Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Zebrafish ; 21(1): 39-47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285204

RESUMO

Eigenmannia is a highly diverse genus within the Sternopygidae family, comprising 30 species. Due to its complex taxonomy, molecular analyses have been crucial for species delimitation within this group. Therefore, the present study presents a genetic analysis using sequences of the mitochondrial gene cytochrome c oxidase subunit 1 (COI) in specimens previously identified through alpha taxonomy as E. correntes (with unpublished data), E. virescens, and E. trilineata, originating from various locations within the Upper Paraná and Paraguay River basins in Brazil. The molecular data confirm the taxonomic complexity of the genus, as individuals morphologically identified as E. virescens and E. trilineata shared the same haplotype (H52). Furthermore, the results of the species delimitation tests suggest that specimens morphologically identified as E. virescens belong to the species E. trilineata. In addition, samples morphologically identified as E. correntes may correspond to more than one Operational Taxonomic Units (OTUs). Furthermore, the intraspecific Kimura-2-parameter (K2P) distances within the different studied populations are significant. This study has contributed valuable information about genetic diversity in Eigenmannia, emphasizing the importance of using integrative analyses to resolve taxonomic conflicts within the group. It also supports biogeographical studies and assists in biodiversity conservation efforts.


Assuntos
Gimnotiformes , Humanos , Animais , Gimnotiformes/genética , Brasil , Rios , Paraguai , Peixe-Zebra , Filogenia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37002418

RESUMO

Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.


Assuntos
Peixe Elétrico , Gimnotiformes , Melatonina , Animais , Peixe Elétrico/fisiologia , Melatonina/farmacologia , Gimnotiformes/fisiologia , Órgão Elétrico/fisiologia , Comportamento Animal/fisiologia
3.
Horm Behav ; 159: 105475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154435

RESUMO

The South American weakly electric fish, Gymnotus omarorum, displays territorial aggression year-round in both sexes. To examine the role of rapid androgen modulation in non-breeding aggression, we administered acetate cyproterone (CPA), a potent inhibitor of androgen receptors, to both male and females, just before staged agonistic interactions. Wild-caught fish were injected with CPA and, 30 min later, paired in intrasexual dyads. We then recorded the agonistic behavior which encompasses both locomotor displays and emission of social electric signals. We found that CPA had no discernible impact on the levels of aggression or the motivation to engage in aggressive behavior for either sex. However, CPA specifically decreased the expression of social electric signals in both males and female dyads. The effect was status-dependent as it only affected subordinate electrocommunication behavior, the emission of brief interruptions in their electric signaling ("offs"). This study is the first demonstration of a direct and rapid androgen effect mediated via androgen receptors on non-breeding aggression. Elucidating the mechanisms involved in non-breeding aggression in this teleost model allows us to better understand potentially conserved or convergent neuroendocrine mechanisms underlying aggression in vertebrates.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Feminino , Masculino , Agressão , Receptores Androgênicos , Comportamento Agonístico , Androgênios/farmacologia
4.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009325

RESUMO

The electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms. Secondly, the Review discusses the threefold function of the fish-centered electric fields: (1) to generate electric signals that encode the material, geometry and distance of nearby objects, serving as a short-range sensory modality or 'electric touch'; (2) to mark emitter identity and location; and (3) to convey social messages encoded in stereotypical modulations of the electric field that might be considered as species-specific communication symbols. Finally, this Review considers a range of potential research directions that are likely to be productive in the future.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Tato , Órgão Elétrico
5.
Mol Phylogenet Evol ; 189: 107941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804958

RESUMO

Lower Central America (LCA) has a complex biogeographic history shaped by the rise of the Isthmus of Panama and the global climatic oscillations of the Pleistocene. These events have been crucial in structuring biodiversity in LCA, but their consequences for the distribution and partitions of genetic diversity across the region remain to be elucidated. We combined complete mitochondrial genomes and nuclear ultraconserved elements (UCEs) to study the phylogeographic history and population genetic structure of the electric fish Brachyhypopomus occidentalis in LCA. Our results are consistent with the known phylogeographic history of B. occidentalis in LCA, but we update this history in several important ways that help illuminate the phylogeographic history of freshwater fishes in the region. We provide: i) support for three waves of colonization, two of which occurred prior to the final closure of the Panama Isthmus; ii) a more precise understanding of each colonization event, with evidence for a larger footprint of the first event, as well as genetic exchange across the continental divide in subsequent events; and iii) evidence for high levels of previously unrecognized population genetic structure across LCA. This updated model of colonization and diversification of B. occidentalis consists of three waves of dispersal and colonization, which triggered the evolution of geographic breaks in both nuclear and mitochondrial genomes across LCA. These processes are tightly linked to the dynamic uplift of the Isthmus, recent volcanic activity in the region, and the sea-level oscillations of the Pleistocene. These results improve previous phylogeographic inferences regarding the distribution and diversification of freshwater fishes in LCA, and generate testable hypotheses to guide future research exploring the factors shaping biodiversity in the region.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Filogenia , Filogeografia , América Central , Peixes/genética , Água Doce
6.
An Acad Bras Cienc ; 95(4): e20191259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729295

RESUMO

The present study aims to structurally and histochemically characterize the Gymnotus carapo tegument. 30 specimens were captured and slaughtered by spinal section with anesthesia. The observation was carried out with a stereoscopic microscope and the body surface was photographed. Fragments of the dorsal, ventral and lateral region were fixed in Bouin's solution for 12 hours and subsequently preserved in 70% alcohol. They were subsequently observed in the scanning electron microscope (SEM). The preparation for SEM was performed following the standardized protocol. Histological preparations were made, and the cuts were colored with H-E, PAS and Coomassie Blue. The images were obtained in an Olympus BX41-ENUTV-4 microscope. From the observations in SEM a plain tegument with pores of different sizes could be evidenced. The scales of the different regions of the body have different ornaments. Microscopically it was composed of a stratified non-keratinized epithelium consisting of two types of morphologically distinct cells: epidermal cells and mucous cells (PAS-Commassie Blue positive). Under the epithelium there is a layer of dense irregular connective tissue with associated chromatophores and more deeply scales. These analyzes are the basis for future studies that will focus on elucidating the events related to integumentary healing in this species.


Assuntos
Anestesia , Gimnotiformes , Animais , Peixes , Pele , Etanol
7.
J Exp Biol ; 226(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37408509

RESUMO

Gymnotiformes are nocturnal fishes inhabiting the root mats of floating plants. They use their electric organ discharge (EOD) to explore the environment and to communicate. Here, we show and describe tonic and phasic sensory-electromotor responses to light distinct from indirect effects depending on the light-induced endogenous circadian rhythm. In the dark, principally during the night, inter-EOD interval histograms are bimodal: the main peak corresponds to the basal rate and a secondary peak corresponds to high-frequency bouts. Light causes a twofold tonic but opposing effect on the EOD histogram: (i) decreasing the main mode and (ii) blocking the high-frequency bouts and consequently increasing the main peak at the expense of removal of the secondary one. Additionally, light evokes phasic responses whose amplitude increases with intensity but whose slow time course and poor adaptation differentiate from the so-called novelty responses evoked by abrupt changes in sensory stimuli of other modalities. We confirmed that Gymnotus omarorum tends to escape from light, suggesting that these phasic responses are probably part of a global 'light-avoidance response'. We interpret the data within an ecological context. Fish rest under the shade of aquatic plants during the day and light spots due to the sun's relative movement alert the fish to hide in shady zones to avoid macroptic predators and facilitate tracking the movement of floating plant islands by wind and/or water currents.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Órgão Elétrico/fisiologia , Gimnotiformes/fisiologia , Movimento , Peixe Elétrico/fisiologia
8.
Mol Reprod Dev ; 90(5): 287-294, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37148544

RESUMO

This work aims to study the testicular morphology and spermatogenesis of Gymnotus carapo to provide information on their reproductive biology which is useful in managing this species as a fishing resource. The testicles were isolated and fixed in 10% formalin; subsequently, they were processed for scanning electron microscopy with conventional histological technique. To analyze the cell proliferation of germline cells and Sertoli cells, immunodetection of the proliferating cell nuclear antigen (PCNA) protein was performed. In G. carapo spermatogenesis, the spermatogenic line is organized into cysts. Spermatogonia A is characterized by more bigger and solitary cells. Spermatogonia B are smaller cells; their nucleus has a larger area concerning the cytoplasm and is grouped in tubules. Spermatocytes (I-II) are smaller than spermatogonia in the prophase of meiotic division. Spermatids are cells with dense, rounded nucleus. The sperm were found in the lumen of the tubule. By immunostaining PCNA, it was possible to observe the proliferative activity of germ line cells and Sertoli cells during the cyst reorganization phase. These results are the basis for future studies focusing on the analysis compared to females of the reproductive cycle of G. carapo.


Assuntos
Gimnotiformes , Testículo , Animais , Masculino , Antígeno Nuclear de Célula em Proliferação , Sêmen , Espermatogênese , Espermatogônias , Células de Sertoli
9.
Zebrafish ; 20(2): 77-85, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930749

RESUMO

Gymnotiformes a monophyletic group of fish endemic to the Neotropics, represent an important component of the freshwater ichthyofauna that presents relevant taxonomic problems. Thus, in view of the morphological complexity involving Eigenmannia (Gymnotiformes) fish species, this study aimed to characterize Eigenmannia aff. desantanai of the upper Paraguay River basin through cytogenetic and molecular analyses, to help in the correct identification and delimitation of species. This study reports a multiple sex system of the type ZW1W2/ZZ, with 2n = 31 for females and 2n = 30 for males. A single pair of chromosomes carrying the nucleolar organizing regions (NORs) was detected. The heterochromatin was colocated in NOR sites and mainly located in the centromeric regions of chromosomes. Besides that, individual sequences COI from the specimens of E. aff. desantanai were obtained, totalizing three haplotypes. The distance p between the haplotypes in E. aff. desantanai, ranged from 0.2% to 7.1%. Species delimitation tests indicated the existence of two possible operational taxonomic units of E. aff. desantanai. Thus, this study reports a new multiple sex system in Gymnotiformes and these specimens previously identified as E. aff. desantanai may belong to two distinct species.


Assuntos
Gimnotiformes , Feminino , Masculino , Animais , Gimnotiformes/genética , Peixe-Zebra/genética , Cromossomos Sexuais , Citogenética , Análise Citogenética
10.
Artigo em Inglês | MEDLINE | ID: mdl-36799986

RESUMO

Urethane and MS-222 are agents widely employed for general anesthesia, yet, besides inducing a state of unconsciousness, little is known about their neurophysiological effects. To investigate these effects, we developed an in vivo assay using the electric organ discharge (EOD) of the weakly electric fish Apteronotus leptorhynchus as a proxy for the neural output of the pacemaker nucleus. The oscillatory neural activity of this brainstem nucleus drives the fish's EOD in a one-to-one fashion. Anesthesia induced by urethane or MS-222 resulted in pronounced decreases of the EOD frequency, which lasted for up to 3 h. In addition, each of the two agents caused a manifold increase in the generation of transient modulations of the EOD known as chirps. The reduction in EOD frequency can be explained by the modulatory effect of urethane on neurotransmission, and by the blocking of voltage-gated sodium channels by MS-222, both within the circuitry controlling the neural oscillations of the pacemaker nucleus. The present study demonstrates a marked effect of urethane and MS-222 on neural activity within the central nervous system and on the associated animal's behavior. This calls for caution when conducting neurophysiological experiments under general anesthesia and interpreting their results.


Assuntos
Anestesia , Peixe Elétrico , Gimnotiformes , Animais , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Uretana/farmacologia , Gimnotiformes/fisiologia
11.
J Helminthol ; 97: e9, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648225

RESUMO

A new species of Ancyracanthus, parasite of the electric eel Electrophorus varii, in the Brazilian Amazon, is described based on morphological and molecular characterization. Ancyracanthus electrophori n. sp. differs from the two congeners namely, Ancyracanthus pinnatifidus and Ancyracanthus schubarti, based on the structure of cephalic appendages, number and arrangement of caudal papillae in males, vulva very close to anus in females, eggs with smoothly mamillated shell, host taxon and geographical origin. Moreover, the new species is the first in the genus to be described with thorny cuticular rings and to be observed with the use of scanning electron microscopy (SEM). The morphology of A. pinnatifidus and A. schubarti is still poorly-known and should be revised in details; however, the separation between them and the new species was clear. Genetic characterization based on 28S rDNA and cytochrome c oxidase subunit I (cox1) mtDNA partial sequences, performed for the first time in Acyracanthus, along with phylogenetic reconstructions using both genetic markers, placed Ancyracanthus electrophori n. sp. in a suggestive basal position within Gnathostomatidae. Phylogenetic reconstructions using cox1 sequences also suggested lack of monophyly in the genera Gnathostoma and Spiroxys and, consequently, in the subfamilies Gnathostominae and Spiroxyinae. However, such results are preliminary. With the first genetic characterization and observations using SEM in Ancyracanthus, resulting in the discovery of a new species and in the expansion of the geographical occurrence of the genus to Amazonian fish, an important step towards a better understanding of these nematodes has been taken.


Assuntos
Gimnotiformes , Nematoides , Parasitos , Espirurídios , Feminino , Masculino , Animais , Electrophorus , Filogenia , Brasil
12.
Biosystems ; 223: 104800, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343760

RESUMO

This article introduces and tests a simple model that describes a neural network found in nature, the electrosensory control of an electromotor pacemaker. The cornerstone of the model is an early-stage filter based on the subtraction of a feedforward integrated version of the recent sensory past from the present input signal. The output of this filter governs the modulation of a premotor pacemaker command driving the sensory signal carrier generation and, in consequence, the timing of subsequent electrosensory input. This early filter has a biological parallel in the known connectivity of the first electrosensory relay within the brain stem of the weakly electric fish Gymnotus omarorum. Our biomimetic model of this active, perception-driven action-sensation cycle was contrasted with previously published and here provided new data. When the amplitude of the electrosensory input was manipulated to mimic previous experiments on the novelty detection characteristics, the model reproduces them rather faithfully. In addition, when we applied continuous variations to the input it shows that increases in stimulus amplitudes are followed by increases in the EOD rate, but decreases do not cause rate modulation suggesting a rectification in some stage of the loop. These behavioral experiments confirmed results generated the simulations suggesting that beyond explaining the novelty detection process this simple model is a good description of the electrosensory -electromotor loop in pulse weakly electric fish.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Órgão Elétrico , Sensação
13.
Artigo em Inglês | MEDLINE | ID: mdl-36445471

RESUMO

In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.


Assuntos
Gimnotiformes , Traumatismos da Medula Espinal , Animais , Proteômica , Regeneração Nervosa/fisiologia , Espectrometria de Massas em Tandem , Medula Espinal/metabolismo , Gimnotiformes/fisiologia , Peixes , Mamíferos
14.
Elife ; 112022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713403

RESUMO

Brain region size generally scales allometrically with brain size, but mosaic shifts in brain region size independent of brain size have been found in several lineages and may be related to the evolution of behavioral novelty. African weakly electric fishes (Mormyroidea) evolved a mosaically enlarged cerebellum and hindbrain, yet the relationship to their behaviorally novel electrosensory system remains unclear. We addressed this by studying South American weakly electric fishes (Gymnotiformes) and weakly electric catfishes (Synodontis spp.), which evolved varying aspects of electrosensory systems, independent of mormyroids. If the mormyroid mosaic increases are related to evolving an electrosensory system, we should find similar mosaic shifts in gymnotiforms and Synodontis. Using micro-computed tomography scans, we quantified brain region scaling for multiple electrogenic, electroreceptive, and non-electrosensing species. We found mosaic increases in cerebellum in all three electrogenic lineages relative to non-electric lineages and mosaic increases in torus semicircularis and hindbrain associated with the evolution of electrogenesis and electroreceptor type. These results show that evolving novel electrosensory systems is repeatedly and independently associated with changes in the sizes of individual major brain regions independent of brain size, suggesting that selection can impact structural brain composition to favor specific regions involved in novel behaviors.


Larger animals tend to have larger brains and smaller animals tend to have smaller ones. However, some species do not fit the pattern that would be expected based on their body size. This variation between species can also apply to individual brain regions. This may be due to evolutionary forces shaping the brain when favouring particular behaviours. However, it is difficult to directly link changes in species behaviour and variations in brain structure. One way to understand the impact of evolutionary adaptations is to study species that have developed new behaviours and compare them to related ones that lack such a behaviour. An opportunity to do this lies in the ability of several species of fish to produce and sense electric fields in water. While this system is not found in most fish, it has evolved multiple times independently in distantly-related lineages. Schumacher and Carlson examined whether differences in the size of brains and individual regions between species were associated with the evolution of electric field generation and sensing. Micro-computed tomography, or µCT, scans of the brains of multiple fish species revealed that the species that can produce electricity ­ also known as 'electrogenic' species' ­ have more similar brain structures to each other than to their close relatives that lack this ability. The brain regions involved in producing and detecting electrical charges were larger in these electrogenic fish. This similarity was apparent despite variations in how total brain size has evolved with body size across species. These results demonstrate how evolutionary forces acting on particular behaviours can lead to predictable changes in brain structure. Understanding how and why brains evolve will allow researchers to better predict how species' brains and behaviours may adapt as human activities alter their environments.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Encéfalo , Cerebelo , Microtomografia por Raio-X
15.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35603444

RESUMO

Within-species variation in male morphology is common among vertebrates and is often characterized by dramatic differences in behavior and hormonal profiles. Males with divergent morphs also often use communication signals in a status-dependent way. Weakly electric knifefish are an excellent system for studying variation in male morphology and communication and its hormonal control. Knifefish transiently modulate the frequency of their electric organ discharge (EOD) during social encounters to produce chirps and rises. In the knifefish Compsaraia samueli, males vary extensively in jaw length. EODs and their modulations (chirps and rises) have never been investigated in this species, so it is unclear whether jaw length is related to the function of these signals. We used three behavioral assays to analyze EOD modulations in male C. samueli: (1) artificial playbacks, (2) relatively brief, live agonistic dyadic encounters, and (3) long-term overnight recordings. We also measured circulating levels of two androgens, 11-ketotestosterone and testosterone. Chirp structure varied within and across individuals in response to artificial playback, but was unrelated to jaw length. Males with longer jaws were more often dominant in dyadic interactions. Chirps and rises were correlated with and preceded attacks regardless of status, suggesting these signals function in aggression. In longer-term interactions, chirp rate declined after 1 week of pairing, but was unrelated to male morphology. Levels of circulating androgens were low and not predictive of jaw length or EOD signal parameters. These results suggest that communication signals and variation in male morphology are linked to outcomes of non-breeding agonistic contests.


Assuntos
Peixe Elétrico , Gimnotiformes , Agressão , Androgênios , Comunicação Animal , Animais , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Gimnotiformes/fisiologia , Masculino
16.
Integr Comp Biol ; 62(4): 945-957, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348693

RESUMO

Evolutionary transitions across abiotic gradients can occur among habitats at multiple spatial scales, and among taxa and biotas through a range of ecological and evolutionary time frames. Two diverse groups of electric fishes, Neotropical Gymnotiformes, and Afrotropical Mormyroidea, offer interesting examples of potentially convergent evolution in aspects of morphological, physiological, and life history traits. We examined biogeographical, morphological, and functional patterns across these two groups to assess the degree of convergence in association with abiotic environmental variables. While there are superficial similarities across the groups and continents, we found substantially more differences in terms of habitat occupancy, electric signal diversity, and morphological disparity. These differences likely correlate to differences in biogeographical histories across the Neotropics and Afrotropics, biotic factors associated with aquatic life and electric signals, and sampling issues plaguing both groups. Additional research and sampling are required to make further inferences about how electric fishes transition throughout diverse freshwater habitats across both microevolutionary and macroevolutionary scales.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Peixe Elétrico/fisiologia , Filogenia , Água Doce , Gimnotiformes/anatomia & histologia , Ecossistema , Peixes/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-35233699

RESUMO

The timing system of weakly electric fishes is vital for many behavioral processes, but the system has been relatively unexplored in Apteronotus albifrons. This paper describes the receptive fields of phase-locked neurons in the midbrain of A. albifrons, in combination with neuroanatomy and electron microscopy (EM) to delineate a phase-locked area in this fish, the magnocellular mesencephalic nucleus (MMN). The MMN was isolated electrophysiologically through the detection of phase-locked field potentials of high amplitude. Single-cell recordings were made with a sharp electrode while a phase-locked modulated stimulus was provided to the fish. Receptive field centers of phase-locked neurons in MMN were consistent with tuberous electroreceptor density maps from previous studies, but no receptive field centers were found in the posterior 50% of the body. Intracellular and extracellular labeling of MMN revealed three cell populations: giant cells with large somata (19-24 µm) and their axonal arborizations which span across the entire extent of MMN, axon terminals from spherical cells of the electrosensory lateral line lobe (ELL), and small cell somata (3-7 µm) along with their projections which extend outside the nucleus. EM revealed multiple gap junction and chemical synapses within MMN. Our results indicate that MMN is a dedicated temporal processing center in A. albifrons.


Assuntos
Peixe Elétrico , Gimnotiformes , Percepção do Tempo , Animais , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Sinapses/fisiologia
18.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217876

RESUMO

Rapid turning and swimming contribute to ecologically important behaviors in fishes such as predator avoidance, prey capture, mating and the navigation of complex environments. For riverine species, such as knifefishes, turning behaviors may also be important for navigating locomotive perturbations caused by turbulent flows. Most research on fish maneuvering focuses on fish with traditional fin and body morphologies, which primarily use body bending and the pectoral fins during turning. However, it is uncertain how fishes with uncommon morphologies are able to achieve sudden and controllable turns. Here, we studied the turning performance and the turning hydrodynamics of the black ghost knifefish (Apteronotus albifrons, N=6) which has an atypical elongated ribbon fin. Fish were filmed while swimming forward at ∼2 body lengths s-1 and feeding from a fixed feeder (control) and an oscillating feeder (75 Hz) at two different amplitudes. 3D kinematic analysis of the body revealed the highest pitch angles and lowest body bending coefficients during steady swimming. Low pitch angle, high maximum yaw angles and large body bending coefficients were characteristic of small and large turns. Asynchrony in pectoral fin use was low during turning; however, ribbon fin wavelength, frequency and wave speed were greatest during large turns. Digital particle image velocimetry (DPIV) showed larger counter-rotating vortex pairs produced during turning by the ribbon fin in comparison to vortices rotating in the same direction during steady swimming. Our results highlight the ribbon fin's role in controlled rapid turning through modulation of wavelength, frequency and wave speed.


Assuntos
Gimnotiformes , Natação , Nadadeiras de Animais , Animais , Fenômenos Biomecânicos , Hidrodinâmica , Reologia
19.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581791

RESUMO

The bluntnose knifefish Brachyhypopomus occidentalis is a primary freshwater fish from north-western South America and Lower Central America. Like other Gymnotiformes, it has an electric organ that generates electric discharges used for both communication and electrolocation. We assembled a high-quality reference genome sequence of B. occidentalis by combining Oxford Nanopore and 10X Genomics linked-reads technologies. We also describe its demographic history in the context of the rise of the Isthmus of Panama. The size of the assembled genome is 540.3 Mb with an N50 scaffold length of 5.4 Mb, which includes 93.8% complete, 0.7% fragmented, and 5.5% of missing vertebrate/Actinoterigie Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 11.04% of the genome, and 34,347 protein-coding genes were predicted, of which 23,935 have been functionally annotated. Demographic analysis suggests a rapid effective population expansion between 3 and 5 Myr, corresponding to the final closure of the Isthmus of Panama (2.8-3.5 Myr). This event was followed by a sudden and constant population decline during the last 1 Myr, likely associated with strong shifts in both precipitation and sea level during the Pleistocene glacial-interglacial cycles. The de novo genome assembly of B. occidentalis will provide novel insights into the molecular basis of both electric signal productions and detection and will be fundamental for understanding the processes that have shaped the diversity of Neotropical freshwater environments.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Peixe Elétrico/genética , Genoma , Genômica , Gimnotiformes/genética , Sequências Repetitivas de Ácido Nucleico
20.
J Exp Biol ; 224(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431494

RESUMO

Animals across species compete for limited resources. Whereas in some species competition behavior is solely based on the individual's own abilities, other species assess their opponents to facilitate these interactions. Using cues and communication signals, contestants gather information about their opponent, adjust their behavior accordingly, and can thereby avoid high costs of escalating fights. We tracked electrocommunication signals known as 'rises' and agonistic behaviors of the gymnotiform electric fish Apteronotus leptorhynchus in staged competition experiments. A larger body size relative to the opponent was the sole significant predictor for winners. Sex and the frequency of the continuously emitted electric field only mildly influenced competition outcome. In males, correlations of body size and winning were stronger than in females and, especially when losing against females, communication and agonistic interactions were enhanced, suggesting that males are more motivated to compete. Fish that lost competitions emitted the majority of rises, but their quantity depended on the competitors' relative size and sex. The emission of a rise could be costly since it provoked ritualized biting or chase behaviors by the other fish. Despite winners being accurately predictable based on the number of rises after the initial 25 min, losers continued to emit rises. The number of rises emitted by losers and the duration of chase behaviors depended in similar ways on physical attributes of contestants. Detailed evaluation of these correlations suggests that A. leptorhynchus adjusts its competition behavior according to mutual assessment, where rises could signal a loser's motivation to continue assessment through ritualized fighting.


Assuntos
Peixe Elétrico , Gimnotiformes , Comunicação Animal , Animais , Órgão Elétrico , Feminino , Masculino , Motivação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...