Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Front Immunol ; 15: 1347676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590519

RESUMO

The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.


Assuntos
Influenza Humana , Probióticos , Camundongos , Animais , Humanos , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Butiratos , Faecalibacterium/genética
2.
PLoS One ; 19(3): e0299946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547205

RESUMO

BACKGROUND: Alterations in the composition and abundance of the intestinal microbiota occur in non-alcoholic fatty liver disease (NAFLD). However, the results are inconsistent because of differences in the study design, subject area, and sequencing methodology. In this study, we compared the diversity and abundance of the intestinal microbiota of patients with NAFLD and healthy individuals through a systematic review and meta-analysis. METHODS: Three databases (PubMed, EMBASE, and Cochrane Library) were searched from their inception to March 20, 2023. A meta-analysis was performed using Stata software to analyze variations in the richness and abundance of the intestinal microbiota in patients with NAFLD. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used for quality assessment. RESULTS: A total of 28 articles were included. Shannon diversity was reduced in patients with NAFLD (SMD = -0.24 (95% CI -0.43-0.05, I2 = 71.7%). The relative abundance of Ruminococcus, Faecalibacterium, and Coprococcus all decreased, with total SMDs of -0.96 (95% CI -1.29 to -0.63, I2 = 4.8%), -1.13 (95% CI -2.07 to -0.19, I2 = 80.5%), and -1.66 (95% CI -3.04 to -0.28, I2 = 91.5%). Escherichia was increased in individuals with NAFLD (SMD = 1.78, 95% CI 0.12 to 3.45, I2 = 94.4%). CONCLUSION: Increasing the species diversity and altering the abundance of specific gut microbiota, including Coprococcus, Faecalibacterium, Ruminococcus, and Escherichia, may be beneficial for improving NAFLD.


Assuntos
Microbioma Gastrointestinal , Cocos Gram-Positivos , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/microbiologia , Microbioma Gastrointestinal/genética , Faecalibacterium , Projetos de Pesquisa , Clostridiales
3.
mBio ; 15(2): e0294323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38226811

RESUMO

Long-term/high-dose glucocorticoid (GC) use results in glycolipid metabolism disorder, which severely limits its clinical application. The role of the gut microbiota and its metabolites in GC-induced glycolipid metabolism disorder remains unclear. Our previous human study found that obvious gut microbiota dysbiosis characterized by an increasing abundance of Proteobacteria and a decreased abundance of Lachnospiraceae and Faecalibacterium were observed in patients with endogenous hypercortisolism. In this study, we established a mouse model of GC-induced glycolipid metabolism disorder (Dex group) and found that the relative abundances of Proteobacteria and Parasuttrerella were increased, while the abundances of Lachnospiraceae, Faecalibacterium, and Lachnospiraceae_NK4A136_group were decreased significantly in the Dex group. Compared with the control group, serum total short-chain fatty acids (SCFAs), acetic acid, propionic acid, and GLP-1 levels were all decreased in the Dex group. The mRNA expression of the GPR41 receptor and Pcsk1 in the colon was significantly decreased in the Dex group. Furthermore, GC-induced glycolipid metabolism disorder could be alleviated by depletion of the gut microbiota or fecal bacteria transplantation with control bacteria. The abundances of Lachnospiraceae_NK4A136_group and the serum GLP-1 levels were significantly increased, while the abundances of Proteobacteria and Parasutterella were significantly decreased after fecal bacteria transplantation with control bacteria. Our work indicates that gut microbiota dysbiosis and decreased levels of serum acetic acid and propionic acid may participate in GC-induced glycolipid metabolism disorder. These findings may provide novel insights into the prevention and treatment of GC-induced metabolic disorders.IMPORTANCEThe role of the gut microbiota in glucocorticoid (GC)-induced glycolipid metabolism disorder remains unclear. In our study, gut microbiota dysbiosis characterized by an increased abundance of Proteobacteria/Parasuttrerella and a decreased abundance of Lachnospiraceae_NK4A136_group was observed in mice with GC-induced glycolipid metabolism disorder. Some bacteria were shared in our previous study in patients with endogenous hypercortisolism and the mouse model used in the study. Furthermore, the depletion of the gut microbiota and fecal bacteria transplantation with control bacteria could alleviate GC-induced glycolipid metabolism disorder. Plasma acetic acid, propionic acid, and GLP-1 and the mRNA expression of the GPR41 receptor and Pcsk1 in the colon were decreased significantly in mice with GC-induced glycolipid metabolism disorder, which indicated that the gut microbiota/SCFA/GPR41/GLP-1 axis may participate in GC-induced glycolipid metabolism disorder. Our findings indicate that the gut microbiota may serve as a novel therapeutic target for GC-related metabolic disorders.


Assuntos
Síndrome de Cushing , Microbioma Gastrointestinal , Doenças Metabólicas , Humanos , Animais , Camundongos , Propionatos , Glucocorticoides/efeitos adversos , Disbiose/induzido quimicamente , Proteobactérias , Ácido Acético , Clostridiales , Modelos Animais de Doenças , Faecalibacterium , Peptídeo 1 Semelhante ao Glucagon , Glicolipídeos , RNA Mensageiro
4.
Sci Total Environ ; 912: 169057, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056640

RESUMO

Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial ß-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial ß-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.


Assuntos
Galinhas , Microbioma Gastrointestinal , Embrião de Galinha , Animais , Galinhas/microbiologia , Espermidina/farmacologia , Faecalibacterium , Antibacterianos/farmacologia
5.
Microb Biotechnol ; 17(1): e14374, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38019136

RESUMO

Several gut microbial species within the Faecalibacterium genus have emerged as promising next-generation probiotics (NGP) due to their multifunctional protective effects against gastrointestinal and systemic disorders. To enable clinical studies and further applications, improved methods for cultivating Faecalibacterium must be developed in compliance with current Good Manufacturing Practice regulations, which is complicated by its oxygen sensitivity and complex nutritional requirements. Different yeast-based nutrients (YBNs), including yeast extracts (YEs) and yeast peptones (YPs), are ubiquitously used when cultivating microbes to supply a broad range of macro- and micronutrients. In this study, we evaluated six experimental YBNs, namely three YEs, two YPs and a yeast cell wall product (YCW), and eight B-vitamins in the cultivation of Faecalibacterium duncaniae A2-165, former Faecalibacterium prausnitzii, using growth assays in microtitre plates, dose-effect studies in Hungate tube fermentations and fully controlled bioreactor experiments. We demonstrated that YEs promote F. duncaniae A2-165 growth in a nutritionally limited medium, while YPs and YCW lacked essential growth factors for enabling cell propagation. High cell density was obtained in controlled bioreactors using a medium containing 2-4% of a selected YE and 1% casein peptone (3.4 ± 1.7 × 109 -5.1 ± 1.3 × 109 cells mL-1 ). Among all tested B-vitamins, we identified B5 as a strong growth promoter. Replacing casein peptone with YP and supplementing with vitamin B5 further increased biomass by approximately 50% (6.8 ± 1.7 × 109 cells mL-1 ). Hence, empirical selection of YE, YP and B5 allowed formulation of a high-yielding animal allergen-free nutritive medium to produce F. duncaniae A2-165. Selecting nutritionally suitable YBNs and combining these with other key nutrients are important steps for optimizing production of NGP with high yields and lower cost.


Assuntos
Ácido Pantotênico , Vitaminas , Animais , Reatores Biológicos , Fermentação , Leveduras , Faecalibacterium
6.
Nutrients ; 15(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37836544

RESUMO

Gout is a form of prevalent and painful inflammatory arthritis characterized by elevated serum urate (SUA) levels. The gut microbiota (GM) is believed to influence the development of gout and SUA levels. Our study aimed to explore the causal relationship between GM composition and gout, as well as SUA levels, utilizing a two-sample Mendelian Randomization (MR) approach. A total of 196 GM taxa from five levels were available for analysis. We identified five taxa associated with SUA levels and 10 taxa associated with gout. In reverse MR analysis, we discovered that gout affected the composition of five GM taxa, while SUA levels influenced the composition of 30 GM taxa. Combining existing research, our study unveiled a potential negative feedback loop between phylum Actinobacteria and SUA levels, establishing connections with gout. We also proposed two novel associations connecting GM taxa (genus Faecalibacterium and genus Prevotella9), SUA levels, and gout. These findings provide compelling evidence of causal relationships between specific GM taxa with SUA levels and gout, contributing valuable insights for the treatment of gout.


Assuntos
Microbioma Gastrointestinal , Gota , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Gota/genética , Causalidade , Faecalibacterium , Estudo de Associação Genômica Ampla
7.
Nutrients ; 15(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686878

RESUMO

Cystic Fibrosis-related gut dysbiosis (CFRGD) has become a recognised complication in children with this condition, and current evidence remains insufficient to guide the selection of probiotic strains for supplementation treatments. The aim of this study was to characterise the effect of three probiotic strains on CFRGD by means of a dynamic in vitro simulation of the colonic fermentation (SHIME®). The configuration of the system included three bioreactors colonised with the faecal inoculum of a child with cystic fibrosis. For 20 days, each bioreactor was supplied daily with either Lacticaseibacillus rhamnosus GG (ATCC 53103 TM), Limosilactobacillus reuteri (DSM 17938) or Lactiplantibacillus plantarum (DSM 22266). The baseline microbiota was characterised by a high abundance of Prevotella, Faecalibacterium and Acidaminococcus genera. After 20 days of supplementation, L. rhamnosus and L. plantarum reduced Prevotella significantly, and the three strains led to increased Faecalibacterium and Bifidobacterium and decreased Acidaminococcus, with some of these changes being maintained 10 days after ceasing supplementation. The metabolic activity remained unaltered in terms of short-chain fatty acids, but branched-chain fatty acids showed a significant decrease, especially with L. plantarum. Additionally, ammonia decreased at 20 days of supplementation, and lactate continuously increased with the three strains. The effects on colonic microbiota of L. rhamnosus, L. reuteri or L. plantarum were established, including increased beneficial bacteria, such as Faecalibacterium, and beneficial metabolites such as lactate; and on the other hand, a reduction in pathogenic genera, including Prevotella or Acidaminococcus and branched-chain fatty acids, overall supported their use as probiotics in the context of CFRGD.


Assuntos
Fibrose Cística , Limosilactobacillus reuteri , Microbiota , Criança , Humanos , Lactobacillaceae , Ácido Láctico , Disbiose , Faecalibacterium , Ácidos Graxos
8.
Pol J Microbiol ; 72(3): 299-306, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725897

RESUMO

A single-arm study was conducted with 10 children aged 2-12 years with severe cow's milk allergy (CMA) requiring complete allergen elimination. Subjects were administered kestose, a prebiotic, at 1 or 2 g/day for 12 weeks. Results of a subsequent oral food challenge (OFC) showed a statistically significant increase in the total dose of cow's milk ingestion (1.6 ml vs. 2.7 ml, p = 0.041). However, the overall evaluation of the OFC results, TS/Pro (total score of Anaphylaxis Scoring Aichi (ASCA)/cumulative dose of protein), showed no statistically significant improvement, although the values were nominally improved in seven out of 10 subjects. The 16S rDNA analysis of fecal samples collected from the subjects revealed a statistically significant increase in the proportion of Faecalibacterium spp. (3.8 % vs. 6.8%, p = 0.013), a type of intestinal bacterium that has been reported to be associated with food allergy. However, no statistically significant correlation was found between Faecalibacterium spp. abundance and the results of the OFC.


Assuntos
Hipersensibilidade a Leite , Animais , Bovinos , Feminino , Leite , DNA Ribossômico , Faecalibacterium , Fezes
9.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37451743

RESUMO

In humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront. Its representation is also diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is frequently present at reduced levels in individuals with gastrointestinal diseases or disorders. In this review, we first thoroughly describe updates to the taxonomy of Faecalibacterium, which has transformed a single-species taxon to a multispecies taxon over the last decade. We then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were published. Next, we examine current available strategies for modulating Faecalibacterium levels in the gut. Finally, we summarize the mechanisms underlying the beneficial effects that have been attributed to this genus. Together, epidemiological and experimental data strongly support the use of Faecalibacterium as a next-generation probiotic (NGP) or live biotherapeutic product (LBP).


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Faecalibacterium , Doenças Inflamatórias Intestinais/microbiologia , Bactérias
10.
Appl Environ Microbiol ; 89(7): e0060623, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37382539

RESUMO

Obligate anaerobic bacteria in genus Faecalibacterium are among the most dominant taxa in the colon of healthy individuals and contribute to intestinal homeostasis. A decline in the abundance of this genus is associated with the occurrence of various gastrointestinal disorders, including inflammatory bowel diseases. In the colon, these diseases are accompanied by an imbalance between the generation and elimination of reactive oxygen species (ROS), and oxidative stress is closely linked to disruptions in anaerobiosis. In this work, we explored the impact of oxidative stress on several strains of faecalibacteria. An in silico analysis of complete genomes of faecalibacteria revealed the presence of genes encoding O2- and/or ROS-detoxifying enzymes, including flavodiiron proteins, rubrerythrins, reverse rubrerythrins, superoxide reductases, and alkyl peroxidase. However, the presence and the number of these detoxification systems varied greatly among faecalibacteria. These results were confirmed by O2 stress survival tests, in which we found that strains differed widely in their sensitivity. We showed the protective role of cysteine, which limited the production of extracellular O2•- and improved the survival of Faecalibacterium longum L2-6 under high O2 tension. In the strain F. longum L2-6, we observed that the expression of genes encoding detoxifying enzymes was upregulated in the response to O2 or H2O2 stress but with different patterns of regulation. Based on these results, we propose a first model of the gene regulatory network involved in the response to oxidative stress in F. longum L2-6. IMPORTANCE Commensal bacteria in the genus Faecalibacterium have been proposed for use as next-generation probiotics, but efforts to cultivate and exploit the potential of these strains have been limited by their sensitivity to O2. More broadly, little is known about how commensal and health-associated bacterial species in the human microbiome respond to the oxidative stress that occurs as a result of inflammation in the colon. In this work, we provide insights regarding the genes that encode potential mechanisms of protection against O2 or ROS stress in faecalibacteria, which may facilitate future advances in work with these important bacteria.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Faecalibacterium/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas/metabolismo , Bactérias/metabolismo
11.
Gastroenterology ; 165(3): 670-681, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263307

RESUMO

BACKGROUND & AIMS: The cause of Crohn's disease (CD) is unknown, but the current hypothesis is that microbial or environmental factors induce gut inflammation in genetically susceptible individuals, leading to chronic intestinal inflammation. Case-control studies of patients with CD have cataloged alterations in the gut microbiome composition; however, these studies fail to distinguish whether the altered gut microbiome composition is associated with initiation of CD or is the result of inflammation or drug treatment. METHODS: In this prospective cohort study, 3483 healthy first-degree relatives (FDRs) of patients with CD were recruited to identify the gut microbiome composition that precedes the onset of CD and to what extent this composition predicts the risk of developing CD. We applied a machine learning approach to the analysis of the gut microbiome composition (based on 16S ribosomal RNA sequencing) to define a microbial signature that associates with future development of CD. The performance of the model was assessed in an independent validation cohort. RESULTS: In the validation cohort, the microbiome risk score (MRS) model yielded a hazard ratio of 2.24 (95% confidence interval, 1.03-4.84; P = .04), using the median of the MRS from the discovery cohort as the threshold. The MRS demonstrated a temporal validity by capturing individuals that developed CD up to 5 years before disease onset (area under the curve > 0.65). The 5 most important taxa contributing to the MRS included Ruminococcus torques, Blautia, Colidextribacter, an uncultured genus-level group from Oscillospiraceae, and Roseburia. CONCLUSION: This study is the first to demonstrate that gut microbiome composition is associated with future onset of CD and suggests that gut microbiome is a contributor in the pathogenesis of CD.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Inflamação , Humanos , Inflamação/genética , Estudos Prospectivos , Faecalibacterium , Complexo Antígeno L1 Leucocitário
12.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990641

RESUMO

Faecalibacterium prausnitzii is a promising biomarker of a healthy human microbiota. However, previous studies reported the heterogeneity of this species and found the presence of several distinct groups at the species level among F. prausnitzii strains. Our recent study revealed that methods previously developed for quantification of F. prausnitzii were not specific to the species level because of the heterogeneity within the F. prausnitzii species and the application of 16S rRNA gene, which is an invalid genetic marker for the species. Therefore, previously available data failed to provide information on different groups, which limits our understanding of the importance of this organism for host health. Here, we propose an alternative gene marker for quantification of F. prausnitzii-related taxa. A total of nine group-specific primer pairs were designed by targeting rpoA gene sequences. The newly developed rpoA-based qPCR successfully quantified targeted groups. Application of the developed qPCR assay in six healthy adults revealed marked differences in abundance and prevalence among the different targeted groups in stool samples. The developed assay will facilitate detailed understanding of the impact of Faecalibacterium populations at the group level on human health and to understand the links between depletion of specific groups in Faecalibacterium and different human disorders.


Assuntos
Faecalibacterium prausnitzii , Microbiota , Adulto , Humanos , Faecalibacterium/genética , Marcadores Genéticos , RNA Ribossômico 16S/genética , Faecalibacterium prausnitzii/genética
13.
Sci Rep ; 12(1): 15115, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068280

RESUMO

We have investigated the diversity and composition of gut microbiotas isolated from AD (Alzheimer's disease) patients (n = 41) and healthy seniors (n = 43) from Nur-Sultan city (Kazakhstan). The composition of the gut microbiota was characterized by 16S ribosomal RNA sequencing. Our results demonstrated significant differences in bacterial abundance at phylum, class, order, and genus levels in AD patients compared to healthy aged individuals. Relative abundance analysis has revealed increased amount of taxa belonging to Acidobacteriota, Verrucomicrobiota, Planctomycetota and Synergistota phyla in AD patients. Among bacterial genera, microbiotas of AD participants were characterized by a decreased amount of Bifidobacterium, Clostridia bacterium, Castellaniella, Erysipelotrichaceae UCG-003, Roseburia, Tuzzerella, Lactobacillaceae and Monoglobus. Differential abundance analysis determined enriched genera of Christensenellaceae R-7 group, Prevotella, Alloprevotella, Eubacterium coprostanoligenes group, Ruminococcus, Flavobacterium, Ohtaekwangia, Akkermansia, Bacteroides sp. Marseille-P3166 in AD patients, whereas Levilactobacillus, Lactiplantibacillus, Tyzzerella, Eubacterium siraeum group, Monoglobus, Bacteroides, Erysipelotrichaceae UCG-003, Veillonella, Faecalibacterium, Roseburia, Haemophilus were depleted. We have also found correlations between some bacteria taxa and blood serum biochemical parameters. Adiponectin was correlated with Acidimicrobiia, Faecalibacterium, Actinobacteria, Oscillospiraceae, Prevotella and Christensenellaceae R-7. The Christensenellaceae R-7 group and Acidobacteriota were correlated with total bilirubin, while Firmicutes, Acidobacteriales bacterium, Castellaniella alcaligenes, Lachnospiraceae, Christensenellaceae and Klebsiella pneumoniae were correlated with the level of CRP in the blood of AD patients. In addition, we report the correlations found between disease severity and certain fecal bacteria. This is the first reported study demonstrating gut microbiota alterations in AD in the Central Asian region.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Idoso , Bactérias/genética , Bacteroides/genética , Faecalibacterium/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Cazaquistão , RNA Ribossômico 16S/genética
14.
Gut Microbes ; 14(1): 2102885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951731

RESUMO

ABBREVIATIONS: LT, liver transplantation; HCC, hepatocellular carcinoma; IS, immunosuppressants; DC, dendritic cells; Treg, regulatory T; Th17, T helper 17; AST, aspartate transaminase; ALT, alanine transaminase; OUT, operational taxonomic unit; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; IL, interleukin; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; IP-10, interferon γ-induced protein; MCP-1, monocyte chemoattractant protein-1; ACR, acute cellular rejection; NF-κB, nuclear factor κB; PT INR, prothrombin time; QC, quality check; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Transplante de Fígado , Citocinas , Faecalibacterium/metabolismo , Homeostase , Humanos , Leucócitos Mononucleares/metabolismo , NF-kappa B , Fator de Necrose Tumoral alfa/metabolismo
15.
Sci Rep ; 12(1): 11424, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794137

RESUMO

The risk of colorectal cancer (CRC) depends on environmental and genetic factors. Among environmental factors, an imbalance in the gut microbiota can increase CRC risk. Also, microbiota is influenced by host genetics. However, it is not known if germline variants influence CRC development by modulating microbiota composition. We investigated germline variants associated with the abundance of bacterial populations in the normal (non-involved) colorectal mucosa of 93 CRC patients and evaluated their possible role in disease. Using a multivariable linear regression, we assessed the association between germline variants identified by genome wide genotyping and bacteria abundances determined by 16S rRNA gene sequencing. We identified 37 germline variants associated with the abundance of the genera Bacteroides, Ruminococcus, Akkermansia, Faecalibacterium and Gemmiger and with alpha diversity. These variants are correlated with the expression of 58 genes involved in inflammatory responses, cell adhesion, apoptosis and barrier integrity. Genes and bacteria appear to be involved in the same processes. In fact, expression of the pro-inflammatory genes GAL, GSDMD and LY6H was correlated with the abundance of Bacteroides, which has pro-inflammatory properties; abundance of the anti-inflammatory genus Faecalibacterium correlated with expression of KAZN, with barrier-enhancing functions. Both the microbiota composition and local inflammation are regulated, at least partially, by the same germline variants. These variants may regulate the microenvironment in which bacteria grow and predispose to the development of cancer. Identification of these variants is the first step to identifying higher-risk individuals and proposing tailored preventive treatments that increase beneficial bacterial populations.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Bacteroides/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Faecalibacterium/genética , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética , Microambiente Tumoral
16.
Nutrients ; 14(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889903

RESUMO

Evidence linking Faecalibacterium prausnitzii abundance to nonalcoholic fatty liver disease (NAFLD) is accumulating; however, the causal relationship remains obscure. In this study, 12 F. prausnitzii strains were orally administered to high fat diet fed C57BL/6J mice for 12 weeks to evaluate the protective effects of F. prausnitzii on NAFLD. We found that five F. prausnitzii strains, A2-165, LB8, ZF21, PL45, and LC49, significantly restored serum lipid profiles and ameliorated glucose intolerance, adipose tissue dysfunction, hepatic steatosis, inflammation, and oxidative stress in a mouse model of NAFLD. Moreover, two strains, LC49 and LB8, significantly enhanced short-chain fatty acid (SCFA) production and modulated the gut microbiota. Based on the combined analysis of linear discriminant analysis effect size and microbial communities, the core microbiome related to NAFLD comprised Odoribacter, Roseburia, Erysipelatoclostridium, Tyzzerella, Faecalibaculum, Blautia, and Acetatifactor, and the last five genera can be reversed by treatment with the LC49 and LB8 strains. Additionally, the LC49 and LB8 strains enriched Lactobacillus, Ileibacterium, Faecalibacterium, Dubosiella, and Bifidobacterium and downregulated pathways involving carbohydrate metabolism, amino acid metabolism, and fatty acid biosynthesis. Interestingly, LC49 supplementation also upregulated tryptophan metabolism, glutathione metabolism, and valine, leucine, and isoleucine degradation, which might be related to NAFLD prevention. Collectively, F. prausnitzii LC49 and LB8 exerted considerable anti-NAFLD and microbiota-regulating effects, indicating their potential as probiotic agents for NAFLD treatment.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Faecalibacterium , Faecalibacterium prausnitzii , Firmicutes , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
17.
Nutrients ; 14(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35565742

RESUMO

An underlying cause of histamine intolerance is diamine oxidase (DAO) deficiency, which leads to defective homeostasis and a higher systemic absorption of histamine. Impaired DAO activity may have a genetic, pharmacological or pathological origin. A recent proposal also suggests it can arise from an alteration in the gut microbiota, although only one study has explored this hypothesis to date. A greater abundance of histamine-secreting bacteria in the gut could lead to the development of histamine intolerance. Thus, the aim of this study was to characterize the composition of the intestinal microbiota of patients with histamine intolerance symptoms and compare it with that of healthy individuals. The study was performed by sequencing bacterial 16S rRNA genes (V3-V4 region) and analyzing the data using the EzBioCloud Database. Dysbiosis of the gut microbiota was observed in the histamine intolerance group who, in comparison with the healthy individuals, had a significantly lower proportion of Prevotellaceae, Ruminococcus, Faecalibacterium and Faecablibacterium prausnitzii, which are bacteria related to gut health. They also had a significantly higher abundance of histamine-secreting bacteria, including the genera Staphylococcus and Proteus, several unidentified genera belonging to the family Enterobacteriaceae and the species Clostridium perfringens and Enterococcus faecalis. A greater abundance of histaminogenic bacteria would favor the accumulation of high levels of histamine in the gut, its subsequent absorption in plasma and the appearance of adverse effects, even in individuals without DAO deficiency.


Assuntos
Amina Oxidase (contendo Cobre) , Microbioma Gastrointestinal , Bactérias , Disbiose/microbiologia , Faecalibacterium , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Histamina/efeitos adversos , Humanos , RNA Ribossômico 16S/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-35483736

RESUMO

OBJECTIVE: The study objective was to compare gut microbiome diversity and composition in SARS-CoV-2 PCR-positive patients whose symptoms ranged from asymptomatic to severe versus PCR-negative exposed controls. DESIGN: Using a cross-sectional design, we performed shotgun next-generation sequencing on stool samples to evaluate gut microbiome composition and diversity in both patients with SARS-CoV-2 PCR-confirmed infections, which had presented to Ventura Clinical Trials for care from March 2020 through October 2021 and SARS-CoV-2 PCR-negative exposed controls. Patients were classified as being asymptomatic or having mild, moderate or severe symptoms based on National Institute of Health criteria. Exposed controls were individuals with prolonged or repeated close contact with patients with SARS-CoV-2 infection or their samples, for example, household members of patients or frontline healthcare workers. Microbiome diversity and composition were compared between patients and exposed controls at all taxonomic levels. RESULTS: Compared with controls (n=20), severely symptomatic SARS-CoV-2-infected patients (n=28) had significantly less bacterial diversity (Shannon Index, p=0.0499; Simpson Index, p=0.0581), and positive patients overall had lower relative abundances of Bifidobacterium (p<0.0001), Faecalibacterium (p=0.0077) and Roseburium (p=0.0327), while having increased Bacteroides (p=0.0075). Interestingly, there was an inverse association between disease severity and abundance of the same bacteria. CONCLUSION: We hypothesise that low bacterial diversity and depletion of Bifidobacterium genera either before or after infection led to reduced proimmune function, thereby allowing SARS-CoV-2 infection to become symptomatic. This particular dysbiosis pattern may be a susceptibility marker for symptomatic severity from SARS-CoV-2 infection and may be amenable to preinfection, intrainfection or postinfection intervention. TRIAL REGISTRATION NUMBER: NCT04031469 (PCR-) and 04359836 (PCR+).


Assuntos
COVID-19 , Microbiota , Bifidobacterium/genética , Estudos Transversais , Faecalibacterium , Humanos , SARS-CoV-2
19.
Artigo em Inglês | MEDLINE | ID: mdl-35416766

RESUMO

Faecalibacterium prausnitzii is one of the most important butyrate-producing bacteria in the human gut. Previous studies have suggested the presence of several phylogenetic groups, with differences at the species level, in the species, and a taxonomic re-evaluation is thus essential for further understanding of ecology of the important human symbiont. Here we examine the phenotypic, physiological, chemotaxonomic and phylogenomic characteristics of six F. prausnitzii strains (BCRC 81047T=ATCC 27768T, A2-165T=JCM 31915T, APC918/95b=JCM 39207, APC942/30-2=JCM 39208, APC924/119=JCM 39209 and APC922/41-1T=JCM 39210T) deposited in public culture collections with two reference strains of Faecalibacterium butyricigenerans JCM 39212T and Faecalibacterium longum JCM 39211T. Faecalibacterium sp. JCM 17207T isolated from caecum of broiler chicken was also included. Three strains of F. prausnitzii (BCRC 81047T, JCM 39207 and JCM 39209) shared more than 96.6 % average nucleotide identity (ANI) and 69.6 % digital DNA-DNA hybridization (dDDH) values, indicating that the three strains are members of the same species. On the other hand, the remaining three strains of F. prausnitzii (JCM 31915T, JCM 39208 and JCM 39210T) were clearly separated from the above three strains based on the ANI and dDDH values. Rather, JCM 39208 showed ANI and dDDH values over the cut-off values of species discrimination (>70 % dDDH and >95-96 % ANI) with F. longum JCM 39211T, whereas JCM 31915T, JCM 39210T and JCM 17207T did not share dDDH and ANI values over the currently accepted cut-off values with any of the tested strains, including among them. Furthermore, the cellular fatty acid patterns of these strains were slightly different from other F. prausnitzii strains. Based on the collected data, F. prausnitzii JCM 31915T, F. prausnitzii JCM 39210T and Faecalibacterium sp. JCM 17207T represent three novel species of the genus Faecalibacterium, for which the names Faecalibacterium duncaniae sp. nov. (type strain JCM 31915T=DSM 17677T=A2-165T), Faecalibacterium hattorii sp. nov. (type strain JCM 39210T=DSM 107841T=APC922/41-1T) and Faecalibacterium gallinarum sp. nov. (type strain JCM 17207T=DSM 23680T=ic1379T) are proposed.


Assuntos
Galinhas , Ácidos Graxos , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Faecalibacterium , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Dig Dis ; 40(6): 793-795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168239

RESUMO

Faecalibacterium and Roseburia are major producers of butyrate in the intestine. A reduced abundance of the organisms and a concurrent reduction in butyrate levels are associated with inflammatory bowel disease.


Assuntos
Butiratos , Doenças Inflamatórias Intestinais , Humanos , Faecalibacterium , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...