Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 915
Filtrar
1.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594616

RESUMO

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Assuntos
Microbiota , Verticillium , Verticillium/fisiologia , Gossypium/genética , Gossypium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sementes/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
2.
Physiol Plant ; 176(2): e14259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511474

RESUMO

Proteins of the armadillo repeat gene family play important roles in plant pathogen response. Here, 169 armadillo (ARM) genes were identified in upland cotton (Gossypium hirsutum). Phylogenetic analysis grouped these into 11 subfamilies, with conserved protein structures within each subfamily. The results signify that the expansion of the gene family occurred via whole genome duplication and dispersed duplication. Expression profiling and network analysis suggest that GhARM144 may regulate cotton resistance to Verticillium dahliae. GhARM144 was upregulated in roots by V. dahliae infection or salicylic acid treatment. This upregulation indicates a negative regulatory role of GhARM144' in the cotton immune responses, potentially by manipulating salicylic acid biosynthesis. Protein interaction studies found that GhARM144 associates with an osmotin-like protein, GhOSM34, at the plasma membrane. Silencing GhOSM34 reduced the resistance to V. dahliae, suggesting it may play a positive regulatory role. The results demonstrate that GhARM144 modulates cotton immunity through interaction with GhOSM34 and salicylic acid signalling. Further study of these proteins may yield insights into disease resistance mechanisms in cotton and other plants.


Assuntos
Acremonium , Ascomicetos , Verticillium , Filogenia , Verticillium/metabolismo , Gossypium/genética , Gossypium/metabolismo , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Genes (Basel) ; 15(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38540407

RESUMO

Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, we conducted a comprehensive analysis of the members of the HIT4 gene family in Gossypium hirsutum using bioinformatics methods, including phylogenetic relationships, gene organization, transcription profiles, phylogenetic connections, selection pressure, and stress response. A total of 18 HIT4 genes were identified in four cotton species, with six HIT4 gene members in upland cotton. Based on the evolutionary relationships shown in the phylogenetic tree, the 18 HIT4 protein sequences were classified into four distinct subgroups. Furthermore, we conducted chromosome mapping to determine the genomic locations of these genes and visually represented the structural characteristics of HIT4 in G. hirsutum. In addition, we predicted the regulatory elements in HIT4 in G. hirsutum and conducted an analysis of repetitive sequences and gene collinearity among HIT4 in four cotton species. Moreover, we calculated the Ka/Ks ratio for homologous genes to assess the selection pressure acting on HIT4. Using RNA-seq, we explored the expression patterns of HIT4 genes in G. hirsutum and Gossypium barbadense. Through weighted gene co-expression network analysis (WGCNA), we found that GHHIT4_4 belonged to the MEblue module, which was mainly enriched in pathways such as DNA replication, phagosome, pentose and glucuronate interconversions, steroid biosynthesis, and starch and sucrose metabolism. This module may regulate the mechanism of upland cotton resistance to Verticillium wilt through DNA replication, phagosome, and various metabolic pathways. In addition, we performed heterologous overexpression of GH_D11G0591 (GHHIT4_4) in tobacco, and the results showed a significant reduction in disease index compared to the wild type, with higher expression levels of disease resistance genes in the transgenic tobacco. After conducting a VIGS (virus-induced gene silencing) experiment in cotton, the results indicated that silencing GHHIT4_4 had a significant impact, the resistance to Verticillium wilt weakened, and the internode length of the plants significantly decreased by 30.7% while the number of true leaves increased by 41.5%. qRT-PCR analysis indicated that GHHIT4_4 mainly enhanced cotton resistance to Verticillium wilt by indirectly regulating the PAL, 4CL, and CHI genes. The subcellular localization results revealed that GHHIT4_4 was predominantly distributed in the mitochondria and nucleus. This study offers preliminary evidence for the involvement of the GHHIT4_4 in cotton resistance to Verticillium wilt and lays the foundation for further research on the disease resistance mechanism of this gene in cotton.


Assuntos
Gossypium , Verticillium , Gossypium/metabolismo , Verticillium/genética , Filogenia , Resistência à Doença/genética , Mapeamento Cromossômico
4.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503565

RESUMO

AIMS: This study aimed to assess the impact of rocket (Eruca sativa) extract on Verticillium wilt in eggplants, explore rhizospheric microorganisms for disease biocontrol, and evaluate selected strains' induced systemic resistance (ISR) potential while characterizing their genomic and biosynthetic profiles. METHODS AND RESULTS: Rocket extract application led to a significant reduction in Verticillium wilt symptoms in eggplants compared to controls. Isolated microorganisms from treated soil, including Paraburkholderia oxyphila EP1, Pseudomonas citronellolis EP2, Paraburkholderia eburnea EP3, and P. oxyphila EP4 and EP5, displayed efficacy against Verticillium dahliae, decreasing disease severity and incidence in planta. Notably, strains EP3 and EP4 triggered ISR in eggplants against V. dahliae. Genomic analysis unveiled shared biosynthetic gene clusters, such as ranthipeptide and non-ribosomal peptide synthetase-metallophore types, among the isolated strains. Additionally, metabolomic profiling of EP2 revealed the production of metabolites associated with amino acid metabolism, putative antibiotics, and phytohormones. CONCLUSIONS: The application of rocket extract resulted in a significant reduction in Verticillium wilt symptoms in eggplants, while the isolated microorganisms displayed efficacy against V. dahliae, inducing systemic resistance and revealing shared biosynthetic gene clusters, with metabolomic profiling highlighting potential disease-suppressing metabolites.


Assuntos
Verticillium , Verticillium/metabolismo , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Gossypium , Resistência à Doença
5.
Mol Plant Pathol ; 25(2): e13431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353627

RESUMO

Feruloyl esterase (ferulic acid esterase, FAE) is an essential component of many biological processes in both eukaryotes and prokaryotes. This research aimed to investigate the role of FAE and its regulation mechanism in plant immunity. We identified a secreted feruloyl esterase VdFAE from the hemibiotrophic plant pathogen Verticillium dahliae. VdFAE acted as an important virulence factor during V. dahliae infection, and triggered plant defence responses, including cell death in Nicotiana benthamiana. Deletion of VdFAE led to a decrease in the degradation of ethyl ferulate. VdFAE interacted with Gossypium hirsutum protein dihydroflavanol 4-reductase (GhDFR), a positive regulator in plant innate immunity, and promoted the degradation of GhDFR. Furthermore, silencing of GhDFR led to reduced resistance of cotton plants against V. dahliae. The results suggested a fungal virulence strategy in which a fungal pathogen secretes FAE to interact with host DFR and interfere with plant immunity, thereby promoting infection.


Assuntos
Acremonium , Oxirredutases do Álcool , Ascomicetos , Hidrolases de Éster Carboxílico , Gossypium , Verticillium
6.
J Agric Food Chem ; 72(9): 4669-4678, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38383289

RESUMO

Verticillium dahliae, a notorious phytopathogenic fungus, is responsible for vascular wilt diseases in numerous crops. Uncovering the molecular mechanisms underlying pathogenicity is crucial for controlling V. dahliae. Herein, we characterized a putative oxidoreductase-like protein (VdOrlp) from V. dahliae that contains a functional signal peptide. While the expression of VdOrlp was low in artificial media, it significantly increased during host infection. Deletion of VdOrlp had minimal effects on the growth and development of V. dahliae but severely impaired its pathogenicity. Metabolomic analysis revealed significant changes in organic heterocyclic compounds and phenylpropane compounds in cotton plants infected with ΔVdOrlp and V991. Furthermore, VdOrlp expression was induced by lignin, and its deletion affected the metabolism of host lignin and phenolic acids. In conclusion, our results demonstrated that VdOrlp plays an important role in the metabolism of plant phenylpropyl lignin and organic heterocyclic compounds and is required for fungal pathogenicity in V. dahliae.


Assuntos
Ascomicetos , Compostos Heterocíclicos , Verticillium , Oxirredutases , Lignina , Plantas , Verticillium/genética , Doenças das Plantas/microbiologia , Gossypium/genética
7.
Int J Biol Macromol ; 263(Pt 1): 130072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346615

RESUMO

MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.


Assuntos
Ascomicetos , Solanum melongena , Solanum , Verticillium , Solanum/genética , Verticillium/metabolismo , Ascomicetos/metabolismo , Solanum melongena/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397116

RESUMO

Verticillium wilt (VW) is an important and widespread disease of cotton and once established is long-lived and difficult to manage. In Australia, the non-defoliating pathotype of Verticillium dahliae is the most common, and extremely virulent. Breeding cotton varieties with increased VW resistance is the most economical and effective method of controlling this disease and is greatly aided by understanding the genetics of resistance. This study aimed to investigate VW resistance in 240 F7 recombinant inbred lines (RIL) derived from a cross between MCU-5, which has good resistance, and Siokra 1-4, which is susceptible. Using a controlled environment bioassay, we found that resistance based on plant survival or shoot biomass was complex but with major contributions from chromosomes D03 and D09, with genomic prediction analysis estimating a prediction accuracy of 0.73 based on survival scores compared to 0.36 for shoot biomass. Transcriptome analysis of MCU-5 and Siokra 1-4 roots uninfected or infected with V. dahliae revealed that the two cultivars displayed very different root transcriptomes and responded differently to V. dahliae infection. Ninety-nine differentially expressed genes were located in the two mapped resistance regions and so are potential candidates for further identifying the genes responsible for VW resistance.


Assuntos
Verticillium , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas , Perfilação da Expressão Gênica , Gossypium/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
9.
Sci Data ; 11(1): 11, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167492

RESUMO

Cotton is a significant cash crop and the primary source of natural fiber globally. Among the numerous diseases encountered in cotton production, Verticillium wilt is one of the most serious, caused by the pathogen Verticillium dahliae (V. dahliae). Unfortunately, there are no effective targeted methods to combat this disease. Genomic resources for Verticillium wilt resistance primarily exist in Gossypium barbadense (G. barbadense). Regrettably, there have been limited transcriptomic comparisons between V. dahliae-resistant and -susceptible varieties of G. barbadense due to the scarcity of susceptible resources. In this study, we conducted a transcriptome analysis on both V. dahliae-resistant and -susceptible varieties of G. barbadense at the 0, 12, 24 and 48 hours after V. dahliae inoculation. This comparative transcriptome analysis yielded high-quality data and offered new insights into the molecular mechanisms underlying cotton's resistance against this destructive pathogen.


Assuntos
Gossypium , Verticillium , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Doenças das Plantas/genética , Verticillium/genética
10.
Arch Microbiol ; 206(2): 83, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296859

RESUMO

Oxanthromicin is an anthranone-type natural product isolated from Streptomyces sp. TRM 15522, which exhibits antifungal activity. However, the underlying mechanisms remain unclear. This study, therefore, aimed at investigating the mode of action of oxanthromicin against the phytopathogen Verticillium dahliae. We found that oxanthromicin substantially suppressed spore germination and mycelial growth in V. dahliae. Further, electron microscopy and staining with propidium iodide and Rhodamine 123 indicated that oxanthromicin causes cell membrane damage and induces changes in mitochondrial membrane potential. These findings suggest that oxanthromicin exhibits its antifungal activity by damaging fungal cell membranes. This discovery could potentially facilitate the development of oxanthromicin as a biological pesticide.


Assuntos
Ascomicetos , Verticillium , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Doenças das Plantas/microbiologia , Antraquinonas
11.
Microbiol Res ; 281: 127608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38241914

RESUMO

Verticillium dahliae causes destructive vascular wilt diseases on more than 200 plant species, including economically important crops and ornamental trees worldwide. The melanized microsclerotia (MS) enable V. dahliae to survive for years in soil, thus the fungus is especially difficult to control once it has become established. Previously, we found that the mitogen activated protein kinase VdSte11 (MAPKKK) plays key roles in MS formation, penetration, and virulence in V. dahliae. In this study, two MAPK homologs of the yeast Ste7p and Kss1p were identified and characterized in V. dahliae. Deletion of VdSte7 or VdKss1 reuslted in severe defects in melaninized MS formation and virulence. Furthermore, phosphorylation assays demonstrated that VdSte11 and VdSte7 can phosphorylate VdKss1 in V. dahliae. Proteomic analysis revealed a significant change in sterol biosynthesis with a fold change of ≥ 1.2 after the deletion of VdKss1. In addition, phosphoproteomic analysis showed that VdKss1 was involved in the regulation of nitrogen metabolism. Finally, we identified VdRlm1 as a potentially downstream target of VdKss1, which is involved in regulating ammonium nitrogen utilization. This study sheds light on the network of regulatory proteins in V. dahliae that affect MS formation and nitrogen metabolism.


Assuntos
Ascomicetos , Verticillium , Virulência , Proteômica , Verticillium/genética , Ascomicetos/metabolismo , Nitrogênio/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia
12.
Int J Biometeorol ; 68(2): 199-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010415

RESUMO

China produces and consumes the largest amount of cotton, playing a critical role in the world's fiber and textile industries. Theoretically, an increase in temperature poses a complex set of impacts on both cotton and pathogen diseases. However, empirical evidence regarding the overall effect on regional cotton yield in China is currently lacking. In this study, we employ county-level cotton statistics and degree-day indices (n = 30,502) to demonstrate a temperature effect on cotton yield, influenced by both direct temperature effects and indirect effects on verticillium wilt infection in China. Our findings indicate that temperatures between the base growing temperature (15 °C) and the optimal infection threshold for cotton wilt disease (25 °C) reduce cotton yield. However, beyond this threshold, when disease infection is significantly limited, higher temperatures become beneficial. Temperatures exceeding 32 °C causes heat stress, which dominates and drives a decline in yield. Furthermore, we provide a risk assessment of warming on cotton in future climate scenarios. Our model projections reveal an overall decrease in cotton yield ranging from 6.2 to 30.6%, accompanied by amplified heat stress (resulting in a yield decrease of 11.6 to 48.7%) but a reduced threat of verticillium wilt (yield increase of 8.2 to 23.6%) in future. Particularly, the Northwest Region, currently responsible for 80% of cotton production, is expected to be particularly vulnerable. This study emphasizes the importance of investing in long-term technological advancements such as cotton heat-tolerance breeding and redistributing cotton growing areas.


Assuntos
Verticillium , Temperatura , Doenças das Plantas/prevenção & controle , Resistência à Doença , Gossypium , China , Proteínas de Plantas
13.
Plant Biotechnol J ; 22(2): 497-511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37883523

RESUMO

Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non-defoliating pathotype 1cd3-2 during the early response of cotton. Combined with analysis of the secretome during the V991-cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3-2-cotton interaction. Full-length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock-out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2-overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild-type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance.


Assuntos
Ascomicetos , Verticillium , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Gossypium/genética , Gossypium/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas/genética
14.
Phytopathology ; 114(1): 61-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37530500

RESUMO

Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.


Assuntos
Acremonium , Ascomicetos , Verticillium , Bacillus subtilis/genética , Filogenia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Gossypium/genética , Extratos Vegetais , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas
15.
J Exp Bot ; 75(1): 468-482, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776224

RESUMO

Sessile growing plants are always vulnerable to microbial pathogen attacks throughout their lives. To fend off pathogen invasion, plants have evolved a sophisticated innate immune system that consists of cell surface receptors and intracellular receptors. Somatic embryogenesis receptor kinases (SERKs) belong to a small group of leucine-rich repeat receptor-like kinases (LRR-RLKs) that function as co-receptors regulating diverse physiological processes. GENRAL REGULATORY FACTOR (GRF) proteins play an important role in physiological signalling transduction. However, the function of GRF proteins in plant innate immune signalling remains elusive. Here, we identified a GRF gene, GauGRF7, that is expressed both constitutively and in response to fungal pathogen infection. Intriguingly, silencing of GRF7 compromised plant innate immunity, resulting in susceptibility to Verticillium dahliae infection. Both transgenic GauGRF7 cotton and transgenic GauGRF7 Arabidopsis lines enhanced the innate immune response to V. dahliae infection, leading to high expression of two helper NLRs (hNLR) genes (ADR1 and NRG1) and pathogenesis-related genes, and increased ROS production and salicylic acid level. Moreover, GauGRF7 interacted with GhSERK1, which positively regulated GRF7-mediated innate immune response in cotton and Arabidopsis. Our findings revealed the molecular mechanism of the GRF protein in plant immune signaling and offer potential opportunities for improving plant resistance to V. dahliae infection.


Assuntos
Arabidopsis , Verticillium , Resistência à Doença/genética , Verticillium/fisiologia , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Gossypium/genética , Gossypium/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
16.
Pest Manag Sci ; 80(4): 2042-2052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117128

RESUMO

BACKGROUND: Verticillium dahliae is a soil-borne pathogenic fungus that causes Verticillium wilt disease on more than 400 plant species worldwide. Because of its broad host range and its ability to survive long term in the soil, there are few effective control measures for V. dahliae once it has become established. Accurate, sensitive, and rapid detection of V. dahliae is crucial for limiting pathogen entry into new regional environments and early management of Verticillium wilt. RESULTS: In this study, we developed a method to detect V. dahliae based on recombinase polymerase amplification (RPA) and CRISPR/Cas technology and used fluorescence and lateral flow test strips to monitor the outcomes. Through the establishment and optimization of RPA-CRISPR/Cas13a detection, the sensitivity of the fluorescence method was 1 am for genomic DNA (gDNA) within 20 min, whereas the sensitivity of the lateral flow strip method was 100 am for gDNA in 30 min. The field applicability of RPA-CRISPR/Cas13a was also validated by the detection of V. dahliae on smoke trees (Cotinus coggygria) in Xiangshan Park, Beijing, China. Finally, diplex detection for defoliating and nondefoliating pathotypes of V. dahliae was established by combining CRISPR-Cas12a/Cas13a with specific target genes. CONCLUSION: Taken together, this study achieved rapid, sensitive, and accurate detection of V. dahliae and the differentiation of defoliating and nondefoliating pathotypes and provides potential for field-deployable diagnostic tools for rapid and ultrasensitive detection. © 2023 Society of Chemical Industry.


Assuntos
Acremonium , Ascomicetos , Verticillium , Doenças das Plantas/microbiologia , Verticillium/genética , Solo
17.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138993

RESUMO

Verticillium wilt is a soil-borne vascular disease caused by the fungal pathogen Verticillium dahliae. It causes great harm to upland cotton (Gossypium hirsutum) yield and quality. A previous study has shown that Hen egg white lysozyme (HEWL) exerts strong inhibitory activity against V. dahliae in vitro. In the current study, we introduced the HEWL gene into cotton through the Agrobacterium-mediated transformation, and the exogenous HEWL protein was successfully expressed in cotton. Our study revealed that HEWL was able to significantly inhibit the proliferation of V. dahlia in cotton. Consequently, the overexpression of HEWL effectively improved the resistance to Verticillium wilt in transgenic cotton. In addition, ROS accumulation and NO content increased rapidly after the V. dahliae inoculation of plant leaves overexpressing HEWL. In addition, the expression of the PR genes was significantly up-regulated. Taken together, our results suggest that HEWL significantly improves resistance to Verticillium wilt by inhibiting the growth of pathogenic fungus, triggering ROS burst, and activating PR genes expression in cotton.


Assuntos
Gossypium , Verticillium , Gossypium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Verticillium/metabolismo , Muramidase/metabolismo , Clara de Ovo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Physiol Plant ; 175(6): e14113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148227

RESUMO

Plant Carbonic anhydrases (Cas) have been shown to be stress-responsive enzymes that may play a role in adapting to adverse conditions. Cotton is a significant economic crop in China, with upland cotton (Gossypium hirsutum) being the most widely cultivated species. We conducted genome-wide identification of the ßCA gene in six cotton species and preliminary analysis of the ßCA gene in upland cotton. In total, 73 ßCA genes from six cotton species were identified, with phylogenetic analysis dividing them into five subgroups. GHßCA proteins were predominantly localized in the chloroplast and cytoplasm. The genes exhibited conserved motifs, with motifs 1, 2, and 3 being prominent. GHßCA genes were unevenly distributed across chromosomes and were associated with stress-responsive cis-regulatory elements, including those responding to light, MeJA, salicylic acid, abscisic acid, cell cycle regulation, and defence/stress. Expression analysis indicated that GHßCA6, GHßCA7, GHßCA10, GHßCA15, and GHßCA16 were highly expressed under various abiotic stress conditions, whereas GHßCA3, GHßCA9, GHßCA10, and GHßCA18 had higher expression patterns under Verticillium dahliae infection at different time intervals. In Gossypium thurberi, GthßCA1, GthßCA2, and GthßCA4 showed elevated expression across stress conditions and tissues. Silencing GHßCA10 through VIGS increased Verticillium wilt severity and reduced lignin deposition compared to non-silenced plants. GHßCA10 is crucial for cotton's defense against Verticillium dahliae. Further research is needed to understand the underlying mechanisms and develop strategies to enhance resistance against Verticillium wilt.


Assuntos
Ascomicetos , Resiliência Psicológica , Verticillium , Gossypium/genética , Gossypium/metabolismo , Filogenia , Verticillium/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Nat Commun ; 14(1): 7392, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968319

RESUMO

Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.


Assuntos
Ascomicetos , Pontos Quânticos , Verticillium , Resistência à Doença/genética , Espécies Reativas de Oxigênio/metabolismo , Polietilenoimina , Gossypium/genética , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
20.
Int J Biol Macromol ; 253(Pt 7): 127388, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858648

RESUMO

Verticillium wilt of cotton is a very serious soil-borne disease and there is no effective control method. The mechanism of Gossypium hirsutum thaumatin-like protein 1(GhTLP1) in upland cotton regulating Verticillium wilt resistance has been an uncovered research approach. GhTLP1 is mainly localized in the cell wall. Overexpression of GhTLP1 significantly enhanced Arabidopsis plants resistance to Verticillium dahliae, while its homologous mutant tlp1 in Arabidopsis was more susceptible to the pathogen, and the heterologous complement line (EC) recovered resistance to V. dahliae. GhTLP1 responds to jasmonate acid (JA) and abscisic acid (ABA) hormones and regulates mitogen-activated protein kinase (MAPK) signaling pathway-plant pathway to enhance Arabidopsis plants resistance to V. dahliae. Silencing GhTLP1 resulted decrease in cotton plants resistance to V. dahliae. Moreover, the mutation of GhTLP1 at site Tyr97 and Tyr199 with the phosphorylation also decreased plant resistance to V. dahliae. Therefore, GhTLP1 phosphorylation was observed important in cotton plants against V. dahliae. Further analysis demonstrated that GhTLP1 interacted with gossypium hirsutum laccase 14 (GhLAC14) to enhance plants resistance to V. dahliae. Silencing GhLAC14 resulted decrease in cotton plants resistance to V. dahliae. Here, we propose that GhTLP1 is a potential molecular target for improving resistance to Verticillium wilt in cotton.


Assuntos
Arabidopsis , Verticillium , Gossypium/genética , Gossypium/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Verticillium/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transdução de Sinais , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...