrachochytrium salamandrivorans (Bsal). To predict potential dispersal of Bsal spores to salamander habitats, we evaluated the capacity of soil microbial communities to resist invasion. We determined the degree of habitat invasibility using soils from five locations throughout the Great Smoky Mountains National Park, a region with a high abundance of susceptible hosts. Our experimental design consisted of replicate soil microcosms exposed to different propagule pressures of the non-native pathogen, Bsal, and an introduced but endemic pathogen, B. dendrobatidis (Bd). To compare growth and competitive interactions, we used quantitative PCR, live/dead cell viability assays, and full-length 16S rRNA sequencing. We found that soil microcosms with intact bacterial communities inhibited both Bsal and Bd growth, but inhibitory capacity diminished with increased propagule pressure. Bsal showed greater persistence than Bd. Linear discriminant analysis (LDA) identified the family Burkolderiaceae as increasing in relative abundance with the decline of both pathogens. Although our findings provide evidence of environmental filtering in soils, such barriers weakened in response to pathogen type and propagule pressure, showing that habitats vary their invasibility based on properties of their local microbial communities.


Assuntos
Quitridiomicetos , Ecossistema , Animais , RNA Ribossômico 16S , Quitridiomicetos/fisiologia , Anfíbios/microbiologia , Urodelos , Solo , América do Norte
8.
Sci Rep ; 14(1): 5151, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431740

RESUMO

Chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is pushing amphibians towards extinction. Whilst mitigation methods were suggested a decade ago, we lack field trials testing their efficacy. We used the agrochemical fungicide, tebuconazole, to treat Bd infected breeding waterbodies of an endangered species that is highly susceptible to the fungus. Just two applications of tebuconazole led to a significant reduction in infection loads in the vast majority of sites, and at six sites the disinfection remained one/two-years post-application. Tebuconazole values drastically decreased in the waterbodies within a week after application, with no significant effects on their hydrochemical and hydrobiological characteristics. Although the use of chemicals in natural populations is undesirable, the growing existential threat to amphibians all over the world indicates that effective interventions in selected populations of endangered species are urgently needed.


Assuntos
Quitridiomicetos , Micoses , Animais , Desinfecção , Melhoramento Vegetal , Anfíbios/microbiologia , Micoses/veterinária , Micoses/microbiologia , Espécies em Perigo de Extinção , Batrachochytrium
9.
Curr Top Dev Biol ; 157: 1-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556456

RESUMO

This article is about how the famous organizer experiment has been perceived since it was first published in 1924. The experiment involves the production of a secondary embryo under the influence of a graft of a dorsal lip from an amphibian gastrula to a host embryo. The early experiments of Spemann and his school gave rise to a view that the whole early amphibian embryo was "indifferent" in terms of determination, except for a special region called "the organizer". This was viewed mainly as an agent of neural induction, also having the ability to generate an anteroposterior body pattern. Early biochemical efforts to isolate a factor emitted by the organizer were not successful but culminated in the definition of "neuralizing (N)" and "mesodermalizing (M)" factors present in a wide variety of animal tissues. By the 1950s this view became crystallized as a "two gradient" model involving the N and M factors, which explained the anteroposterior patterning effect. In the 1970s, the phenomenon of mesoderm induction was characterized as a process occurring before the commencement of gastrulation. Reinvestigation of the organizer effect using lineage labels gave rise to a more precise definition of the sequence of events. Since the 1980s, modern research using the tools of molecular biology, combined with microsurgery, has explained most of the processes involved. The organizer graft should now be seen as an experiment which involves multiple interactions: dorsoventral polarization following fertilization, mesoderm induction, the dorsalizing signal responsible for neuralization and dorsoventral patterning of the mesoderm, and additional factors responsible for anteroposterior patterning.


Assuntos
Desenvolvimento Embrionário , Mesoderma , Animais , Anfíbios , Biologia do Desenvolvimento , Padronização Corporal , Indução Embrionária , Organizadores Embrionários , Regulação da Expressão Gênica no Desenvolvimento
10.
Curr Biol ; 34(7): 1469-1478.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490202

RESUMO

The global panzootic lineage (GPL) of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused severe amphibian population declines, yet the drivers underlying the high frequency of GPL in regions of amphibian decline are unclear. Using publicly available Bd genome sequences, we identified multiple non-GPL Bd isolates that contain a circular Rep-encoding single-stranded (CRESS)-like DNA virus, which we named Bd DNA virus 1 (BdDV-1). We further sequenced and constructed genome assemblies with long read sequences to find that the virus is integrated into the nuclear genome in some strains. Attempts to cure virus-positive isolates were unsuccessful; however, phenotypic differences between naturally virus-positive and virus-negative Bd isolates suggested that BdDV-1 decreases the growth of its host in vitro but increases the virulence of its host in vivo. BdDV-1 is the first-described CRESS DNA mycovirus of zoosporic true fungi, with a distribution inversely associated with the emergence of the panzootic lineage.


Assuntos
Quitridiomicetos , Micoses , Animais , Virulência/genética , Quitridiomicetos/genética , Micoses/microbiologia , Anfíbios/microbiologia , Genótipo , Vírus de DNA
11.
Nat Commun ; 15(1): 2328, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499530

RESUMO

Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.


Assuntos
Queratinas Específicas do Cabelo , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Pele/metabolismo , Cabelo/metabolismo , Queratinas/genética , Queratinas/metabolismo , Anfíbios , Mamíferos/metabolismo
12.
Sci Data ; 11(1): 292, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486028

RESUMO

Amphibians are the most endangered taxa among vertebrates, and they face many threats during their complex life cycles. The species' life history traits and occurrence database help understand species responses against ecological factors. Consequently, the species-level-trait database has gained more prominence in recent years as a useful tool for understanding the dimensions of communities, assembly processes of communities, and conserving biodiversity at the ecosystem level against environmental changes. However, in Turkey, there are deficiencies in the knowledge of the ecological traits of amphibians compared to other vertebrate taxa, as most studies have focused on their distribution or taxonomic status. Consequently, there is a need to create such a database for future research on all known extant amphibians in Turkey. We compiled a species-level data set of species traits and occurrences for all amphibians in Turkey using 436 literature sources. We completed 36 trait categories with 5611 occurrence data for 37 amphibian species in Turkey. This study provides an open, useful, and comprehensive database for macroecological and conservation studies on amphibians in Turkey.


Assuntos
Anfíbios , Ecossistema , Animais , Biodiversidade , Turquia , Bases de Dados Factuais
13.
Elife ; 122024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497531

RESUMO

Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA-D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.


Assuntos
Gasderminas , Inflamassomos , Animais , Caspase 1/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Anfíbios , Répteis , Aves
14.
PLoS One ; 19(3): e0299246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38484016

RESUMO

Batrachochytrium dendrobatidis (Bd) is a lethal fungal species that parasitizes vertebrates and is associated with the worldwide decline of amphibian populations. The development of sensitive, rapid detection methods, particularly DNA-based techniques, is critical for effective management strategies. This study evaluates the efficacy of DNA extraction and a portable PCR device in a mountable field laboratory setup for detecting Bd near the habitats of three critically endangered Atelopus toad species in Ecuador. We collected skin swabs from Atelopus balios, A. nanay, and A. bomolochos, and environmental DNA (eDNA) samples from streams in Andean and coastal regions of Ecuador. For eDNA, a comparison was made with duplicates of the samples that were processed in the field and in a standard university laboratory. Our findings revealed Bd detection in eDNA and swabs from 6 of 12 water samples and 10 of 12 amphibian swab samples. The eDNA results obtained in the field laboratory were concordant with those obtained under campus laboratory conditions. These findings highlight the potential of field DNA-based monitoring techniques for detecting Bd in amphibian populations and their aquatic habitats, particularly in remote areas. Furthermore, this research aligns with the National Action Plan for the Conservation of Ecuadorian Amphibians and contributes to the global effort to control this invasive and deadly fungus.


Assuntos
Quitridiomicetos , DNA Ambiental , Humanos , Animais , Batrachochytrium/genética , Equador , Quitridiomicetos/genética , Bufonidae/genética , Anfíbios/microbiologia , DNA , Ecossistema
15.
Science ; 383(6687): 1092-1095, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452082

RESUMO

Among vertebrates, the yolk is commonly the only form of nutritional investment offered by the female to the embryo. Some species, however, have developed parental care behaviors associated with specialized food provisioning essential for offspring survival, such as the production of lipidic-rich parental milk in mammals. Here, we show that females of the egg-laying caecilian amphibian Siphonops annulatus provide similarly lipid-rich milk to altricial hatchlings during parental care. We observed that for 2 months, S. annulatus babies ingested milk released through the maternal vent seemingly in response to tactile and acoustic stimulation by the babies. The milk, composed mainly of lipids and carbohydrates, originates from the maternal oviduct epithelium's hypertrophied glands. Our data suggest lactation in this oviparous nonmammalian species and expand the knowledge of parental care and communication in caecilians.


Assuntos
Anfíbios , Lactação , Leite , Oviparidade , Animais , Feminino , Anfíbios/fisiologia , Leite/química , Oviductos/citologia , Oviductos/fisiologia , Oviparidade/fisiologia , Tato , Lipídeos/análise
16.
Nat Commun ; 15(1): 1937, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431719

RESUMO

Understanding how biodiversity affects pathogen transmission remains an unresolved question due to the challenges in testing potential mechanisms in natural systems and how these mechanisms vary across biological scales. By quantifying transmission of an entire guild of parasites (larval trematodes) within 902 amphibian host communities, we show that the community-level drivers of infection depend critically on biological scale. At the individual host scale, increases in host richness led to fewer parasites per host for all parasite taxa, with no effect of host or predator densities. At the host community scale, however, the inhibitory effects of richness were counteracted by associated increases in total host density, leading to no overall change in parasite densities. Mechanistically, we find that while average host competence declined with increasing host richness, total community competence remained stable due to additive assembly patterns. These results help reconcile disease-diversity debates by empirically disentangling the roles of alternative ecological drivers of parasite transmission and how such effects depend on biological scale.


Assuntos
Parasitos , Trematódeos , Animais , Biodiversidade , Anfíbios , Larva , Interações Hospedeiro-Parasita
17.
Science ; 383(6687): 1060-1061, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452095

RESUMO

Egg-laying amphibian females produce lipid-rich "milk" to feed offspring after hatching.


Assuntos
Mães , Oviparidade , Feminino , Gravidez , Animais , Humanos , Leite Humano , Anfíbios , Parto
18.
Water Environ Res ; 96(3): e11010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433361

RESUMO

The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.


Assuntos
Tartarugas , Animais , Biomarcadores Ambientais , Águas Residuárias , Ecossistema , Rios , Anfíbios , Saúde Ambiental , Água , América do Sul
19.
J Zoo Wildl Med ; 55(1): 1-12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453482

RESUMO

Zoological institutions manage animals for conservation, education, entertainment, and research purposes. Zoological staff have a responsibility to safeguard the welfare of animals in their care. Retrospective morbidity and/or mortality studies (MMSs) can be useful tools to highlight common diseases in captive wildlife populations. There is currently no standardized methodology for conducting MMSs. Variation in the methodology of MMSs, particularly the categorization of diseases, can make comparisons between studies challenging and may limit the applicability of the results. A Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) compliant systematic review was performed, which identified 67 MMSs describing 146 species of captive wildlife. These MMSs are becoming more common and were predominantly performed on mammals (76/146). Prospective authors are encouraged to perform MMSs on amphibians, birds, reptiles, fish, and invertebrates. The studied animals were mostly managed at institutions in the United States of America (28/67, 41.2%) and Europe (14/67, 20.9%). Classifying individuals into age groups facilitates the identification of disease trends within age classes. Only 22/67 (32.8%) studies cited justification for their age classification; classifications should be based on a referenced source on the breeding biology of the studied species. There is variation in the body systems used by authors and into which system a disease is categorized, which makes study comparisons challenging. Diseases were predominantly categorized by etiology and body system (28/77, 36.4%). Because of its ubiquity, the use of the categorization system employed by the pathology module of the Zoological Information Management System is recommended as a useful standard. This system is imperfect, and amendments to it are suggested. The results and recommendations of this study were discussed with a panel of zoo and wildlife experts; guidelines have been formulated for prospective authors aiming to conduct MMSs in captive wildlife.


Assuntos
Animais Selvagens , Animais de Zoológico , Animais , Anfíbios , Mamíferos , Morbidade , Répteis , Mortalidade
20.
Curr Opin Microbiol ; 78: 102435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387210

RESUMO

Generalist pathogens maintain infectivity in numerous hosts; how this broad ecological niche impacts host-pathogen coevolution remains to be widely explored. Batrachochytrium dendrobatidis (Bd) is a highly generalist pathogenic fungus that has caused devastating declines in hundreds of amphibian species worldwide. This review examines amphibian chytridiomycosis host-pathogen interactions and available evidence for coevolution between Bd and its numerous hosts. We summarize recent evidence showing that Bd genotypes vary in geographic distribution and virulence, and that amphibian species also vary in Bd susceptibility according to their geographic distribution. How much variation can be explained by phenotypic plasticity or genetic differences remains uncertain. Recent research suggests that Bd genotypes display preferences for specific hosts and that some hosts are undergoing evolution as populations rebound from Bd outbreaks. Taken together, these findings suggest the potential for coevolution to occur and illuminate a path for addressing open questions through integrating historical and contemporary genetic data.


Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Quitridiomicetos/genética , Anfíbios/microbiologia , Micoses/veterinária , Micoses/microbiologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...