Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 777
Filtrar
1.
Open Vet J ; 12(4): 434-438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118729

RESUMO

Background: Hernia is a protrusion of an organ from the wall of the cavity bearing it. Omentum, adipose tissue, and intestinal loops are the most frequently involved organs. The present case report is a rare case of indirect inguinal hernia having omentum engaged in scrotum through hernial ring in a bonnet macaque (Macaca radiata) and its surgical management. Case Description: A 19-year-old male bonnet macaque was presented with distension of the right inguinal and scrotal region. Physical examination revealed an inguinal hernia. Surgical intervention was deemed necessary considering the state of the animal. The herniation was surgically corrected by the removal of the protruded fatty mass. The monkey was kept in strict confinement till complete healing. The animal recovered uneventfully in 2 weeks without any post-operative complications. This case report details a successful surgical repair of an indirect inguinal hernia in a bonnet macaque. Conclusion: Based on the present case study, it is concluded that surgery can be an ideal and effective option for the treatment of inguinal hernias in primates.


Assuntos
Hérnia Inguinal , Animais , Hérnia Inguinal/complicações , Hérnia Inguinal/cirurgia , Hérnia Inguinal/veterinária , Macaca radiata , Masculino , Complicações Pós-Operatórias/veterinária
2.
Primates ; 63(6): 627-635, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100815

RESUMO

Though uncommon, adoption of orphaned infants has been observed in both wild and captive non-human primates. In two groups of wild bonnet macaques (Macaca radiata), we observed five instances of infants being cared for after they lost their mothers at a pre-weaning age (< 6 months). Orphaned infants had one or more caregivers (juvenile, subadult, and adult female or male) involved in carrying, grooming, hugging, and protecting them. Adoption did not appear to be related to the age/sex class of the infant, or directly to the mother's rank. Although the dominance rank of the mother of an orphaned infant did not have a direct effect on orphan survivorship, it determined the number of caregivers available to the orphaned infant, and infant survivorship was positively related to the number of caregivers of the orphaned infant. Thus, survivorship was likely a function of the mother's sociality. Two other infants born to high-ranking mothers were also adopted by more individuals and survived longer than the infants of low-ranking mothers.


Assuntos
Comportamento Social , Masculino , Feminino , Animais , Macaca radiata , Asseio Animal
3.
Am J Biol Anthropol ; 178(4): 667-677, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790685

RESUMO

OBJECTIVES: How a species uses its anatomical manipulators is determined by its anatomy, physiology, and ecology. While ecology explains interspecific variation in gripping, grasping, and manipulating objects, its role in intraspecific variation in mouth- and hand-use by animals is less explored. Primates are distinguished by their prehensile capabilities and manual dexterity. In context to the adaptive pressures of urbanization on primates, we examined if mouth and hand use differed across the forest-urban gradient in food retrieval and processing under experimental and naturalistic conditions in cercopithecids, a family comprising several urbanizing primates. MATERIALS AND METHODS: We recorded the acquisition and processing of peanuts under experimental conditions in three groups of bonnet macaques (BM, Macaca radiata) differing in their dietary dependence on packaged food items along a rural-urban gradient. To affirm the pattern obtained in the experiment, we coded food acquisition of three cercopithecid species in similar habitats from video sources. RESULTS: Urban macaques had a disproportionately higher hand use to acquire and process peanuts while rural macaques had higher mouth use. Based on analyses of videos, urban populations of BM, Japanese macaque (M. fuscata) and vervet monkey (Chlorocebus pygerythrus) showed a bias toward hand use during food acquisition. DISCUSSION: The adaptive pressures of urbanization, like the manual constraints of extracting packaged foods and perhaps, the need for visual-haptic exploration of novel objects seem to accentuate hand use in synanthropic groups of primates. Additional research should ascertain similar patterns in other primates and determine specific aspects of urbanization that modulate the observed trend.


Assuntos
Primatas , Urbanização , Animais , Chlorocebus aethiops , Mãos , Macaca , Macaca radiata/fisiologia , Macaca fuscata
4.
Sci Rep ; 11(1): 24221, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930930

RESUMO

Our brain's ability to represent vast amounts of information, such as continuous ranges of reward spanning orders of magnitude, with limited dynamic range neurons, may be possible due to normalization. Recently our group and others have shown that the sensorimotor cortices are sensitive to reward value. Here we ask if psychological affect causes normalization of the sensorimotor cortices by modulating valence and motivational intensity. We had two non-human primates (NHP) subjects (one male bonnet macaque and one female rhesus macaque) make visually cued grip-force movements while simultaneously cueing the level of possible reward if successful, or timeout punishment, if unsuccessful. We recorded simultaneously from 96 electrodes in each the following: caudal somatosensory, rostral motor, and dorsal premotor cortices (cS1, rM1, PMd). We utilized several normalization models for valence and motivational intensity in all three regions. We found three types of divisive normalized relationships between neural activity and the representation of valence and motivation, linear, sigmodal, and hyperbolic. The hyperbolic relationships resemble receptive fields in psychological affect space, where a unit is susceptible to a small range of the valence/motivational space. We found that these cortical regions have both strong valence and motivational intensity representations.


Assuntos
Mapeamento Encefálico/métodos , Força da Mão , Motivação , Recompensa , Córtex Sensório-Motor/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Eletrodos , Emoções , Feminino , Modelos Lineares , Macaca mulatta , Macaca radiata , Masculino , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Reprodutibilidade dos Testes
5.
Elife ; 102021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821553

RESUMO

Macaque monkeys are widely used to study vision. In the traditional approach, monkeys are brought into a lab to perform visual tasks while they are restrained to obtain stable eye tracking and neural recordings. Here, we describe a novel environment to study visual cognition in a more natural setting as well as other natural and social behaviors. We designed a naturalistic environment with an integrated touchscreen workstation that enables high-quality eye tracking in unrestrained monkeys. We used this environment to train monkeys on a challenging same-different task. We also show that this environment can reveal interesting novel social behaviors. As proof of concept, we show that two naive monkeys were able to learn this complex task through a combination of socially observing trained monkeys and solo trial-and-error. We propose that such naturalistic environments can be used to rigorously study visual cognition as well as other natural and social behaviors in freely moving monkeys.


Assuntos
Cognição , Macaca radiata/fisiologia , Comportamento Social , Percepção Visual , Animais , Aprendizagem , Masculino
6.
Sci Rep ; 11(1): 15959, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354213

RESUMO

Mirror Neurons (MNs) respond similarly when primates make or observe grasping movements. Recent work indicates that reward expectation influences rostral M1 (rM1) during manual, observational, and Brain Machine Interface (BMI) reaching movements. Previous work showed MNs are modulated by subjective value. Here we expand on the above work utilizing two non-human primates (NHPs), one male Macaca Radiata (NHP S) and one female Macaca Mulatta (NHP P), that were trained to perform a cued reward level isometric grip-force task, where the NHPs had to apply visually cued grip-force to move and transport a virtual object. We found a population of (S1 area 1-2, rM1, PMd, PMv) units that significantly represented grip-force during manual and observational trials. We found the neural representation of visually cued force was similar during observational trials and manual trials for the same units; however, the representation was weaker during observational trials. Comparing changes in neural time lags between manual and observational tasks indicated that a subpopulation fit the standard MN definition of observational neural activity lagging the visual information. Neural activity in (S1 areas 1-2, rM1, PMd, PMv) significantly represented force and reward expectation. In summary, we present results indicating that sensorimotor cortices have MNs for visually cued force and value.


Assuntos
Neurônios-Espelho/fisiologia , Motivação/fisiologia , Córtex Sensório-Motor/fisiologia , Potenciais de Ação/fisiologia , Animais , Interfaces Cérebro-Computador , Sinais (Psicologia) , Feminino , Força da Mão/fisiologia , Macaca mulatta/fisiologia , Macaca radiata/fisiologia , Masculino , Neurônios-Espelho/metabolismo , Córtex Motor/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Recompensa
7.
Learn Mem ; 28(9): 341-347, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400535

RESUMO

Protein kinase Mζ (PKMζ) maintains long-term potentiation (LTP) and long-term memory through persistent increases in kinase expression. Early-life adversity is a precursor to adult mood and anxiety disorders, in part, through persistent disruption of emotional memory throughout life. Here we subjected 10- to 16-wk-old male bonnet macaques to adversity by a maternal variable-foraging demand paradigm. We then examined PKMζ expression in their ventral hippocampi as 7- to 12-yr-old adults. Quantitative immunohistochemistry reveals decreased PKMζ in dentate gyrus, CA1, and subiculum of subjects who had experienced early-life adversity due to the unpredictability of maternal care. Adult animals with persistent decrements of PKMζ in ventral hippocampus express timid rather than confrontational responses to a human intruder. Persistent down-regulation of PKMζ in the ventral hippocampus might reduce the capacity for emotional memory maintenance and contribute to the long-lasting emotional effects of early-life adversity.


Assuntos
Hipocampo , Proteína Quinase C , Estresse Psicológico , Animais , Masculino , Hipocampo/metabolismo , Potenciação de Longa Duração , Proteína Quinase C/metabolismo , Macaca radiata
8.
J Neurophysiol ; 126(2): 451-463, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232741

RESUMO

A hallmark of intelligent behavior is that we can separate intention from action. To understand the mechanism that gates the flow of information between motor planning and execution, we compared the activity of frontal eye field neurons with motor unit activity from neck muscles in the presence of an intervening delay period in which spatial information regarding the target was available to plan a response. Although spatially specific delay period activity was present in the activity of frontal eye field neurons, it was absent in motor unit activity. Nonetheless, motor unit activity was correlated with the time it took to initiate saccades. Interestingly, we observed a heterogeneity of responses among motor units, such that only units with smaller amplitudes showed a clear modulation during the delay period. These small amplitude motor units also had higher spontaneous activity compared with the units which showed modulation only during the movement epoch. Taken together, our results suggest the activity of smaller motor units convey temporal information and explains how the delay period primes muscle activity leading to faster reaction times.NEW & NOTEWORTHY This study shows that the temporal aspects of a motor plan in the oculomotor circuitry can be accessed by peripheral neck muscles hundreds of milliseconds before the instruction to initiate a saccadic eye movement. The coupling between central and peripheral processes during the delay time is mediated by the recruitment pattern of motor units with smaller amplitude. These findings suggest that information processed in cortical areas could be read from periphery before execution.


Assuntos
Músculos do Pescoço/fisiologia , Movimentos Sacádicos , Animais , Macaca radiata , Masculino , Desempenho Psicomotor , Campos Visuais
9.
Am J Primatol ; 83(9): e23310, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34329501

RESUMO

Living near primate species has positive and negative outcomes for human communities. While most studies focus on understanding people's perceptions regarding the adverse consequences of interacting with primates, less is known about people's willingness to coexist with primates or reasons that may promote human-primate coexistence. We surveyed 794 people co-living with four different primate species-rhesus macaque Macaca mulatta, bonnet macaque Macaca radiata, lion-tailed macaque Macaca silenus, and Hanuman langur Semnopithecus dussumieri-in southern and western India to understand how people perceived the costs and benefits of coexistence. The results of our semi-structured interview study revealed that although tangible costs (i.e., financial losses from primate depredation) primarily drive people's stated tolerance for primate presence, intangible benefits from primates (i.e., their ecological, existence, sentience, and religious values) also critically affect attitudes towards coexistence. Amongst the four species, people associated rhesus macaques with the greatest costs and fewest benefits, lion-tailed macaques with the lowest costs, and bonnet macaques with the highest benefits. People preferred lion-tailed macaques and Hanuman langurs more than bonnet and rhesus macaques, and affection for a species shaped how people viewed costs accruing from the species. People's preferences for species were influenced by their existence, ecological, and sentience values more than their religious value. We suggest that intangible benefits influence people's fondness for a primate species and this, in turn, shapes how people perceive costs resulting from the species. Hence strengthening people's perceptions of the intangible benefits they receive from primate species will improve human tolerance for living near primates. We argue that there is a need to understand the context of human-primate conflicts beyond the cost aspects and focus on the benefits to improve human-primate coexistence.


Assuntos
Macaca mulatta , Animais , Análise Custo-Benefício , Índia , Macaca radiata
10.
Sci Rep ; 10(1): 21991, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319843

RESUMO

Despite increasing conflict at human-wildlife interfaces, there exists little research on how the attributes and behavior of individual wild animals may influence human-wildlife interactions. Adopting a comparative approach, we examined the impact of animals' life-history and social attributes on interactions between humans and (peri)urban macaques in Asia. For 10 groups of rhesus, long-tailed, and bonnet macaques, we collected social behavior, spatial data, and human-interaction data for 11-20 months on pre-identified individuals. Mixed-model analysis revealed that, across all species, males and spatially peripheral individuals interacted with humans the most, and that high-ranking individuals initiated more interactions with humans than low-rankers. Among bonnet macaques, but not rhesus or long-tailed macaques, individuals who were more well-connected in their grooming network interacted more frequently with humans than less well-connected individuals. From an evolutionary perspective, our results suggest that individuals incurring lower costs related to their life-history (males) and resource-access (high rank; strong social connections within a socially tolerant macaque species), but also higher costs on account of compromising the advantages of being in the core of their group (spatial periphery), are the most likely to take risks by interacting with humans in anthropogenic environments. From a conservation perspective, evaluating individual behavior will better inform efforts to minimize conflict-related costs and zoonotic-risk.


Assuntos
Animais Selvagens/fisiologia , Comportamento Animal/fisiologia , Macaca fascicularis/fisiologia , Macaca mulatta/fisiologia , Macaca radiata/fisiologia , Fatores Sociais , Agressão , Animais , Feminino , Humanos , Modelos Lineares , Masculino , Rede Social
11.
J Neurosci ; 40(46): 8913-8923, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051354

RESUMO

Deficits in auditory and visual processing are commonly encountered by older individuals. In addition to the relatively well described age-associated pathologies that reduce sensory processing at the level of the cochlea and eye, multiple changes occur along the ascending auditory and visual pathways that further reduce sensory function in each domain. One fundamental question that remains to be directly addressed is whether the structure and function of the central auditory and visual systems follow similar trajectories across the lifespan or sustain the impacts of brain aging independently. The present study used diffusion magnetic resonance imaging and electrophysiological assessments of auditory and visual system function in adult and aged macaques to better understand how age-related changes in white matter connectivity at multiple levels of each sensory system might impact auditory and visual function. In particular, the fractional anisotropy (FA) of auditory and visual system thalamocortical and interhemispheric corticocortical connections was estimated using probabilistic tractography analyses. Sensory processing and sensory system FA were both reduced in older animals compared with younger adults. Corticocortical FA was significantly reduced only in white matter of the auditory system of aged monkeys, while thalamocortical FA was lower only in visual system white matter of the same animals. Importantly, these structural alterations were significantly associated with sensory function within each domain. Together, these results indicate that age-associated deficits in auditory and visual processing emerge in part from microstructural alterations to specific sensory white matter tracts, and not from general differences in white matter condition across the aging brain.SIGNIFICANCE STATEMENT Age-associated deficits in sensory processing arise from structural and functional alterations to both peripheral sensory organs and central brain regions. It remains unclear whether different sensory systems undergo similar or distinct trajectories in function across the lifespan. To provide novel insights into this question, this study combines electrophysiological assessments of auditory and visual function with diffusion MRI in aged macaques. The results suggest that age-related sensory processing deficits in part result from factors that impact the condition of specific white matter tracts, and not from general decreases in connectivity between sensory brain regions. Such anatomic specificity argues for a framework aimed at understanding vulnerabilities with relatively local influence and brain region specificity.


Assuntos
Envelhecimento/fisiologia , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/fisiologia , Estimulação Acústica , Animais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Macaca radiata , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Tálamo/fisiologia
12.
J Neurosci ; 40(48): 9272-9282, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097634

RESUMO

The neural mechanisms of executive and motor control concern both basic researchers and clinicians. In human studies, preparation and cancellation of movements are accompanied by changes in the ß-frequency band (15-29 Hz) of electroencephalogram (EEG). Previous studies with human participants performing stop signal (countermanding) tasks have described reduced frequency of transient ß-bursts over sensorimotor cortical areas before movement initiation and increased ß-bursting over medial frontal areas with movement cancellation. This modulation has been interpreted as contributing to the trial-by-trial control of behavior. We performed identical analyses of EEG recorded over the frontal lobe of macaque monkeys (one male, one female) performing a saccade countermanding task. While we replicate the occurrence and modulation of ß-bursts associated with initiation and cancellation of saccades, we found that ß-bursts occur too infrequently to account for the observed stopping behavior. We also found ß-bursts were more common after errors, but their incidence was unrelated to response time (RT) adaptation. These results demonstrate the homology of this EEG signature between humans and macaques but raise questions about the current interpretation of ß band functional significance.SIGNIFICANCE STATEMENT The finding of increased ß-bursting over medial frontal cortex with movement cancellation in humans is difficult to reconcile with the finding of modulation too late to contribute to movement cancellation in medial frontal cortex of macaque monkeys. To obtain comparable measurement scales, we recorded electroencephalogram (EEG) over medial frontal cortex of macaques performing a stop signal (countermanding) task. We replicated the occurrence and modulation of ß-bursts associated with the cancellation of movements, but we found that ß-bursts occur too infrequently to account for observed stopping behavior. Unfortunately, this finding raises doubts whether ß-bursts can be a causal mechanism of response inhibition, which impacts future applications in devices such as brain-machine interfaces.


Assuntos
Ritmo beta/fisiologia , Função Executiva/fisiologia , Lobo Frontal/fisiologia , Animais , Eletroencefalografia , Feminino , Macaca mulatta , Macaca radiata , Masculino , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Córtex Sensório-Motor/fisiologia
13.
J Neurosci ; 40(44): 8513-8529, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33037076

RESUMO

Ca2+ spikes initiated in the distal trunk of layer 5 pyramidal cells (PCs) underlie nonlinear dynamic changes in the gain of cellular response, critical for top-down control of cortical processing. Detailed models with many compartments and dozens of ionic channels can account for this Ca2+ spike-dependent gain and associated critical frequency. However, current models do not account for all known Ca2+-dependent features. Previous attempts to include more features have required increasing complexity, limiting their interpretability and utility for studying large population dynamics. We overcome these limitations in a minimal two-compartment biophysical model. In our model, a basal-dendrites/somatic compartment included fast-inactivating Na+ and delayed-rectifier K+ conductances, while an apical-dendrites/trunk compartment included persistent Na+, hyperpolarization-activated cation (I h ), slow-inactivating K+, muscarinic K+, and Ca2+ L-type. The model replicated the Ca2+ spike morphology and its critical frequency plus three other defining features of layer 5 PC synaptic integration: linear frequency-current relationships, back-propagation-activated Ca2+ spike firing, and a shift in the critical frequency by blocking I h Simulating 1000 synchronized layer 5 PCs, we reproduced the current source density patterns evoked by Ca2+ spikes and describe resulting medial-frontal EEG on a male macaque monkey. We reproduced changes in the current source density when I h was blocked. Thus, a two-compartment model with five crucial ionic currents in the apical dendrites reproduces all features of these neurons. We discuss the utility of this minimal model to study the microcircuitry of agranular areas of the frontal lobe involved in cognitive control and responsible for event-related potentials, such as the error-related negativity.SIGNIFICANCE STATEMENT A minimal model of layer 5 pyramidal cells replicates all known features crucial for distal synaptic integration in these neurons. By redistributing voltage-gated and returning transmembrane currents in the model, we establish a theoretical framework for the investigation of cortical microcircuit contribution to intracranial local field potentials and EEG. This tractable model will enable biophysical evaluation of multiscale electrophysiological signatures and computational investigation of cortical processing.


Assuntos
Biofísica , Modelos Neurológicos , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Algoritmos , Animais , Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/fisiologia , Simulação por Computador , Canais de Potássio de Retificação Tardia/fisiologia , Dendritos/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Macaca radiata , Masculino , Neocórtex/citologia , Rede Nervosa/citologia , Canais de Sódio/fisiologia
14.
J Neurophysiol ; 124(5): 1315-1326, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937088

RESUMO

Auditory neuronal responses are modified by background noise. Inferior colliculus (IC) neuronal responses adapt to the most frequent sound level within an acoustic scene (adaptation to stimulus statistics), a mechanism that may preserve neuronal and behavioral thresholds for signal detection. However, it is still unclear whether the presence of foreground stimuli and/or task involvement can modify neuronal adaptation. To investigate how task engagement interacts with this mechanism, we compared the response of IC neurons to background noise, which caused adaptation to stimulus statistics, while macaque monkeys performed a masked tone detection task (task-driven condition) with responses recorded when the same background noise was presented alone (passive listening condition). In the task-dependent condition, monkeys performed a Go/No-Go task while 50-ms tones were embedded within an adaptation-inducing continuous background noise whose levels changed every 50 ms and were drawn from a probability distribution. The adaptation to noise stimulus statistics in IC neuronal responses was significantly enhanced in the task-driven condition compared with the passive listening condition, showing that foreground stimuli and/or task-engagement can modify IC neuronal responses. Additionally, the response of IC neurons to noise was significantly affected by the preceding sensory information (history effect) regardless of task involvement. These studies show that dynamic range adaptation in IC preserves behavioral and neurometric thresholds irrespective of noise type and a dependence of neuronal activity on task-related factors at subcortical levels of processing.NEW & NOTEWORTHY Auditory neuronal responses are influenced by maskers and distractors. However, it is still unclear whether the neuronal sensitivity to the masker stimulus is influenced by task-dependent factors. Our study represents one of the first attempts to investigate how task involvement influences the neural representation of background sounds in the subcortical, midbrain auditory neurons of behaving animals.


Assuntos
Adaptação Fisiológica , Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor , Estimulação Acústica , Animais , Macaca mulatta , Macaca radiata
15.
J Neurophysiol ; 124(2): 484-496, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667242

RESUMO

Express saccades are unusually short latency, visually guided saccadic eye movements. They are most commonly observed when the fixation spot disappears at a consistent, short interval before a target spot appears at a repeated location. The saccade countermanding task includes no fixation-target gap, variable target presentation times, and the requirement to withhold saccades on some trials. These testing conditions should discourage production of express saccades. However, two macaque monkeys performing the saccade countermanding task produced consistent, multimodal distributions of saccadic latencies. These distributions consisted of a longer mode extending from 200 ms to as much as 600 ms after target presentation and another consistently less than 100 ms after target presentation. Simulations revealed that, by varying express saccade production, monkeys could earn more reward. If express saccades were not rewarded, they were rarely produced. The distinct mechanisms producing express and longer saccade latencies were revealed further by the influence of regularities in the duration of the fixation interval preceding target presentation on saccade latency. Temporal expectancy systematically affected the latencies of regular but not of express saccades. This study highlights that cognitive control can integrate information across trials and strategically elicit intermittent very short latency saccades to acquire more reward.NEW & NOTEWORTHY A serendipitous discovery that macaque monkeys produce express saccades under conditions that should discourage them reveals how cognitive control can adapt behavior to maximize reward.


Assuntos
Antecipação Psicológica/fisiologia , Comportamento Animal/fisiologia , Função Executiva/fisiologia , Fixação Ocular/fisiologia , Recompensa , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Macaca mulatta , Macaca radiata , Masculino , Fatores de Tempo
16.
Sci Rep ; 10(1): 12561, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724103

RESUMO

The present manuscript deals with experimental infections of bonnet macaques (Macaca radiata) to study disease progression for better insights into the Kyasanur Forest Disease (KFD) pathogenesis and transmission. Experimentally, 10 monkeys were inoculated with KFD virus (KFDV) (high or low dose) and were regularly monitored and sampled for various body fluids and tissues at preset time points. We found that only 2 out of the 10 animals showed marked clinical signs becoming moribund, both in the low dose group, even though viremia, virus shedding in the secretions and excretions were evident in all inoculated monkeys. Anti-KFDV immunoglobulin (Ig)M antibody response was observed around a week after inoculation and anti-KFDV IgG antibody response after two weeks. Anaemia, leucopenia, thrombocytopenia, monocytosis, increase in average clotting time, and reduction in the serum protein levels were evident. The virus could be re-isolated from the skin during the viremic period. The persistence of viral RNA in the gastrointestinal tract and lymph nodes was seen up to 53 and 81 days respectively. Neuro-invasion was observed only in moribund macaques. Re-challenge with the virus after 21 days of initial inoculation in a monkey did not result in virus shedding or immune response boosting.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Doença da Floresta de Kyasanur/veterinária , Doenças dos Macacos/sangue , Viremia/veterinária , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Cinética , Doença da Floresta de Kyasanur/sangue , Doença da Floresta de Kyasanur/virologia , Macaca radiata/sangue , Macaca radiata/virologia , Doenças dos Macacos/virologia , Viremia/sangue , Viremia/virologia
17.
Neuroimage ; 221: 117188, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711067

RESUMO

Motor cortex (M1) and somatosensory cortex (S1) are central to arm and hand control. Efforts to understand encoding in M1 and S1 have focused on temporal relationships between neural activity and movement features. However, it remains unclear how the neural activity is spatially organized within M1 and S1. Optical imaging methods are well-suited for revealing the spatio-temporal organization of cortical activity, but their application is sparse in monkey sensorimotor cortex. Here, we investigate the effectiveness of intrinsic signal optical imaging (ISOI) for measuring cortical activity that supports arm and hand control in a macaque monkey. ISOI revealed spatial domains that were active in M1 and S1 in response to instructed reaching and grasping. The lateral M1 domains overlapped the hand representation and contained a population of neurons with peak firing during grasping. In contrast, the medial M1 domain overlapped the arm representation and a population of neurons with peak firing during reaching. The S1 domain overlapped the hand representations of areas 1 and 2 and a population of neurons with peak firing upon hand contact with the target. Our single unit recordings indicate that ISOI domains report the locations of spatial clusters of functionally related neurons. ISOI is therefore an effective tool for surveilling the neocortex for "hot zones" of activity that supports movement. Combining the strengths of ISOI with other imaging modalities (e.g., fMRI, 2-photon) and with electrophysiological methods can open new frontiers in understanding the spatio-temporal organization of cortical signals involved in movement control.


Assuntos
Braço/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Mãos/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Neuroimagem/métodos , Córtex Somatossensorial/fisiologia , Animais , Estimulação Elétrica , Eletrocorticografia , Macaca radiata , Masculino , Córtex Motor/diagnóstico por imagem , Neuroimagem/instrumentação , Neurônios/fisiologia , Imagem Óptica , Técnicas de Patch-Clamp , Córtex Somatossensorial/diagnóstico por imagem
18.
Am J Phys Anthropol ; 171(4): 704-717, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32064585

RESUMO

OBJECTIVES: In primates, allogrooming and other affiliative behaviors confer many benefits and may be influenced by many socioecological factors. Of these, the impact of anthropogenic factors remain relatively understudied. Here we ask whether interactions with humans decreased macaques' affiliative behaviors by imposing time-constraints, or increased these behaviors on account of more free-/available-time due to macaques' consumption of high-energy human foods. MATERIALS AND METHODS: In Southern India, we collected data on human-macaque and macaque-macaque interactions using focal-animal sampling on two groups of semi-urban bonnet macaques for 11 months. For each macaque within each climatic season, we calculated frequencies of human-macaque interactions, rates of monitoring human activity and foraging on anthropogenic food, dominance ranks, grooming duration, number of unique grooming partners, and frequencies of other affiliative interactions. RESULTS: We found strong evidence for time-constraints on grooming. Macaques that monitored humans more groomed for shorter durations and groomed fewer partners, independent of their group membership, sex, dominance rank, and season. However, monitoring humans had no impact on other affiliative interactions. We found no evidence for the free-time hypothesis: foraging on anthropogenic food was unrelated to grooming and other affiliation. DISCUSSION: Our results are consistent with recent findings on other urban-dwelling species/populations. Macaques in such environments may be especially reliant on other forms of affiliation that are of short duration (e.g., coalitionary support, lip-smacking) and unaffected by time-constraints. We stress on the importance of evaluating human impact on inter-individual differences in primate/wildlife behavior for conservation efforts.


Assuntos
Asseio Animal , Atividades Humanas , Macaca radiata/fisiologia , Comportamento Social , Adulto , Animais , Feminino , Humanos , Índia , Masculino
19.
J Neurosci ; 40(12): 2430-2444, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32066581

RESUMO

Neural signals recorded at different scales contain information about environment and behavior and have been used to control Brain Machine Interfaces with varying degrees of success. However, a direct comparison of their efficacy has not been possible due to different recording setups, tasks, species, etc. To address this, we implanted customized arrays having both microelectrodes and electrocorticogram (ECoG) electrodes in the primary visual cortex of 2 female macaque monkeys, and also recorded electroencephalogram (EEG), while they viewed a variety of naturalistic images and parametric gratings. Surprisingly, ECoG had higher information and decodability than all other signals. Combining a few ECoG electrodes allowed more accurate decoding than combining a much larger number of microelectrodes. Control analyses showed that higher decoding accuracy of ECoG compared with local field potential was not because of differences in low-level visual features captured by them but instead because of larger spatial summation of the ECoG. Information was high in the 30-80 Hz range and at lower frequencies. Information in different frequencies and scales was nonredundant. These results have strong implications for Brain Machine Interface applications and for study of population representation of visual stimuli.SIGNIFICANCE STATEMENT Electrophysiological signals captured across scales by different recording electrodes are regularly used for Brain Machine Interfaces, but the information content varies due to electrode size and location. A systematic comparison of their efficiency for Brain Machine Interfaces is important but technically challenging. Here, we recorded simultaneous signals across four scales: spikes, local field potential, electrocorticogram (ECoG), and EEG, and compared their information and decoding accuracy for a large variety of naturalistic stimuli. We found that ECoGs were highly informative and outperformed other signals in information content and decoding accuracy.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Córtex Visual/fisiologia , Animais , Comportamento Animal , Mapeamento Encefálico , Eletrodos Implantados , Eletroencefalografia , Fenômenos Eletrofisiológicos , Potenciais Evocados Visuais/fisiologia , Feminino , Macaca radiata , Microeletrodos , Estimulação Luminosa
20.
J Neurophysiol ; 123(1): 107-119, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721632

RESUMO

We use sequences of saccadic eye movements to continually explore our visual environments. Previous behavioral studies have established that saccades in a sequence may be programmed in parallel by the oculomotor system. In this study, we tested the neural correlates of parallel programming of saccade sequences in the frontal eye field (FEF), using single-unit electrophysiological recordings from macaques performing a sequential saccade task. It is known that FEF visual neurons instantiate target selection whereas FEF movement neurons undertake saccade preparation, where the activity corresponding to a saccade vector gradually ramps up. The question of whether FEF movement neurons are involved in concurrent processing of saccade plans is as yet unresolved. In the present study, we show that, when a peripheral target is foveated after a sequence of two saccades, presaccadic activity of FEF movement neurons for the second saccade can be activated while the first is still underway. Moreover, the onset of movement activity varied parametrically with the behaviorally measured time available for parallel programming. Although at central fixation coactivated FEF movement activity may vectorially encode the retinotopic location of the second target with respect to the fixation point or the remapped location of the second target, with respect to the first our evidence suggests the possibility of early encoding of the remapped second saccade vector. Taken together, the results indicate that movement neurons, although located terminally in the FEF visual-motor spectrum, can accomplish concurrent processing of multiple saccade plans, leading to rapid execution of saccade sequences.NEW & NOTEWORTHY The execution of purposeful sequences underlies much of goal-directed behavior. How different brain areas accomplish sequencing is poorly understood. Using a modified double-step task to generate a rapid sequence of two saccades, we demonstrate that downstream movement neurons in the frontal eye field (FEF), a prefrontal oculomotor area, allow for coactivation of the first and second movement plans that constitute the sequence. These results provide fundamental insights into the neural control of action sequencing.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Lobo Frontal/fisiologia , Atividade Motora/fisiologia , Movimentos Sacádicos/fisiologia , Animais , Comportamento Animal/fisiologia , Feminino , Macaca mulatta , Macaca radiata , Masculino , Neurônios/fisiologia , Aprendizagem Seriada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...