Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.603
Filtrar
1.
Huan Jing Ke Xue ; 45(3): 1859-1868, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471897

RESUMO

To investigate the influences of functional groups on the biological effects caused by microplastics, the accumulation of three polystyrene microplastics (PS, PS-NH2, and PS-COOH) in zebrafish (Danio rerio) embryos were analyzed, and then the responses of metabolic functions and microbial communities in zebrafish larvae were revealed using the combination of the microbiome and metabolome methods. The results showed that all microplastics could accumulate in zebrafish with concentrations ranging from 143 to 175 µg·g-1, and there were no significant differences in the accumulation potentials among different PS treatments. Exposure to plain PS significantly affected the metabolic capacity of aminoglycosides in zebrafish larvae, whereas the metabolic processes of amino acids were affected by PS-NH2. In the PS-COOH treatment, the metabolic pathways of the tricarboxylic acid cycle, amino acids, and glycolysis in zebrafish were markedly altered. The metabolic functions of zebrafish larvae were changed by all PS microplastics, resulting in toxic effects on zebrafish, and the functional group modification of microplastics may have further enhanced these toxicities. Compared to that in the control, exposure to PS-NH2 significantly reduced the diversity of microbial communities in zebrafish larvae and increased the proportion of Proteobacteria in the composition, leading to an imbalance of the bacterial community in zebrafish and thus disrupting the metabolic functions in the fish. Therefore, the functional modifications of microplastics may significantly alter the related stresses on aquatic organisms, leading to unpredictable ecological risks.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Plásticos , Poluentes Químicos da Água/metabolismo , Poliestirenos , Larva/metabolismo , Aminoácidos
2.
Orphanet J Rare Dis ; 19(1): 121, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481258

RESUMO

BACKGROUND: Pathogenic variants of the IRF2BPL gene have been reported to cause neurodevelopmental disorders; however, studies focused on IRF2BPL in zebrafish are limited. RESULTS: We reported three probands diagnosed with developmental delay and epilepsy and investigated the role of IRF2BPL in neurodevelopmental disorders in zebrafish. The clinical and genetic characteristics of three patients with neurodevelopmental disorder with regression, abnormal movements, loss of speech and seizures (NEDAMSS) were collected. Three de novo variants (NM_024496.4: c.1171 C > T, p.Arg391Cys; c.1157 C > T, p.Thr386Met; and c.273_307del, p.Ala92Thrfs*29) were detected and classified as pathogenic or likely pathogenic according to ACMG guidelines. Zebrafish crispants with disruption of the ortholog gene irf2bpl demonstrated a reduced body length and spontaneous ictal-like and interictal-like discharges in an electrophysiology study. After their spasms were controlled, they gain some development improvements. CONCLUSION: We contribute two new pathogenic variants for IRF2BPL related developmental epileptic disorder which provided evidences for genetic counseling. In zebrafish model, we for the first time confirm that disruption of irf2bpl could introduce spontaneous electrographic seizures which mimics key phenotypes in human patients. Our follow-up results suggest that timely cessation of spasmodic seizures can improve the patient's neurodevelopment.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Peixe-Zebra/genética , Mutação , Epilepsia/genética , Epilepsia/diagnóstico , Convulsões , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte/genética , Proteínas Nucleares/genética
3.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473993

RESUMO

Amoxicillin is commonly used in clinical settings to target bacterial infection and is frequently prescribed during pregnancy. Investigations into its developmental toxicity and effects on disease susceptibility are not comprehensive. Our present study examined the effects of embryonic amoxicillin exposure on liver development and function, especially the effects on susceptibility to non-alcoholic fatty liver disease (NAFLD) using zebrafish as an animal model. We discovered that embryonic amoxicillin exposure did not compromise liver development, nor did it induce liver toxicity. However, co-treatment of amoxicillin and clavulanic acid diminished BESP expression, caused bile stasis and induced liver toxicity. Embryonic amoxicillin exposure resulted in elevated expression of lipid synthesis genes and exacerbated hepatic steatosis in a fructose-induced NAFLD model, indicating embryonic amoxicillin exposure increased susceptibility to NAFLD in zebrafish larvae. In summary, this research broadens our understanding of the risks of amoxicillin usage during pregnancy and provides evidence for the impact of embryonic amoxicillin exposure on disease susceptibility in offspring.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peixe-Zebra , Amoxicilina/metabolismo , Larva , Suscetibilidade a Doenças/metabolismo , Fígado/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474103

RESUMO

Maize ranks as the second most widely produced crop globally, yielding approximately 1.2 billion tons, with corn cob being its primary byproduct, constituting 18 kg per 100 kg of corn. Agricultural corn production generates bioactive polysaccharide-rich byproducts, including xylan (Xyl). In this study, we used the redox method to modify corn cob xylan with gallic acid, aiming to enhance its antioxidant and protective capacity against oxidative stress. The conjugation process resulted in a new molecule termed conjugated xylan-gallic acid (Xyl-GA), exhibiting notable improvements in various antioxidant parameters, including total antioxidant capacity (1.4-fold increase), reducing power (1.2-fold increase), hydroxyl radical scavenging (1.6-fold increase), and cupric chelation (27.5-fold increase) when compared with unmodified Xyl. At a concentration of 1 mg/mL, Xyl-GA demonstrated no cytotoxicity, significantly increased fibroblast cell viability (approximately 80%), and effectively mitigated intracellular ROS levels (reduced by 100%) following oxidative damage induced by H2O2. Furthermore, Xyl-GA exhibited non-toxicity toward zebrafish embryos, offered protection against H2O2-induced stress, and reduced the rate of cells undergoing apoptosis resulting from H2O2 exposure. In conclusion, our findings suggest that Xyl-GA possesses potential therapeutic value in addressing oxidative stress-related disturbances. Further investigations are warranted to elucidate the molecular structure of this novel compound and establish correlations with its pharmacological activities.


Assuntos
Antioxidantes , Ácido Gálico , Animais , Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Xilanos/farmacologia , Zea mays/metabolismo , Peróxido de Hidrogênio/farmacologia , Peixe-Zebra/metabolismo , Estresse Oxidativo
5.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474149

RESUMO

The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Humanos , Peixe-Zebra , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Asma/tratamento farmacológico , Pulmão , Modelos Animais de Doenças , Mamíferos
6.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474201

RESUMO

In recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both Mus musculus (rats) and Homo sapiens (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish. In the T2DM zebrafish, the thickness of ocular vascular walls significantly increased compared to the control group, which was mitigated after treatment with T3. Additionally, our findings demonstrate the regulatory effect of T3 on lipid metabolism, leading to the reduced synthesis and storage of adipose tissue in zebrafish. We validated the expression patterns of genes relevant to these processes using RT-qPCR. In the T2DM model, there was an almost two-fold upregulation in pparγ and cyp7a1 mRNA levels, coupled with a significant downregulation in cpt1a mRNA (p < 0.01) compared to the control group. The ELISA revealed that the protein expression levels of Pparγ and Rxrα exhibited a two-fold elevation in the T2DM group relative to the control. In the T3-treated group, Pparγ and Rxrα protein expression levels consistently exhibited a two-fold decrease compared to the model group. Lipid metabolomics showed that T3 could affect the metabolic pathways of zebrafish lipid regulation, including lipid synthesis and decomposition. We provided experimental evidence that T3 could mitigate lipid accumulation in our zebrafish T2DM model. Elucidating the lipid-lowering effects of T3 could help to minimize the detrimental impacts of overfeeding in aquaculture.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Tocotrienóis , Humanos , Camundongos , Ratos , Animais , Tocotrienóis/metabolismo , Peixe-Zebra/metabolismo , Dieta Hiperlipídica , Hiperlipidemias/metabolismo , Óleo de Farelo de Arroz , Diabetes Mellitus Tipo 2/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474238

RESUMO

The zebrafish model has emerged as a reference tool for phenotypic drug screening. An increasing number of molecules have been brought from bench to bedside thanks to zebrafish-based assays over the last decade. The high homology between the zebrafish and the human genomes facilitates the generation of zebrafish lines carrying loss-of-function mutations in disease-relevant genes; nonetheless, even using this alternative model, the establishment of isogenic mutant lines requires a long generation time and an elevated number of animals. In this study, we developed a zebrafish-based high-throughput platform for the generation of F0 knock-out (KO) models and the screening of neuroactive compounds. We show that the simultaneous inactivation of a reporter gene (tyrosinase) and a second gene of interest allows the phenotypic selection of F0 somatic mutants (crispants) carrying the highest rates of mutations in both loci. As a proof of principle, we targeted genes associated with neurodevelopmental disorders and we efficiently generated de facto F0 mutants in seven genes involved in childhood epilepsy. We employed a high-throughput multiparametric behavioral analysis to characterize the response of these KO models to an epileptogenic stimulus, making it possible to employ kinematic parameters to identify seizure-like events. The combination of these co-injection, screening and phenotyping methods allowed us to generate crispants recapitulating epilepsy features and to test the efficacy of compounds already during the first days post fertilization. Since the strategy can be applied to a wide range of indications, this study paves the ground for high-throughput drug discovery and promotes the use of zebrafish in personalized medicine and neurotoxicity assessment.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Avaliação Pré-Clínica de Medicamentos , Epilepsia/genética , Mutação , Sistemas CRISPR-Cas
8.
Cells ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474332

RESUMO

BACKGROUND: Most patients with testicular germ cell tumors (GCTs) are treated with cisplatin (CP)-based chemotherapy. However, some of them may develop CP resistance and therefore represent a clinical challenge. Cyclin-dependent kinase 5 (CDK5) is involved in chemotherapy resistance in different types of cancer. Here, we investigated the possible role of CDK5 and other CDKs targeted by dinaciclib in nonseminoma cell models (both CP-sensitive and CP-resistant), evaluating the potential of the CDK inhibitor dinaciclib as a single/combined agent for the treatment of advanced/metastatic testicular cancer (TC). METHODS: The effects of dinaciclib and CP on sensitive and resistant NT2/D1 and NCCIT cell viability and proliferation were evaluated using MTT assays and direct count methods. Flow cytometry cell-cycle analysis was performed. The protein expression was assessed via Western blotting. The in vivo experiments were conducted in zebrafish embryos xenografted with TC cells. RESULTS: Among all the CDKs analyzed, CDK5 protein expression was significantly higher in CP-resistant models. Dinaciclib reduced the cell viability and proliferation in each cell model, inducing changes in cell-cycle distribution. In drug combination experiments, dinaciclib enhances the CP effect both in vitro and in the zebrafish model. CONCLUSIONS: Dinaciclib, when combined with CP, could be useful for improving nonseminoma TC response to CP.


Assuntos
Cisplatino , Óxidos N-Cíclicos , Indolizinas , Neoplasias Embrionárias de Células Germinativas , Compostos de Piridínio , Neoplasias Testiculares , Masculino , Animais , Humanos , Cisplatino/farmacologia , Peixe-Zebra , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologia
9.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474336

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of motor neurons. Mutations in the cyclin F (CCNF) and fused in sarcoma (FUS) genes have been associated with ALS pathology. In this study, we aimed to investigate the functional role of CCNF and FUS in ALS by using genome editing techniques to generate zebrafish models with genetic disruptions in these genes. Sequence comparisons showed significant homology between human and zebrafish CCNF and FUS proteins. We used CRISPR/Cas9 and TALEN-mediated genome editing to generate targeted disruptions in the zebrafish ccnf and fus genes. Ccnf-deficient zebrafish exhibited abnormal motor neuron development and axonal outgrowth, whereas Fus-deficient zebrafish did not exhibit developmental abnormalities or axonopathies in primary motor neurons. However, Fus-deficient zebrafish displayed motor impairments in response to oxidative and endoplasmic reticulum stress. The Ccnf-deficient zebrafish were only sensitized to endoplasmic reticulum stress, indicating that ALS genes have overlapping as well as unique cellular functions. These zebrafish models provide valuable platforms for studying the functional consequences of CCNF and FUS mutations in ALS pathogenesis. Furthermore, these zebrafish models expand the drug screening toolkit used to evaluate possible ALS treatments.


Assuntos
Esclerose Amiotrófica Lateral , Ciclinas , Doenças Neurodegenerativas , Proteína FUS de Ligação a RNA , Peixe-Zebra , Animais , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Ciclinas/metabolismo , Neurônios Motores/patologia , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Peixe-Zebra/metabolismo
10.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474619

RESUMO

Houttuyniae herba has a long history of medicinal and edible homology in China. It has the functions of clearing heat and detoxifying, reducing swelling and purulent discharge, diuresis, and relieving gonorrhea. It is mainly distributed in the central, southeastern, and southwestern provinces of China. Houttuyniae herba has been designated by the National Ministry of Health of China as a dual-use plant for both food and medicine. Comprising volatile oils, flavonoids, and alkaloids as its primary constituents, Houttuyniae herba harbors aristolactams, a prominent subclass of alkaloids. Notably, the structural affinity of aristolactams to aristolochic acids is discernible, the latter known for its explicit toxicological effects. Additionally, the safety study on Houttuyniae herba mainly focused on the ethanol, methanol, or aqueous extract. In this study, both zebrafish and mice were used to evaluate the acute toxicity of the total alkaloids extracts from Houttuyniae herba (HHTAE). The zebrafish experiment showed that a high concentration (0.1 mg/mL) of HHTAE had a lethal effect on zebrafish embryos. Furthermore, the mice experiment results showed that, even at a higher dose of 2000 mg/kg, HHTAE was not toxic. In conclusion, HHTAE was of low safety risk.


Assuntos
Alcaloides , Antineoplásicos , Medicamentos de Ervas Chinesas , Óleos Voláteis , Camundongos , Animais , Peixe-Zebra , Extratos Vegetais , Medicamentos de Ervas Chinesas/química
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124064, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428215

RESUMO

As two of important highly reactive species / nitrogen species, hypochloric acid (HClO) and peroxynitrite (ONOO-) are involved in various pathological and physiological processes, which are important factors that affect and reflect the functional state of lysosome. Nevertheless, many of their roles are still indefinite because of lack of suitable analytical methods for HClO and ONOO- detection in lysosome. Herein, we designed a lysosome-targeted probe to monitor HClO and ONOO-, which was a hydrid of the benzothiazole derivative, methyl thioether (HClO recognition site) and morpholino hydrazone (ONOO- recognition and lysosome target site). The probe exhibited high sensitivity, good selectivity and fast response toward HClO and ONOO- without spectral crosstalk, and can be employed for quantitative monitoring HClO and ONOO- with LOD of 63 and 83 nM, respectively. In addition, the dual-site probe was lysosome targetable and could be used for detection of HClO and ONOO- in living cells. Furthermore, the excellent behavior made it was suitable for imaging of HClO and ONOO- in zebrafish. Thus, the present probe provides a potent tool for distinguishing monitoring HClO and ONOO- and exploring the role of HClO and ONOO- in biological systems.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Humanos , Animais , Lisossomos , Ácido Peroxinitroso , Células HeLa , Ácido Hipocloroso
12.
J Med Chem ; 67(5): 3274-3286, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428383

RESUMO

Cannabis sativa has a long history of medicinal use, dating back to ancient times. This plant produces cannabinoids, which are now known to interact with several human proteins, including Cys-loop receptors for glycine (GlyR) and gamma-aminobutyric acid (GABAAR). As these channels are the primary mediators of inhibitory signals, they contribute to the diverse effects of cannabinoids on the nervous system. Evidence suggests that cannabinoid binding sites are located within the transmembrane domain, although their precise location has remained undetermined for over a decade. The process of identification of the binding site and the computational approaches employed are the main subjects of this Perspective, which includes an analysis of the most recently resolved cryo-EM structures of zebrafish GlyR bound to Δ9-tetrahydrocannabinol and the THC-GlyR complex obtained through molecular dynamics simulations. With this work, we aim to contribute to guiding future studies investigating the molecular basis of cannabinoid action on inhibitory channels.


Assuntos
Canabinoides , Cannabis , Animais , Humanos , Canabinoides/farmacologia , Peixe-Zebra , Sítios de Ligação , Simulação de Dinâmica Molecular , Dronabinol
13.
Anal Chim Acta ; 1297: 342303, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438223

RESUMO

Nitric oxide (NO) plays critical roles in both physiology and pathology, serving as a significant signaling molecule. Recent investigations have uncovered the pivotal role of lysosome as a critical organelle where intracellular NO exists and takes function. In this study, we developed a novel ratiometric fluorescent probe called XL-NO and modified it with a morpholine unit, which followed the intramolecular charge transfer (ICT) mechanism. The probe could detect lysosomal nitric oxide with high selectivity and sensitivity. The probe XL-NO contained a secondary amine moiety that could readily react with NO in lysosomes, leading to the formation of the N-nitrosation product. The N-nitroso structure enhanced the capability in push-pull electron, which obviously led to the change of fluorescence from 621 nm to 521 nm. In addition, XL-NO was discovered to have some evident advantages, such as significant ratiometric signal (I521/I621) change, strong anti-interference ability, good biocompatibility, and a low detection limit (LOD = 44.3 nM), which were crucial for the detection of lysosomal NO. To evaluate the practical application of XL-NO, NO imaging experiments were performed in both living cells and zebrafish. The results from these experiments confirmed the feasibility and reliability of XL-NO for exogenous/endogenous NO imaging and lysosome targeting.


Assuntos
Corantes Fluorescentes , Óxido Nítrico , Animais , Reprodutibilidade dos Testes , Peixe-Zebra , Lisossomos
14.
Lab Anim (NY) ; 53(3): 62, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438740
15.
Nat Commun ; 15(1): 1932, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431639

RESUMO

Studies have revealed dozens of functional peptides in putative 'noncoding' regions and raised the question of how many proteins are encoded by noncanonical open reading frames (ORFs). Here, we comprehensively annotate genome-wide translated ORFs across five eukaryotes (human, mouse, zebrafish, worm, and yeast) by analyzing ribosome profiling data. We develop a logistic regression model named PepScore based on ORF features (expected length, encoded domain, and conservation) to calculate the probability that the encoded peptide is stable in humans. Systematic ectopic expression validates PepScore and shows that stable complex-associating microproteins can be encoded in 5'/3' untranslated regions and overlapping coding regions of mRNAs besides annotated noncoding RNAs. Stable noncanonical proteins follow conventional rules and localize to different subcellular compartments. Inhibition of proteasomal/lysosomal degradation pathways can stabilize some peptides especially those with moderate PepScores, but cannot rescue the expression of short ones with low PepScores suggesting they are directly degraded by cellular proteases. The majority of human noncanonical peptides with high PepScores show longer lengths but low conservation across species/mammals, and hundreds contain trait-associated genetic variants. Our study presents a statistical framework to identify stable noncanonical peptides in the genome and provides a valuable resource for functional characterization of noncanonical translation during development and disease.


Assuntos
Perfil de Ribossomos , Ribossomos , Humanos , Animais , Camundongos , Ribossomos/genética , Ribossomos/metabolismo , Fases de Leitura Aberta/genética , Peixe-Zebra/genética , Peptídeos/genética , Peptídeos/metabolismo , Mamíferos/genética
16.
Pestic Biochem Physiol ; 199: 105770, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458664

RESUMO

The extensive application of pesticides in agricultural production has raised significant concerns about its impact on human health. Different pesticides, including fungicides, insecticides, and herbicides, cause environmental pollution and health problems for non-target organisms. Infants and young children are so vulnerable to the harmful effects of pesticide exposure that early-life exposure to pesticides deserves focused attention. Recent research lays emphasis on understanding the mechanism between negative health impacts and early-life exposure to various pesticides. Studies have explored the impacts of exposure to these pesticides on model organisms (zebrafish, rats, and mice), as well as the mechanism of negative health effects, based on advanced methodologies like gut microbiota and multi-omics. These methodologies help comprehend the pathogenic mechanisms associated with early-life pesticide exposure. In addition to presenting health problems stemming from early-life exposure to pesticides and their pathogenic mechanisms, this review proposes expectations for future research. These proposals include focusing on identifying biomarkers that indicate early-life pesticide exposure, investigating transgenerational effects, and seeking effective treatments for diseases arising from such exposure. This review emphasizes how to understand the pathogenic mechanisms of early-life pesticide exposure through gut microbiota and multi-omics, as well as the adverse health effects of such exposure.


Assuntos
Microbioma Gastrointestinal , Inseticidas , Praguicidas , Criança , Humanos , Animais , Ratos , Camundongos , Praguicidas/toxicidade , Multiômica , Peixe-Zebra , Inseticidas/farmacologia
17.
Sci Rep ; 14(1): 5382, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443436

RESUMO

Telomerase activity is restricted in humans and telomere attrition occurs in several tissues accompanying natural aging. Critically short telomeres trigger DNA damage responses and activate p53 which leads to apoptosis or replicative senescence. These processes reduce cell proliferation and disrupt tissue homeostasis, thus contributing to systemic aging. Similarly, zebrafish have restricted telomerase expression, and telomeres shorten to critical length during their lifespan. Telomerase-deficient zebrafish (tert -/-) is a premature model of aging that anticipates aging phenotypes due to early telomere shortening. tert -/- zebrafish have impaired cell proliferation, accumulation of DNA damage markers and p53 response. These cellular defects lead to disruption of tissue homeostasis, resulting in premature infertility, gastrointestinal atrophy, sarcopenia and kyphosis. Such consequences contribute to its premature death. Here we reveal a genetic interdependence between tp53 and telomerase function. Mutation of tp53 abrogates premature aging of tert -/- zebrafish, prolonging male fertility and lifespan. However, it does not fully rescue healthspan. tp53mut tert -/- zebrafish retain high levels of inflammation and increased spontaneous cancer incidence. Conversely, loss of telomerase prolongs the lifespan of tp53mut single mutants. Lack of telomerase reduces two-fold the cancer incidence in double mutants and increases lifetime survival. Thus, we observe a reciprocal rescue of tp53mut and tert -/- that ameliorates lifespan but not spontaneous cancer incidence of tp53mut, likely due to higher levels of inflammation.


Assuntos
Neoplasias , Telomerase , Humanos , Animais , Masculino , Longevidade/genética , Peixe-Zebra/genética , Telomerase/genética , Incidência , Proteína Supressora de Tumor p53/genética , Inflamação , Neoplasias/genética
18.
Commun Biol ; 7(1): 275, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443437

RESUMO

Transparent immunodeficient animal models not only enhance in vivo imaging investigations of visceral organ development but also facilitate in vivo tracking of transplanted tumor cells. However, at present, transparent and immunodeficient animal models are confined to zebrafish, presenting substantial challenges for real-time, in vivo imaging studies addressing specific biological inquiries. Here, we employed a mitf-/-/prkdc-/-/il2rg-/- triple-knockout strategy to establish a colorless and immunodeficient amphibian model of Xenopus tropicalis. By disrupting the mitf gene, we observed the loss of melanophores, xanthophores, and granular glands in Xenopus tropicalis. Through the endogenous mitf promoter to drive BRAFV600E expression, we confirmed mitf expression in melanophores, xanthophores and granular glands. Moreover, the reconstruction of the disrupted site effectively reinstated melanophores, xanthophores, and granular glands, further highlighting the crucial role of mitf as a regulator in their development. By crossing mitf-/- frogs with prkdc-/-/il2rg-/- frogs, we generated a mitf-/-/prkdc-/-/il2rg-/- Xenopus tropicalis line, providing a colorless and immunodeficient amphibian model. Utilizing this model, we successfully observed intravital metastases of allotransplanted xanthophoromas and migrations of allotransplanted melanomas. Overall, colorless and immunodeficient Xenopus tropicalis holds great promise as a valuable platform for tumorous and developmental biology research.


Assuntos
Anuros , Peixe-Zebra , Animais , Citoplasma , Xenopus/genética , Peixe-Zebra/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo
19.
Nat Commun ; 15(1): 1950, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431640

RESUMO

In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.


Assuntos
Proteínas com Domínio LIM , Proteínas Musculares , Distrofia Muscular de Duchenne , Músculos Oculomotores , Animais , Proteínas do Citoesqueleto/metabolismo , Distrofina/genética , Expressão Ectópica do Gene , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Músculos Oculomotores/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas Musculares/metabolismo , Proteínas com Domínio LIM/metabolismo
20.
PLoS Genet ; 20(3): e1011170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451917

RESUMO

The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.


Assuntos
Testículo , Peixe-Zebra , Animais , Masculino , Feminino , Testículo/metabolismo , Peixe-Zebra/genética , Androgênios/genética , Androgênios/metabolismo , Gônadas/metabolismo , Diferenciação Sexual/genética , Estrogênios/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...