Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.573
Filtrar
1.
Arch Microbiol ; 206(4): 144, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460008

RESUMO

Plant-microbe associations have been regarded as an exciting topic of research due to their potential as environment friendly alternatives for stimulating crop growth and development. Seeds of Tamarindus indica L. have been chosen for the present study as seed endophytes prefer larger or nutritive cotyledon and hard seed coats for their colonization. The main objectives of our study were to isolate and identify the seed endophytes, their bioefficacy, and responsible chemical compounds. In a dose-dependent experiment, tamarind seed exudates (TSE) showed plant growth-promoting properties on Oryza sativa (53-81%), Daucus carota (10-31%), and Raphanus sativa (21-42%). Identification of the bacterial load in TSE through 16S rRNA sequencing revealed the existence of two bacterial species, Acinetobacter johnsonii and Niallia nealsonii. This is the first report of these two bacteria as seed endophytes of Tamarindus indica L. HRLC-MS analysis of TSE confirmed the presence of indole derivatives, primarily indole-3-lactic acid (ILA). The quantitative phytochemical estimation of bacterial culture filtrates revealed that indole-like substances were present in the extracts only in A. johnsonii at a concentration of 0.005 mg/ml of indole acetic acid equivalent. Experimental results suggested that the stimulatory activity of TSE was caused by the presence of A. johnsonii, a potential plant growth-promoting bacteria that produced indole-like compounds. This study suggests tamarind seed exudates with its endophytic microbiota as a potent plant growth-promoting agent that may find use as a cheap and sustainable source of metabolites useful in the agro-industries.


Assuntos
Acinetobacter , Tamarindus , Tamarindus/química , Endófitos , RNA Ribossômico 16S/genética , Sementes/microbiologia , Plantas , Bactérias/genética
2.
World J Microbiol Biotechnol ; 40(5): 146, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538920

RESUMO

Bacterial species within the Acinetobacter baumannii-calcoaceticus (Acb) complex are very similar and are difficult to discriminate. Misidentification of these species in human infection may lead to severe consequences in clinical settings. Therefore, it is important to accurately discriminate these pathogens within the Acb complex. Raman spectroscopy is a simple method that has been widely studied for bacterial identification with high similarities. In this study, we combined surfaced-enhanced Raman spectroscopy (SERS) with a set of machine learning algorithms for identifying species within the Acb complex. According to the results, the support vector machine (SVM) model achieved the best prediction accuracy at 98.33% with a fivefold cross-validation rate of 96.73%. Taken together, this study confirms that the SERS-SVM method provides a convenient way to discriminate between A. baumannii, Acinetobacter pittii, and Acinetobacter nosocomialis in the Acb complex, which shows an application potential for species identification of Acinetobacter baumannii-calcoaceticus complex in clinical settings in near future.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Humanos , Análise Espectral Raman , Infecções por Acinetobacter/microbiologia
3.
Microbiol Spectr ; 12(4): e0383623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483164

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. represent major threats and have few approved therapeutic options. Non-|fermenting Gram-negative isolates were collected from hospitalized inpatients from 49 sites in 6 European countries between 01 January 2020 and 31 December 2020 and underwent susceptibility testing against cefiderocol and ß-lactam/ß-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L), cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates were analyzed by whole-genome sequencing to identify resistance mechanisms. Overall, 1,451 (950 P. aeruginosa; 501 Acinetobacter spp.) isolates were collected, commonly from the respiratory tract (42.0% and 39.3%, respectively). Cefiderocol susceptibility was higher than |ß|-|l|a|c|t|a|m|/|ß|-|l|a|c|t|a|mase| inhibitor combinations against P. aeruginosa (98.9% vs 83.3%-91.4%), and P. |aeruginosa resistant to meropenem (n = 139; 97.8% vs 12.2%-59.7%), ß-lactam/ß-lactamase inhibitor combinations (93.6%-98.1% vs 10.7%-71.8%), and both meropenem and ceftazidime-avibactam (96.7% vs 5.0%-||45.0%) or |ceftolozane-tazobactam (98.4% vs 8.1%-54.8%), respectively. Cefiderocol and sulbactam-durlobactam susceptibilities were high against Acinetobacter spp. (92.4% and 97.0%) and meropenem-resistant Acineto|bacter |spp. (n = 227; 85.0% and 93.8%) but lower against sulbactam-durlobactam- (n |= 15; 13.3%) and cefiderocol- (n = 38; 65.8%) resistant isolates, respectively. Among meropenem-resistant P. aeruginosa and Acinetobacter spp., the most common ß-||lactamase genes were metallo-ß-lactamases [30/139; blaVIM-2 (15/139)] and oxacillinases [215/227; blaOXA-23 (194/227)], respectively. Acquired ß-lactamase genes were identified in 1/10 and 32/38 of cefiderocol-resistant P. aeruginosa and Acinetobacter spp., and pirA-like or piuA mutations in 10/10 and 37/38, respectively. Conclusion: cefiderocol susceptibility was high against P. aeruginosa and Acinetobacter spp., including meropenem-resistant isolates and those resistant to recent ß-lactam/ß-lactamase inhibitor combinations common in first-line treatment of European non-fermenters. IMPORTANCE: This was the first study in which the in vitro activity of cefiderocol and non-licensed ß-lactam/ß-lactamase inhibitor combinations were directly compared against Pseudomonas aeruginosa and Acinetobacter spp., including meropenem- and ß-lactam/ß-lactamase inhibitor combination-resistant isolates. A notably large number of European isolates were collected. Meropenem resistance was defined according to the MIC breakpoint for high-dose meropenem, ensuring that data reflect antibiotic activity against isolates that would remain meropenem resistant in the clinic. Cefiderocol susceptibility was high against non-fermenters, and there was no apparent cross resistance between cefiderocol and ß-lactam/ß-lactamase inhibitor combinations, with the exception of sulbactam-durlobactam. These results provide insights into therapeutic options for infections due to resistant P. aeruginosa and Acinetobacter spp. and indicate how early susceptibility testing of cefiderocol in parallel with ß-lactam/ß-lactamase inhibitor combinations will allow clinicians to choose the effective treatment(s) from all available options. This is particularly important as current treatment options against non-fermenters are limited.


Assuntos
Acinetobacter , Infecções por Pseudomonas , Humanos , Meropeném/farmacologia , 60607 , Inibidores de beta-Lactamases/farmacologia , Pseudomonas aeruginosa , Lactamas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
4.
Ann Clin Microbiol Antimicrob ; 23(1): 24, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448920

RESUMO

BACKGROUND: Klebsiella variicola is considered a newly emerging human pathogen. Clinical isolates of carbapenemase and broad-spectrum ß-lactamase-producing K. variicola remain relatively uncommon. A strain of K. variicola 4253 was isolated from a clinical sample, and was identified to carry the blaIMP-4 and blaSFO-1 genes. This study aims to discern its antibiotic resistance phenotype and genomic characteristics. METHODS: Species identification was conducted using MALDI-TOF/MS. PCR identification confirmed the presence of the blaIMP-4 and blaSFO-1 genes. Antibiotic resistance phenotype and genomic characteristics were detected by antimicrobial susceptibility testing and whole-genome sequencing. Plasmid characterization was carried out through S1-PFGE, conjugation experiments, Southern blot, and comparative genomic analysis. RESULTS: K. variicola 4253 belonged to ST347, and demonstrated resistance to broad-spectrum ß-lactamase drugs and tigecycline while being insensitive to imipenem and meropenem. The blaIMP-4 and blaSFO-1 genes harbored on the plasmid p4253-imp. The replicon type of p4253-imp was identified as IncHI5B, representing a multidrug-resistant plasmid capable of horizontal transfer and mediating the dissemination of drug resistance. The blaIMP-4 gene was located on the In809-like integrative element (Intl1-blaIMP-4-aacA4-catB3), which circulates in Acinetobacter and Enterobacteriaceae. CONCLUSIONS: This study reports the presence of a strain of K. variicola, which is insensitive to tigecycline, carrying a plasmid harboring blaIMP-4 and blaSFO-1. It is highly likely that the strain acquired this plasmid through horizontal transfer. The blaIMP-4 array (Intl1-blaIMP-4-aacA4-catB3) is also mobile in Acinetobacter and Enterobacteriaceae. So it is essential to enhance clinical awareness and conduct epidemiological surveillance on multidrug-resistant K. variicola, conjugative plasmids carrying blaIMP-4, and the In809 integrative element.


Assuntos
Acinetobacter , Klebsiella , Humanos , Tigeciclina/farmacologia , Klebsiella/genética , Plasmídeos/genética , beta-Lactamases/genética
5.
Nat Commun ; 15(1): 2746, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553443

RESUMO

Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.


Assuntos
Acinetobacter , Bacteriófagos , Vírus de RNA , Humanos , Proteínas de Fímbrias/metabolismo , Acinetobacter/metabolismo , Microscopia Crioeletrônica , Fímbrias Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
6.
Sci Rep ; 14(1): 2749, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302510

RESUMO

The emergence and dissemination of carbapenem-resistant species of Acinetobacter and Pseudomonas have become a serious health concern. Routine antimicrobial disk susceptibility tests in clinical laboratories cannot distinguish between isolates that are highly carbapenem-resistant and those that are moderately carbapenem-resistant. The present study describes antimicrobial susceptibility tests using disks containing high doses (1000 µg) of meropenem. The diameters of inhibition zones were significantly negatively correlated with the MICs of Pseudomonas and Acinetobacter species for meropenem (R2: 0.93 and 0.91, respectively) and imipenem (R2: 0.75 and 0.84, respectively). Double disk synergy tests using clavulanic acid or sodium mercaptoacetate can detect ESBL or MBL producers. Susceptibility tests using disks containing high doses of meropenem can easily detect highly carbapenem-resistant isolates in a quantitative manner. These disks may be useful in bacteriological laboratories because of their technical ease, stability, and relatively low cost.


Assuntos
Acinetobacter , Anti-Infecciosos , Meropeném/farmacologia , Pseudomonas , Tienamicinas/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , beta-Lactamases
7.
Bioresour Technol ; 397: 130474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395234

RESUMO

This work aims at intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge (AGS) - membrane bioreactor (MBR) by Acinetobacter junii. After acclimation and enrichment in a sequencing batch reactor (SBR), Acinetobacter junii, a kind of denitrifying phosphate accumulating organism (DPAO), was successfully screened in the used SBR. Then it was verified to be capable of effectively enhancing the performance in the simultaneous removal of nitrogen and phosphorus of AGS-MBR. In the system, DPAO (Acinetobacter junii) mainly occurred in AGS, and the highest ratio even reached 22.8%, but its competitive advantages highly depend on the size of AGS. The presented results can cultivate AGS and enrich DPAO simultaneously to improve the removal of nitrogen and phosphorus of an AGS-MBR, which provide an environmentally friendly approach to upgrade traditional wastewater treatment processes.


Assuntos
Acinetobacter , Fósforo , Esgotos , Nitrogênio , Fosfatos , Reatores Biológicos , Eliminação de Resíduos Líquidos
8.
J Antimicrob Chemother ; 79(4): 779-783, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334368

RESUMO

BACKGROUND: The clinical relevance of Acinetobacter pittii is increasing, but reports of this organism causing neonatal sepsis are rare. OBJECTIVES: To understand the mechanisms of resistance and virulence of A. pittii isolated from neonatal blood belonging to a novel sequence type. MATERIALS AND METHODS: Antibiotic susceptibility, MLST, WGS, phylogenomic comparison with a global collection of carbapenemase-harbouring A. pittii were done. To study the pathogenic potential of novel A. pittii, in vitro and in vivo assays were carried out. RESULTS AND DISCUSSION: Two novel multidrug-resistant A. pittii from neonatal blood belonging to a novel sequence type 1451 (ST1451) were isolated. WGS revealed that the isolates were almost similar (147 SNP distant) and harbouring two carbapenem resistance genes blaNDM-1 with upstream ISAba125 and downstream bleMBL along with blaOXA-58 with upstream ISAba3. Other resistance genes included blaADC-25, blaOXA-533, aph(3″)-Ib, aph(3')-VIa, aph(6)-Id, aac(3)-IId, mph(E), msr(E), sul2 and tet(39), different efflux pump genes and amino acid substitutions within GyrA (Ser81Leu) and ParC (Ser84Leu; Glu88Ala) were detected among the isolates. The study genomes were closely related to four strains belonging to ST119. The isolates showed biofilm production, serum resistance, growth under iron limiting condition, surface-associated motility and adherence to host cell. Isolates induced cytokine production in the host cell and showed mice mortality. DISCUSSION AND CONCLUSIONS: This study is the first report of the presence of blaNDM-1 in A. pittii from India along with another carbapenemase blaOXA-58. Emergence of highly virulent, multidrug-resistant A. pittii with attributes similar to A. baumannii calls for surveillance to identify the novel strains and their pathogenic and resistance potential.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Animais , Camundongos , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Virulência , Tipagem de Sequências Multilocus , Infecções por Acinetobacter/epidemiologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Acinetobacter baumannii/genética
9.
J Hazard Mater ; 467: 133758, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350318

RESUMO

Herbicide residue and greenhouse gas (GHG) emission are two main problems in the paddy rice field, which have barely been considered simultaneously. Herein, a bensulfuron-methyl (BSM)-degrading bacterium named Acinetobacter YH0317 was successfully immobilized on two kinds of biochars and subsequently applied in the paddy soil. The BSM removal rate of Acinetobacter YH0317 immobilized boron-doping biochar (BBC) was 80.42% after 30 d, which was significantly higher than that of BBC (39.05%) and Acinetobacter YH0317 (49.10%) applied alone. BBC acting as an immobilized carrier could enable Acinetobacter YH0317 to work in harsh and complex environment and thus improve the BSM removal efficiency. The addition of Acinetobacter YH0317 immobilized BBC (TP5) significantly improved the soil physicochemical properties (pH, SOC, and NH4+-N) and increased the diversity of soil microbial community compared to control group (CG). Meanwhile, Acinetobacter YH0317 immobilized BBC reduced the CO2-equivalent emission by 41.0%. Metagenomic sequencing results revealed that the decreasing CO2 emission in TP5 was correlated with carbon fixation gene (fhs), indicating that fhs gene may play an important role in reducing CO2 emission. The work presents a practical and supportive technique for the simultaneous achievement on the soil purification and GHG emission reduction in paddy soil.


Assuntos
Acinetobacter , Carvão Vegetal , Gases de Efeito Estufa , Compostos de Sulfonilureia , Boro , Dióxido de Carbono , Solo
10.
Sci Total Environ ; 919: 170770, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340823

RESUMO

Antibiotic resistance genes (ARGs) may be synergistic selected during bio-treatment of chromium-containing wastewater and causing environmental risks through horizontal transfer. This research explored the impact of self-screening bacterium Acinetobacter sp. SL-1 on the treatment of chromium-containing wastewater under varying environmental conditions. The findings indicated that the optimal Cr(VI) removal conditions were an anaerobic environment, 30 °C temperature, 5 g/L waste molasses, 100 mg/L Cr(VI), pH = 7, and a reaction time of 168 h. Under these conditions, the removal of Cr(VI) reached 99.10 %, however, it also developed cross-resistance to tetracycline, gentamicin, clarithromycin, ofloxacin following exposure to Cr(VI). When decrease Cr(VI) concentration to 50 mg/L at pH of 9 with waste molasses as carbon source, the expression of ARGs was down regulated, which decreased the horizontal transfer possibility of ARGs and minimized the potential environmental pollution risk caused by ARGs. The study ultimately emphasized that the treatment of chromium-containing wastewater with waste molasses in conjunction with SL-1 not only effectively eliminates hexavalent chromium but also mitigates the risk of environmental pollution.


Assuntos
Acinetobacter , Catecóis , Águas Residuárias , Antibacterianos/metabolismo , Melaço , Carbono/metabolismo , Acinetobacter/metabolismo , Cromo/metabolismo , Resistência Microbiana a Medicamentos , Biodegradação Ambiental
11.
Mol Biol Rep ; 51(1): 357, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400950

RESUMO

INTRODUCTION: Acinetobacter baumanii (AB) is a bacterium of concern in the hospital setup due to its ability to thrive in unfavorable conditions and the rapid emergence of antibiotic resistance. Carbapenem resistance in this organism is disheartening, further clouded by the emergence of colistin resistance. AIM: The present prospective study aims to note the epidemiology, molecular profile, and clinical outcome of patients with colistin resistance AB infections in a multispecialty tertiary care setup in Odisha, Eastern India. METHODS: All AB strains received from March 2021 to February 2022, identified by Vitek2 (Biomerieux) and confirmed by oxa-51 genes, were included. Carbapenem and colistin resistance were identified as per CLSI guidelines. Known mutations for blaOXA-23-like, blaIMP, blaVIM, blaKP, lpxA, lpxC, pmrA, pmrB, and plasmid mediated mcr (mcr1-5) were screened by conventional PCR techniques. The clinical outcome was noted retrospectively from case sheets. Data was entered in MS Excel and tabulated using SPSS software. RESULTS: In the study period, 350 AB were obtained, of which 317(90.5%) were carbapenem resistant (CRAB). Among the CRAB isolates, 19 (5.9%) were colistin resistant (ABCoR). The most valuable antibiotics in the study were tigecycline (65.4% in ABCoI; 31.6% in ABCoR) and minocycline (44.3% in CI; 36.8% in CR). There was a significant difference in mortality among ABCoI and ABCoR infections. bla OXA was the predominant carbapenem resistance genotype, while pmrA was the predominant colistin resistant genotype. There were no plasmid mediated mcr genes detected in the present study.


Assuntos
Acinetobacter , Colistina , Humanos , Colistina/farmacologia , Carbapenêmicos/farmacologia , Estudos Prospectivos , Estudos Retrospectivos , Centros de Atenção Terciária , beta-Lactamases/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
12.
Appl Microbiol Biotechnol ; 108(1): 230, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393350

RESUMO

The presence of ochratoxin A (OTA) in food and feed represents a serious concern since it raises severe health implications. Bacterial strains of the Acinetobacter genus hydrolyse the amide bond of OTA yielding non-toxic OTα and L-ß-phenylalanine; in particular, the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 has been identified as an OTA-degrading enzyme. Here, we describe the ability to transform OTA of cell-free protein extracts from Acinetobacter tandoii DSM 14970 T, a strain isolated from sludge plants, and also report on the finding of a new and promiscuous α/ß hydrolase (ABH), with close homologs highly distributed within the Acinetobacter genus. ABH from A. tandoii (AtABH) exhibited amidase activity against OTA and OTB mycotoxins, as well as against several carboxypeptidase substrates. The predicted structure of AtABH reveals an α/ß hydrolase core composed of a parallel, six-stranded ß-sheet, with a large cap domain similar to the marine esterase EprEst. Further biochemical analyses of AtABH reveal that it is an efficient esterase with a similar specificity profile as EprEst. Molecular docking studies rendered a consistent OTA-binding mode. We proposed a potential procedure for preparing new OTA-degrading enzymes starting from promiscuous α/ß hydrolases based on our results. KEY POINTS: • AtABH is a promiscuous αß hydrolase with both esterase and amidohydrolase activities • AtABH hydrolyses the amide bond of ochratoxin A rendering nontoxic OTα • Promiscuous αß hydrolases are a possible source of new OTA-degrading enzymes.


Assuntos
Acinetobacter , Micotoxinas , Ocratoxinas , Micotoxinas/metabolismo , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Ocratoxinas/metabolismo , Ocratoxinas/toxicidade , Acinetobacter/metabolismo , Carboxipeptidases/metabolismo , Esterases/metabolismo , Amidas/metabolismo
13.
Appl Microbiol Biotechnol ; 108(1): 86, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189951

RESUMO

Despite the discovery of several bacteria capable of interacting with polymers, the activity of the natural bacterial isolates is limited. Furthermore, there is a lack of knowledge regarding the development of bioprocesses for polyethylene (PE) degradation. Here, we report a bioprocess using pseudo-resting cells for efficient degradation of PE. The bacterial strain Acinetobacter nosocomialis was isolated from PE-containing landfills and characterized using low-density PE (LDPE) surface oxidation when incubated with LDPE. We optimized culture conditions to generate catalytic pseudo-resting cells of A. nosocomialis that are capable of degrading LDPE films in a bioreactor. After 28 days of bioreactor operation using pseudo-resting cells of A. nosocomialis, we observed the formation of holes on the PE film (39 holes per 217 cm2, a maximum diameter of 1440 µm). This study highlights the potential of bacteria as biocatalysts for the development of PE degradation processes. KEY POINTS: • New bioprocess has been proposed to degrade polyethylene (PE). • Process with pseudo-resting cells results in the formation of holes in PE film. • We demonstrated PE degradation using A. nosocomialis as a biocatalyst.


Assuntos
Acinetobacter , Polietileno , Reatores Biológicos , Catálise
14.
World J Microbiol Biotechnol ; 40(2): 63, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190002

RESUMO

Acinetobacter bereziniae has recently gained medical notoriety due to its emergence as a multidrug resistance and healthcare-associated pathogen. In this study, we report the whole-genome characterization of an A. bereziniae strain (A321) recovered from an infected semiaquatic turtle, as well as a comparative analysis of A. bereziniae strains circulating at the human-animal-environment interface. Strain A321 displayed a multidrug resistance profile to medically important antimicrobials, which was supported by a wide resistome. The novel Tn5393m transposon and a qnrB19-bearing ColE1-like plasmid were identified in A321 strain. Novel OXA-229-like ß-lactamases were detected and expression of OXA-931 demonstrated a 2-64-fold increase in the minimum inhibitory concentration for ß-lactam agents. Comparative genomic analysis revealed that most A. bereziniae strains did not carry any antimicrobial resistance genes (ARGs); however, some strains from China, Brazil, and India harbored six or more ARGs. Furthermore, A. bereziniae strains harbored conserved virulence genes. These results add valuable information regarding the spread of ARGs and mobile genetic elements that could be shared not only between A. bereziniae but also by other bacteria of clinical interest. This study also demonstrates that A. bereziniae can spill over from anthropogenic sources into natural environments and subsequently be transmitted to non-human hosts, making this a potential One Health bacteria that require close surveillance.


Assuntos
Acinetobacter , Saúde Única , Animais , Genômica , Acinetobacter/genética , Brasil
15.
BMC Infect Dis ; 24(1): 35, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166743

RESUMO

BACKGROUND: In recent years, Acinetobacter baumannii-calcoaceticus complex (ABC) infections have attracted attention, mainly because of the impact of carbapenem-resistant isolates in hospital-acquired infections. However, acute community-acquired ABC infections are not uncommon in warm and humid countries, where they are responsible for community-acquired infections with specific clinical features. To date, such infection has not been reported in France. CASE PRESENTATION: We report the case of a 55-year-old non-immunocompromised patient living in France with no known risk factors for community-acquired ABC infections who presented pneumonia with bloodstream infection due to wild-type A. pittii. The outcome was favorable after 7 days of antibiotic treatment with cefepime. We confirmed bacterial identification with whole-genome sequencing, and we examined the A. pitii core-genome phylogeny for genomic clusters. CONCLUSIONS: This situation is uncommon in Europe and occurred after a heat wave in France with temperatures above 38 °C. Herein, we discuss the possibility that this pneumonia may be emerging in the current context of global warming.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Infecções Comunitárias Adquiridas , Pneumonia , Humanos , Pessoa de Meia-Idade , Infecções Comunitárias Adquiridas/diagnóstico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Temperatura Alta , Acinetobacter/genética , Antibacterianos/uso terapêutico , Infecções por Acinetobacter/diagnóstico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , França , Testes de Sensibilidade Microbiana
16.
Environ Sci Pollut Res Int ; 31(9): 12948-12965, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236565

RESUMO

Karst mountainous areas in Southwest China, the world's largest bare karst area, are faced with growing water shortages. Rainwater harvesting plays an important role in alleviating water shortage. However, there remains a substantial gap in the research regarding the water quality of tanks. Water samples were seasonally collected from ten tanks to investigate the physicochemical properties, microbial communities, and their key influencing factors. The result showed that pH, turbidity, chroma, DOC, and CODMn exceeded drinking water guidelines. The alkaline pH value and the deterioration of sensory properties was the main feature of tank water, from which the over-standard rate of the uncleaned water tanks was higher. Moreover, principal component analyses suggested that tank water quality was influenced by human activities, catchment areas, and material cycling processes within the tanks, of which in-tank microbial activities were the most important driving factors in water quality variation. Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Verrucomicrobia were the predominant bacterial phyla in water tanks. Acinetobacter, Cyanobium-PCC-6307, CL500-29-marine-group, Candidatus-Aquiluna, and Exiguobacterium were the most abundant genera. The bacterial communities were significantly affected by the management practices. Higher relative abundance of Cyanobacteria and lower relative abundance of Proteobacteria was detected in the uncleaned tanks, which was a sign of tank water quality deterioration. The microbial community structure was closely related to the environmental factors. There was evidence that the water quality was affected by the existence of a microecosystem dominated by photosynthetic microorganisms in the water tanks. In addition, Acinetobacter, Enterobacter, Pseudomonas, and Legionella identified as the potential opportunistic pathogenic genera were frequently detected but the relative abundances except Acinetobacter were low in the tanks. Overall, our findings indicated that management style influences water quality and bacterial communities of tank water.


Assuntos
Acinetobacter , Cianobactérias , Humanos , Qualidade da Água , Proteobactérias , Bacteroidetes , China
17.
Nature ; 625(7995): 572-577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172635

RESUMO

Gram-negative bacteria are extraordinarily difficult to kill because their cytoplasmic membrane is surrounded by an outer membrane that blocks the entry of most antibiotics. The impenetrable nature of the outer membrane is due to the presence of a large, amphipathic glycolipid called lipopolysaccharide (LPS) in its outer leaflet1. Assembly of the outer membrane requires transport of LPS across a protein bridge that spans from the cytoplasmic membrane to the cell surface. Maintaining outer membrane integrity is essential for bacterial cell viability, and its disruption can increase susceptibility to other antibiotics2-6. Thus, inhibitors of the seven lipopolysaccharide transport (Lpt) proteins that form this transenvelope transporter have long been sought. A new class of antibiotics that targets the LPS transport machine in Acinetobacter was recently identified. Here, using structural, biochemical and genetic approaches, we show that these antibiotics trap a substrate-bound conformation of the LPS transporter that stalls this machine. The inhibitors accomplish this by recognizing a composite binding site made up of both the Lpt transporter and its LPS substrate. Collectively, our findings identify an unusual mechanism of lipid transport inhibition, reveal a druggable conformation of the Lpt transporter and provide the foundation for extending this class of antibiotics to other Gram-negative pathogens.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Lipopolissacarídeos , Proteínas de Membrana Transportadoras , Acinetobacter/química , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Viabilidade Microbiana , Conformação Proteica/efeitos dos fármacos , Especificidade por Substrato
18.
Bioresour Technol ; 395: 130322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228222

RESUMO

This study provides for the first time a systematic understanding of Acinetobacter indicus CZH-5 performance, metabolic pathway and genomic characteristics for aerobic nitrogen (N) and phosphorus (P) removal. Acinetobacter indicus CZH-5 showed promising performance in heterotrophic nitrification aerobic denitrification and aerobic phosphorus removal. Under optimal conditions, the maximum ammonia-N, total nitrogen and orthophosphate-P removal efficiencies were 90.17%, 86.33%, and 99.89%, respectively. The wide tolerance range suggests the strong environmental adaptability of the bacteria. The complete genome of this strain was reconstructed. Whole genome annotation was used to re-construct the N and P metabolic pathways, and related intracellular substance metabolic pathways were proposed. The transcription levels of related functional genes and enzyme activities further confirmed these metabolic mechanisms. N removal was achieved via the nitrification-denitrification pathway. Furthermore, CZH-5 exhibited significant aerobic P uptake, with phosphate diesters as the main species of intracellular P.


Assuntos
Acinetobacter , Desnitrificação , Nitrificação , Fósforo , Nitritos , Aerobiose , Processos Heterotróficos , Fosfatos , Nitrogênio/metabolismo , Genômica
19.
Environ Res ; 246: 118145, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191044

RESUMO

A novel n-alkane- and phenolic acid-degrading Acinetobacter strain (designated C16S1T) was isolated from rhizosphere soil. The strain was identified as a novel species named Acinetobacter suaedae sp. nov. using a polyphasic taxonomic approach. Strain C16S1T showed preferential degradation of three compounds: p-hydroxybenzoate (PHBA) > ferulic acid (FA) > n-hexadecane. In a medium containing two or three of these allelochemicals, coexisting n-hexadecane and PHBA accelerated each other's degradation and that of FA. FA typically hindered the degradation of n-hexadecane but accelerated PHBA degradation. The upregulated expression of n-hexadecane- and PHBA-degrading genes induced, by their related substrates, was mutually enhanced by coexisting PHBA or n-hexadecane; in contrast, expression of both gene types was reduced by FA. Coexisting PHBA or n-hexadecane enhanced the upregulation of FA-degrading genes induced by FA. The expressions of degrading genes affected by coexisting chemicals coincided with the observed degradation efficiencies. Iron shortage limited the degradation efficiency of all three compounds and changed the degradation preference of Acinetobacter. The present study demonstrated that the biodegradability of the chemicals, the effects of coexisting chemicals on the expression of degrading genes and the strain's growth, the shortage of essential elements, and the toxicity of the chemicals were the four major factors affecting the removal rates of the coexisting allelochemicals.


Assuntos
Acinetobacter , Acinetobacter/genética , Alcanos/metabolismo , Alcanos/farmacologia , Genômica , Biodegradação Ambiental
20.
Appl Environ Microbiol ; 90(1): e0162523, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38168668

RESUMO

Many Acinetobacter species can grow on n-alkanes of varying lengths (≤C40). AlmA, a unique flavoprotein in these Acinetobacter strains, is the only enzyme proven to be required for the degradation of long-chain (LC) n-alkanes, including C32 and C36 alkanes. Although it is commonly presumed to be a terminal hydroxylase, its role in n-alkane degradation remains elusive. In this study, we conducted physiological, biochemical, and bioinformatics analyses of AlmA to determine its role in n-alkane degradation by Acinetobacter baylyi ADP1. Consistent with previous reports, gene deletion analysis showed that almA was vital for the degradation of LC n-alkanes (C26-C36). Additionally, enzymatic analysis revealed that AlmA catalyzed the conversion of aliphatic 2-ketones (C10-C16) to their corresponding esters, but it did not conduct n-alkane hydroxylation under the same conditions, thus suggesting that AlmA in strain ADP1 possesses Baeyer-Villiger monooxygenase (BVMO) activity. These results were further confirmed by bioinformatics analysis, which revealed that AlmA was closer to functionally identified BVMOs than to hydroxylases. Altogether, the results of our study suggest that LC n-alkane degradation by strain ADP1 possibly follows a novel subterminal oxidation pathway that is distinct from the terminal oxidation pathway followed for short-chain n-alkane degradation. Furthermore, our findings suggest that AlmA catalyzes the third reaction in the LC n-alkane degradation pathway.IMPORTANCEMany microbial studies on n-alkane degradation are focused on the genes involved in short-chain n-alkane (≤C16) degradation; however, reports on the genes involved in long-chain (LC) n-alkane (>C20) degradation are limited. Thus far, only AlmA has been reported to be involved in LC n-alkane degradation by Acinetobacter spp.; however, its role in the n-alkane degradation pathway remains elusive. In this study, we conducted a detailed characterization of AlmA in A. baylyi ADP1 and found that AlmA exhibits Baeyer-Villiger monooxygenase activity, thus indicating the presence of a novel LC n-alkane biodegradation mechanism in strain ADP1.


Assuntos
Acinetobacter , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Alcanos/metabolismo , Oxirredução , Acinetobacter/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...