Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 816
Filtrar
1.
Toxicon ; 241: 107688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484849

RESUMO

Amanita phalloides poisoning is known to be the most fatal case among mushroom poisoning cases. Its main mechanism of toxicity is that it leads to cell death by the irreversible binding of its toxins to the DNA-dependent RNA polymerase II enzyme. This study was planned to analyze the effects of the CDP-choline molecule on Amanita phalloides mushroom poisoning cases. The extract of the Amanita phalloides mushroom was taken and intraperitoneally administered to male Wistar Albino rats at a dose of 0.3 g/kg. In the experiment phase, the rats were divided into three groups of CDP-choline treatment according to the doses of 100 mg/kg, 250 mg/kg, and 500 mg/kg, and one control group was administered a 1 ml/kg dose of 0.9% isotonic NaCl solution. The treatments were then administered intraperitoneally at the 2nd hour, and at the 6th hour, the rats were sacrificed. The degree of damage in the liver and kidney tissues of the rats was evaluated histopathologically. It was concluded that CDP-choline reduced or prevented the damage that occurred in the liver significantly and dose-dependently in the toxicosis picture caused by Amanita phalloides, and it showed a tendency to lower or prevent the damage in the kidney, albeit not significantly.


Assuntos
Intoxicação Alimentar por Cogumelos , Masculino , Ratos , Animais , Intoxicação Alimentar por Cogumelos/tratamento farmacológico , Ratos Wistar , Amanita/química , Colina
2.
Toxicon ; 241: 107661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408526

RESUMO

Mushroom poisonings caused by Amanita phalloides are the leading cause of mushroom-related deaths worldwide. Alpha-Amanitin (α-AMA), a toxic substance present in these mushrooms, is responsible for the resulting hepatotoxicity and nephrotoxicity. The objective of our study was to determine the distribution of α-AMA in Balb/c mice by labeling with Iodine-131. Mice were injected with a toxic dose (1.4 mg/kg) of α-AMA labeled with Iodine-131. The mice were sacrificed at the 1st, 2nd, 4th, 8th, 24th, and 48th hours under anesthesia. The organs of the mice were removed, and their biodistribution was assessed in all experiments. The percent injected dose per gram (ID/g %) value for kidney, liver, lung, and heart tissues at 1st hour were 1.59 ± 0.07, 1.25 ± 0.33, 3.67 ± 0.80 and 1.07 ± 0.01 respectively. This study provides insights into the potential long-term effects of α-AMA accumulation in specific organs. Additionally, this study has generated essential data that can be used to demonstrate the impact of antidotes on the biological distribution of α-AMA in future toxicity models.


Assuntos
Alfa-Amanitina , Intoxicação Alimentar por Cogumelos , Animais , Camundongos , Alfa-Amanitina/toxicidade , Distribuição Tecidual , Radioisótopos do Iodo , Amanita
3.
Int J Med Mushrooms ; 26(1): 27-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305260

RESUMO

In humans, a wide range of health disorders have been induced due to an imbalanced metabolism and an excess generation of reactive oxygen species (ROS). Different biological properties found in mushrooms seem to be the reason for their customary use as a favourite delicacy. Therefore, exploration of wild edible mushrooms as a source of various biological compounds is gaining much importance today. Amanita konajensis, one of the underutilized macrofungi popularly consumed in Eastern India, demands a systematic study of its medicinal values. The study aims to explore the myco-chemical contents of A. konajensis ethanolic extract (EtAK1) and screen their antioxidant potency through various in vitro assays. GC-MS analysis identified the chemical components of EtAK1. Further, structure-based virtual screening of the identified compounds was analysed for drug-like properties and molecular docking with the human p38 MAPK protein, a potent targeting pathway for human lung cancer. The morpho-molecular features proved the authenticity of the collected mushroom. The screening assays showed that EtAK1 was abundant in flavonoids, followed by phenolics, ß-carotene, and lycopene, and had strong antioxidant activity with EC50 values of 640-710 µg/mL. The GC-MS analyses of EtAK1 identified the occurrence of 19 bioactive compounds in the mushroom. In silico analysis revealed that anthraergostatetraenol p-chlorobenzoate, one of the compounds identified, displayed high binding affinity (ΔG = -10.6 kcal/mol) with human p38 MAPK. The outcome of this study will pave the way for the invention of myco-medicine using A. konajensis, which may lead to a novel drug for human lung cancer.


Assuntos
Antioxidantes , Neoplasias Pulmonares , Humanos , Antioxidantes/química , Simulação de Acoplamento Molecular , Cromatografia Gasosa-Espectrometria de Massas , Amanita , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Toxicon ; 240: 107639, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311256

RESUMO

Wild mushroom poisoning is a global public health concern, with mushrooms containing amatoxins being the main cause of fatalities. Mushrooms from the genus Amanita and Galerina contain amatoxins. Here we present a case of wild mushroom poisoning that affected three individuals, resulting in two fatalities. Within 10-15 hours after consumption, they experienced symptoms of gastroenteritis such as vomiting, abdominal pain, and diarrhea. One individual sought medical attention promptly and recovered, while the other two sought medical help nearly two or three days after the onset of symptoms, by which time their conditions had already worsened and led to their deaths. The mushrooms were identified belonging to genus Galerina, and laboratory test revealed variations in toxin levels among mushrooms collected from different parts of the decaying stump. The higher levels of α-amanitin, ß-amanitin, and γ-amanitin were detected near the base of the tree stump, but trace levels of α-amanitin were found near the top of the stump, while ß-amanitin and γ-amanitin were undetectable. This case emphasizes the importance of seeking immediate medical attention when experiencing delayed-onset gastrointestinal symptoms, as it may indicate more severe mushroom poisoning, particularly amatoxin poisoning. Timely and appropriate treatment is equally important. Additionally, consuming different units of the mushrooms in the same incident can lead to varying prognoses due to differences in toxin levels.


Assuntos
Intoxicação Alimentar por Cogumelos , Humanos , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia , Alfa-Amanitina , Saúde Pública , Amanitinas/análise , Amanita
5.
Toxins (Basel) ; 16(2)2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38393145

RESUMO

INTRODUCTION: Amanita phalloides poisoning is a serious health problem with a mortality rate of 10-40%. Poisonings are characterized by severe liver and kidney toxicity. The effect of Amanita phalloides poisonings on hematological parameters has not been systematically evaluated thus far. METHODS: Patients with suspected Amanita phalloides poisonings were retrospectively selected from the hospital database of the University Medical Center Groningen (UMCG). Medical data-including demographics; liver, kidney, and blood parameters; treatment; and outcomes-were collected. The severity of the poisoning was scored using the poison severity score. RESULTS: Twenty-eight patients were identified who were admitted to the UMCG with suspected Amanita phalloides poisoning between 1994 and 2022. A time-dependent decrease was observed for hemoglobin and hematocrit concentrations, leukocytes, and platelets. Six out of twenty-eight patients developed acute liver failure (ALF). Patients with ALF showed a higher increase in liver enzymes, international normalized ratios, and PSS compared to patients without ALF. Conversely, hemoglobin and platelet numbers were decreased even further in these patients. Three out of six patients with ALF died and one patient received a liver transplant. CONCLUSION: Our study shows that Amanita phalloides poisonings may be associated with hematotoxicity in patients. The quantification of hematological parameters is of relevance in intoxicated patients, especially in those with ALF.


Assuntos
Amanita , Falência Hepática Aguda , Intoxicação Alimentar por Cogumelos , Humanos , Estudos Retrospectivos , Falência Hepática Aguda/induzido quimicamente , Hemoglobinas , Intoxicação Alimentar por Cogumelos/terapia
6.
Toxins (Basel) ; 16(1)2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276537

RESUMO

Amanita phalloides poisonings account for the majority of fatal mushroom poisonings. Recently, we identified hematotoxicity as a relevant aspect of Amanita poisonings. In this study, we investigated the effects of the main toxins of Amanita phalloides, α- and ß-amanitin, on hematopoietic cell viability in vitro. Hematopoietic cell lines were exposed to α-amanitin or ß-amanitin for up to 72 h with or without the pan-caspase inhibitor Z-VAD(OH)-FMK, antidotes N-acetylcysteine, silibinin, and benzylpenicillin, and organic anion-transporting polypeptide 1B3 (OATP1B3) inhibitors rifampicin and cyclosporin. Cell viability was established by trypan blue exclusion, annexin V staining, and a MTS assay. Caspase-3/7 activity was determined with Caspase-Glo assay, and cleaved caspase-3 was quantified by Western analysis. Cell number and colony-forming units were quantified after exposure to α-amanitin in primary CD34+ hematopoietic stem cells. In all cell lines, α-amanitin concentration-dependently decreased viability and mitochondrial activity. ß-Amanitin was less toxic, but still significantly reduced viability. α-Amanitin increased caspase-3/7 activity by 2.8-fold and cleaved caspase-3 by 2.3-fold. Z-VAD(OH)-FMK significantly reduced α-amanitin-induced toxicity. In CD34+ stem cells, α-amanitin decreased the number of colonies and cells. The antidotes and OATP1B3 inhibitors did not reverse α-amanitin-induced toxicity. In conclusion, α-amanitin induces apoptosis in hematopoietic cells via a caspase-dependent mechanism.


Assuntos
Alfa-Amanitina , Intoxicação Alimentar por Cogumelos , Humanos , Alfa-Amanitina/toxicidade , Caspase 3 , Antídotos/farmacologia , Amanita
7.
Z Gastroenterol ; 62(2): 204-207, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-36972594

RESUMO

With over 90% of deaths following mushroom ingestion, poisoning with Amatoxin is one of the most dangerous food intoxications. Despite numerous case reports, treatment recommendations are based on a moderate level of evidence due to a lack of randomized controlled trials.We present the case of a 32-year-old patient who presented with acute liver failure after Amanita phalloides (green death cap mushroom) ingestion and whose therapeutic success was significantly influenced by the administration of activated charcoal, silibinin, and N-acetylcysteine as well as the determined research of an external mycologist.In various retrospective studies, a relevant reduction of mortality could be shown by the mentioned medicinal measures. Despite the high estimated amount of ingestion, we could confirm the effectiveness of this combination therapy in this case.Here, in addition to the drug therapy, attention should also be paid to the extraordinary cooperation of a mycologist, who was able to confirm the suspected diagnosis by his investigative approach and thus contributed to the success of the therapy. Immediate contact with the competent poison centre and the involvement of an expert is therefore recommended in unclear situations.


Assuntos
Amanita , Intoxicação Alimentar por Cogumelos , Humanos , Adulto , Estudos Retrospectivos , Intoxicação Alimentar por Cogumelos/complicações , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia , Florestas , Unidades de Terapia Intensiva
8.
Sci Rep ; 13(1): 22517, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110518

RESUMO

Mushroom poisoning is a public health concern worldwide that not only harms the physical and mental health of those who are poisoned but also increases the medical and financial burden on families and society. The present study aimed to describe and analyze the current situations and factors influencing mushroom poisoning outbreaks in Guizhou province, Southwest China, between January 2012 and June 2022, and to predict the future trends of its occurrence. Our study provides a basis for the rational formulation of prevention and control and medical resource allocation policies for mushroom poisoning. The epidemiological characteristics and factors influencing mushroom poisoning incidence were analyzed using descriptive epidemiological methods and the chi-squared test, respectively. Then, future occurrence trends were predicted using the SARIMA and Prophet models. In total, 1577 mushroom poisoning incidents were recorded in Guizhou Province, with 7347 exposures, 5497 cases, 3654 hospitalizations, and 93 fatalities. The mortality rate was 4.45% in 1 ~ 6 years higher than other age groups. There were notable geographic and seasonal characteristics, with the number of occurrences much higher in rural areas (1198) than in cities (379), and poisoning cases were more common during the rainy season (June to September). The mortality rate of household poisoning cases was 1.86%, with the most deaths occurring in households. Statistically significant differences were observed in the incidence across various cities, periods, and poisoning locations (P < 0.05). Both models had advantages and disadvantages for prediction. Nevertheless, the SARIMA model had better overall prediction results than the Prophet model (R > 0.9, the residual plot of the prediction results was randomly distributed, and RMSESARIMA < RMSEProphet). However, the prediction result plot of the Prophet model was more explanatory than the SARIMA model and could visualize overall and seasonal trends. Both models predicted that the prevalence of mushroom poisoning would continue to increase in the future; however, the number of fatalities is generally declining. Seasonal patterns indicated that a high number of deaths from gooseberry mushroom poisoning occurred in October. The epidemiological trends of mushroom poisoning remain severe, and health education on related knowledge must be strengthened in rural areas, with June to October as the key prevention and control phase. Further, medical treatment of mushroom poisoning cases with clinical symptoms should pay attention to inquiries to check whether the mushroom is similar in appearance to the Amanita, particularly in October.


Assuntos
Intoxicação Alimentar por Cogumelos , Humanos , Intoxicação Alimentar por Cogumelos/epidemiologia , Amanita , Surtos de Doenças , China/epidemiologia , Hospitalização
9.
Neuro Endocrinol Lett ; 44(8): 500-505, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131173

RESUMO

Loss of consciousness ranks among very common causes for emergency medical service actions and is common occurrence in the emergency department. Its differential diagnosis is very broad and includes many possible causes, not in the least an intoxication. The same applies to convulsive states. Clinical course of mushroom poisoning varies depending on the particular fungal species, with some of the species causing loss of consciousness. One typical representative of such species is panther cap (Amanita pantherina). This case report introduces panther cap poisoning, initially presenting in given patient as coma and protracted generalized convulsions. Complex treatment led to withdrawal of neurologic symptoms, circulatory and metabolic stabilisation and subsequent discharge without signs of permanent organ damage.


Assuntos
Amanita , Intoxicação Alimentar por Cogumelos , Humanos , Convulsões/induzido quimicamente , Intoxicação Alimentar por Cogumelos/complicações , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia , Inconsciência
10.
Se Pu ; 41(11): 976-985, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-37968816

RESUMO

The discovery and identification of mushroom toxins has long been an important area in the fields of toxicology and food safety. Mushrooms are widely favored for their culinary and medicinal value; however, the presence of potentially lethal toxins in some species poses a substantial challenge in ensuring their safe consumption. Therefore, the development of a robust and sensitive analytical method is necessary for accurately identifying the risks associated with mushroom consumption. The study of mushroom toxins, which are characterized by their diversity and substantial variations in chemical structures, present a considerable challenge for achieving precise and high-throughput analysis. To address this issue, the present study employed a robust approach combining a solid-phase extraction (SPE) purification technique with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to establish an analytical method for the detection and quantification of five amatoxins and two tryptamines (psilocybin and bufotenine) present in some mushrooms. Several optimization procedures were undertaken, including optimizing the chromatographic conditions, mass spectrometric parameters, and sample extraction and purification. The procedure involved the extraction of dry mushroom powder with methanol containing 0.3% formic acid, followed by purification using a strong cation exchange cartridge (SCX). The analytes were separated on a T3 chromatographic column (100 mm×2.1 mm, 1.8 µm) using mobile phases of acetonitrile and 5 mmol/L ammonium acetate solution containing 0.1% formic acid. The multiple reaction monitoring (MRM) mode was employed for data acquisition. Amatoxins were quantified using matrix-matched standard calibration curves, whereas isotopic internal standards were used to quantify tryptamine. The results showed that all seven toxins exhibited good linearities (r2>0.99) within the optimized concentration range. The limits of detection (LODs) for bufotenine, psilocybin, and amatoxins were determined as 2.0, 5.0, and 10 µg/kg, respectively, while the limits of quantification (LOQs) were determined as 5.0, 10, and 20 µg/kg, respectively. The LOD and LOQ values further underscore the ability of the method to detect minute quantities of toxins, making it particularly well suited for screening food samples for potential contamination. Using dried shiitake mushroom powder as the matrix, the recoveries of the two tryptamines ranged from 80.6% to 117%, with relative standard deviations (RSDs) ranging from 1.73% to 5.98%, while the recoveries of amatoxins ranged from 71.8% to 115%, with RSDs varying from 2.14% to 9.92% at the three concentration levels. The consistent and satisfactory recoveries of amatoxins and tryptamines demonstrated the ability of this method to accurately quantify the target analytes even in a complex matrix. Comparison with the results of supplementary test method recognized by State Administration for Market Regulation for food (BJS 202008) demonstrated comparable results, indicating no significant differences (p>0.05) in amatoxin contents. The newly developed method is rapid, accurate, precise, meets the required standards, and is suitable for the detection of seven toxins in wild mushrooms. As part of the application of this method, a comprehensive investigation of the distribution of toxins in wild mushrooms from Fujian Province was undertaken. In this study, 59 wild mushroom samples from nine cities were collected in the Fujian province. Species identification was conducted using rDNA-internal transcribed space (rDNA-ITS) molecular barcode technology, which revealed the presence of toxins in the two samples. Notably, one specimen named Amanita fuligineoides contained α-amanitin, ß-amanitin, and phalloidin in quantities of 607, 377, and 69.0 mg/kg, respectively. Additionally, another sample, identified as Tricholomataceae, had a psilocybin concentration of 12.6 mg/kg.


Assuntos
Amanita , Micotoxinas , Cromatografia Líquida de Alta Pressão , Amanita/química , Espectrometria de Massas em Tandem , Psilocibina , Bufotenina , Pós , Triptaminas , DNA Ribossômico
11.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003593

RESUMO

α-Amanitin is one of the primary toxins produced by the poisonous mushroom genus, Amanita. Because it is odorless and tasteless, it is an important cause of death from the consumption of misidentified mushrooms. To study the thermal stability of α-amanitin, novel cell-based assays were developed to measure the toxin's activity, based on the inhibition of RNA polymerase II by α-amanitin. First, an MTT-formazan cell viability assay was used to measure the biological activity of α-amanitin through the inhibition of cellular activity. This method can detect 10 µg/mL of α-amanitin in a time-dependent manner. Second, a more sensitive quantitative PCR approach was developed to examine its inhibition of viral replication. The new RT-qPCR assay enabled the detection of 100 ng/mL. At this level, α-amanitin still significantly reduced adenovirus transcription. Third, a simpler GFP expression-based assay was developed with an equal sensitivity to the RT-qPCR assay. With this assay, aqueous α-amanitin heated at 90 °C for 16 h or treated in the microwave for 3 min retained its biological activity when tested in HEK293 cells, but a slight reduction was observed when tested in Vero cells. Beyond detecting the activity of α-amanitin, the new method has a potential application for detecting the activity of other toxins that are RNA polymerase inhibitors.


Assuntos
Alfa-Amanitina , RNA Polimerase II , Animais , Chlorocebus aethiops , Humanos , Alfa-Amanitina/farmacologia , Células Vero , Células HEK293 , Amanita
12.
BMC Public Health ; 23(1): 1979, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821850

RESUMO

BACKGROUND: Mushroom poisoning is a major public health issue in China. The integration of medical resources from different institutes of different levels is crucial in reducing the harm of mushroom poisoning. However, few studies have provided comprehensive implementation procedures and postimplementation effectiveness evaluations. To reduce the harm caused by mushroom poisoning, a network system for the prevention and treatment of mushroom poisoning (NSPTMP) was established in Chuxiong, Yunnan Province, a high-risk area for mushroom poisoning. METHODS: The NSPTMP consists of three types of institutions, namely, centers for disease prevention, hospitals, and health administration departments, with each kind of institution comprising prefecture, county/city, town, and village levels. After three years of implementation, the network was evaluated by comparing the indices before and after network implementation using data from the "Foodborne Disease Outbreak Surveillance System" and 17 hospitals in Chuxiong. The indices included the fatalities caused by mushroom poisoning, the composition ratios of different types of mushrooms for both outpatients and inpatients and the hospitalization rates. RESULTS: Compared to the average fatality rate of mushroom poisoning from 2015 to 2017, the average fatality rate from 2018 to 2020 significantly decreased from 0.57 to 0.06% (P < 0.001). Regarding the poisonous genus containing lethal mushrooms, the outpatient and inpatient composition ratios significantly decreased for Amanita (9.36-2.91% and 57.23-17.68%, respectively) and Russula (15.27-8.41%) (P < 0.05). Regarding poisonous mushrooms that caused mild symptoms, the outpatient and inpatient composition ratios significantly increased for Scleroderma (5.13-13.90% and 2.89-18.90%, respectively) and Boletaceae (19.08-31.71%) (P < 0.05), and the hospitalization rates significantly increased for Scleroderma (6.33-18.02%) and Boletaceae (5.65-12.71%) (P < 0.05). CONCLUSIONS: These findings suggest that the NSPTMP effectively reduced the harm caused by mushroom poisoning. In addition to the integration of medical resources, the development of poisonous mushroom identification, hierarchical treatment systems in hospitals, public education, and professional training also played important roles in improving the system's effectiveness. The establishment and evaluation of the NSPTMP in Chuxiong Prefecture can provide valuable insights and serve as a model for other regions facing similar challenges in managing mushroom poisoning.


Assuntos
Intoxicação Alimentar por Cogumelos , Humanos , Intoxicação Alimentar por Cogumelos/epidemiologia , Intoxicação Alimentar por Cogumelos/prevenção & controle , China/epidemiologia , Amanita , Surtos de Doenças , Instalações de Saúde
13.
Int J Med Mushrooms ; 25(9): 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824402

RESUMO

Herbal products found in nature can serve as great systems of study for drug design. The Amanita muscaria mushroom is native to many parts of the Northern Hemisphere and has a very distinctive appearance with its red cap and white spotted warts. The mushroom comprises several pharmacologically active alkaloids, including muscazone, muscarine, ibotenic acid, and muscimol, the latter two compounds being potent GABA agonists. Muscimol has served as a backbone in the design of GABA agonists devoid of effects on the GABA-metabolizing enzyme, GABA transaminase, and GABA uptake systems. In this sense, several analogs of muscimol have been synthesized and studied including THIP, THPO, iso-THIP, iso-THAZ and 4-PIOL which all interact with the GABA receptors much differently. The growing pharmacological and toxicological interest based on many conflicting opinions on the use of the neuroprotective role of muscimol analogs against some neurodegenerative diseases, its potent role in the treatment of cerebral ischemia and other socially significant health conditions provided the basis for this review.


Assuntos
Amanita , Isoxazóis , Muscimol/farmacologia , Isoxazóis/farmacologia , Agonistas GABAérgicos , Ácido gama-Aminobutírico
14.
Artigo em Chinês | MEDLINE | ID: mdl-37667161

RESUMO

Different kinds of poisonous mushrooms contain different toxic components. Acute liver injury caused by amanita mushroom is the main cause of death from poisonous mushroom poisoning in China. Consumption of poisonous mushrooms has an incubation period, there is a false recovery period in the clinical process, and the early performance is slight and does not attract enough attention from doctors, and it is easy to miss the treatment opportunity. The clinical characteristics, treatment and identification of mushrooms containing amanita in 4 patients were analyzed in order to improve clinicians' understanding of the diagnosis and treatment of mushroom poisoning and early species identification.


Assuntos
Intoxicação Alimentar por Cogumelos , Médicos , Venenos , Humanos , Intoxicação Alimentar por Cogumelos/diagnóstico , Amanita , China
15.
Food Chem Toxicol ; 179: 113994, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598851

RESUMO

Phalloidin, a bicyclic heptapeptide found in Amanita mushroom, specifically binds to F-actin in the liver causing cholestatic hepatotoxicity. However, the toxicokinetics and tissue distribution properties of phalloidin as well as their underlying mechanisms have to be studied further. The area under the plasma concentration curve (AUC) of phalloidin increased in proportion to the doses (0.2, 0.4, and 0.8 mg/kg for intravenous injection and 2, 5, and 10 mg/kg for oral administration). Phalloidin exhibited dose-independent low volume of distribution (395.6-456.9 mL/kg) and clearance (21.4-25.5 mL/min/kg) and low oral bioavailability (2.4%-3.3%). This could be supported with its low absorptive permeability (0.23 ± 0.05 × 10-6 cm/s) in Caco-2 cells. The tissue-to-plasma AUC ratios of intravenously injected and orally administered phalloidin were the highest in the liver and intestines, respectively, and also high in the kidneys, suggesting that the liver, kidneys, and intestines could be susceptible to phalloidin exposure and that active transport via the hepatic and renal organic anion transporters (OATP1B1, OATP1B3, and OAT3) may contribute to the higher distribution of phalloidin in the liver and kidneys.


Assuntos
Amanita , Animais , Camundongos , Humanos , Toxicocinética , Células CACO-2 , Faloidina , Distribuição Tecidual
16.
Toxicon ; 233: 107257, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37611670

RESUMO

The genus Amanita sect. Amanita harbors approximately 150 species in the world, and 27 species have been recognized in China. Some of the species in China have continuously caused poisoning. The responsible toxins should be ibotenic acid (IBO) and muscimol (MUS). However, species of the section Amanita containing IBO and MUS and their systematic positions are unclear. In this study, the contents of IBO and MUS in 84 samples of 24 species in section Amanita were detected using UPLC‒MS/MS, and the distribution of toxin-containing species in the molecular phylogeny was analyzed by the combined (ITS, nrLSU, RPB2, TUB2 and TEF1-α) dataset using maximum likelihood (ML) analysis and Bayesian inference (BI). Our results indicated that 10 of the 24 species contained IBO and MUS ranging from 0.6125 to 32.0932 and 0.0056-5.8685 g/kg dry weight, respectively. Among these 10 species, the toxins of eight species, including Amanita altipes, A. concentrica, A. flavopantherina, A. griseopantherina, A. pseudopantherina, A. rubrovolvata, A. subglobosa and A. sychnopyramis, were detected for the first time. In addition, the IBO and MUS contents of A. subglobosa in different growth stages showed that both toxins decreased in the mature stage. The phylogenetic analysis showed that all species of sect. Amanita from China were divided into 5 groups. And IBO- and MUS-containing species were gathered in clades Ⅰ and Ⅳ, but not all of the species in the two clades contain the toxins. No presence of IBO and MUS in the species of clades Ⅱ, Ⅲ and Ⅴ were confirmed.


Assuntos
Amanita , Espectrometria de Massas em Tandem , Ácido Ibotênico , Amanita/genética , Teorema de Bayes , Cromatografia Líquida , Muscimol , Filogenia , China
17.
Int J Med Mushrooms ; 25(7): 75-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585318

RESUMO

The present study was carried out to investigate and identify bioactive compounds along with antioxidant capacity, total flavonoids and total phenolic contents from two saprophytic Amanita species, i.e., mushrooms A. manicata (Berk. & Broome) Pegler and A. nana Singer. Antioxidant potential was assessed by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and ABTS (2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) assay, total phenolics, and flavonoids. Both mushrooms were found to possess antioxidants and wide range of phenolics and bioactive compounds. There was maximum percent inhibition (83.2 ± 0.120%) on DPPH by A. manicata. However, maximum percent inhibition using ABTS was found to be 79.5 ± 0.251% by A. nana. Similarly, A. nana possesses maximum amount of both flavonoids and phenolics i.e., 0.3473 ± 0.0088 mg/100 g of catechin and 0.097 ± 0.0011 mg/100 g of GAE equivalent, respectively. Both mushrooms exhibited a variety of natural compounds such as P-coumaric acid, M-coumaric acid, benzoic acid, ferulic acid etc. Ferulic acid, chlorogenic acid, and cinnamic acid were also detected in A. manicata. A. manicata exhibited best and greater antiradical potential than A. nana due the presence of excessive natural bioactive compounds. From the reported results, it was revealed that both inedible mushrooms could be a potential source of antioxidants and secondary metabolites and might be used for making novel drugs in future by pharmaceutical industries.


Assuntos
Amanita , Antioxidantes , Antioxidantes/farmacologia , Amanita/metabolismo , Cromatografia Líquida de Alta Pressão , Paquistão , Fenóis/análise , Flavonoides/análise , Extratos Vegetais/química
18.
G Ital Nefrol ; 40(3)2023 Jun 29.
Artigo em Italiano | MEDLINE | ID: mdl-37427905

RESUMO

Mushroom poisoning can represent an acute event which the clinical nephrologist must deal with and which often leads to the need for emergency dialysis treatment. Through the exposed clinical case, we describe the secondary clinical manifestations of an acute intoxication sustained by Amanita Echinocephalae, and we will provide an overview of the main fungal intoxications of renal interest, the clinical presentation, the diagnostic strategies, and the subsequent treatment.


Assuntos
Injúria Renal Aguda , Intoxicação Alimentar por Cogumelos , Humanos , Amanita , Intoxicação Alimentar por Cogumelos/complicações , Intoxicação Alimentar por Cogumelos/terapia , Intoxicação Alimentar por Cogumelos/diagnóstico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/terapia , Diálise Renal/efeitos adversos , Ingestão de Alimentos
19.
Fa Yi Xue Za Zhi ; 39(2): 121-128, 2023 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37277374

RESUMO

OBJECTIVES: To explore the cytotoxicity of four wild mushrooms involved in a case of Yunnan sudden unexplained death (YNSUD), to provide the experimental basis for prevention and treatment of YNSUD. METHODS: Four kinds of wild mushrooms that were eaten by family members in this YNSUD incident were collected and identified by expert identification and gene sequencing. Raw extracts from four wild mushrooms were extracted by ultrasonic extraction to intervene HEK293 cells, and the mushrooms with obvious cytotoxicity were screened by Cell Counting Kit-8 (CCK-8). The selected wild mushrooms were prepared into three kinds of extracts, which were raw, boiled, and boiled followed by enzymolysis. HEK293 cells were intervened with these three extracts at different concentrations. The cytotoxicity was detected by CCK-8 combined with lactate dehydrogenase (LDH) Assay Kit, and the morphological changes of HEK293 cells were observed under an inverted phase contrast microscope. RESULTS: Species identification indicated that the four wild mushrooms were Butyriboletus roseoflavus, Boletus edulis, Russula virescens and Amanita manginiana. Cytotoxicity was found only in Amanita manginiana. The raw extracts showed cytotoxicity at the mass concentration of 0.1 mg/mL, while the boiled extracts and the boiled followed by enzymolysis extracts showed obvious cytotoxicity at the mass concentration of 0.4 mg/mL and 0.7 mg/mL, respectively. In addition to the obvious decrease in the number of HEK293 cells, the number of synapses increased and the refraction of HEK293 cells was poor after the intervention of Amanita manginiana extracts. CONCLUSIONS: The extracts of Amanita manginiana involved in this YNSUD case has obvious cytotoxicity, and some of its toxicity can be reduced by boiled and enzymolysis, but cannot be completely detoxicated. Therefore, the consumption of Amanita manginiana is potentially dangerous, and it may be one of the causes of the YNSUD.


Assuntos
Amanita , Humanos , Células HEK293 , China , Morte Súbita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...