Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Microbiol Res ; 283: 127647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452551

RESUMO

The Type VI secretion system (T6SS) functions as a protein transport nanoweapon in several stages of bacterial life. Even though bacterial competition is the primary function of T6SS, different bacteria exhibit significant variations. Particularly in Extraintestinal pathogenic Escherichia coli (ExPEC), research into T6SS remains relatively limited. This study identified the uncharacterized gene evfG within the T6SS cluster of ExPEC RS218. Through our experiments, we showed that evfG is involved in T6SS expression in ExPEC RS218. We also found evfG can modulate T6SS activity by competitively binding to c-di-GMP, leading to a reduction in the inhibitory effect. Furthermore, we found that evfG can recruit sodA to alleviate oxidative stress. The research shown evfG controls an array of traits, both directly and indirectly, through transcriptome and additional tests. These traits include cell adhesion, invasion, motility, drug resistance, and pathogenicity of microorganisms. Overall, we contend that evfG serves as a multi-functional regulator for the T6SS and several crucial activities. This forms the basis for the advancement of T6SS function research, as well as new opportunities for vaccine and medication development.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Escherichia coli Extraintestinal Patogênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Virulência , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Vet Res ; 55(1): 35, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520031

RESUMO

The increase in the emergence of antimicrobial resistance has led to great challenges in controlling porcine extraintestinal pathogenic Escherichia coli (ExPEC) infections. Combinations of antimicrobial peptides (AMPs) and antibiotics can synergistically improve antimicrobial efficacy and reduce bacterial resistance. In this study, we investigated the antibacterial activity of porcine myeloid antimicrobial peptide 36 (PMAP-36) in combination with tetracycline against porcine ExPEC PCN033 both in vitro and in vivo. The minimum bactericidal concentrations (MBCs) of AMPs (PMAP-36 and PR-39) against the ExPEC strains PCN033 and RS218 were 10 µM and 5 µM, respectively. Results of the checkerboard assay and the time-kill assay showed that PMAP-36 and antibiotics (tetracycline and gentamicin) had synergistic bactericidal effects against PCN033. PMAP-36 and tetracycline in combination led to PCN033 cell wall shrinkage, as was shown by scanning electron microscopy. Furthermore, PMAP-36 delayed the emergence of PCN033 resistance to tetracycline by inhibiting the expression of the tetracycline resistance gene tetB. In a mouse model of systemic infection of PCN033, treatment with PMAP-36 combined with tetracycline significantly increased the survival rate, reduced the bacterial load and dampened the inflammatory response in mice. In addition, detection of immune cells in the peritoneal lavage fluid using flow cytometry revealed that the combination of PMAP-36 and tetracycline promoted the migration of monocytes/macrophages to the infection site. Our results suggest that AMPs in combination with antibiotics may provide more therapeutic options against multidrug-resistant porcine ExPEC.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Doenças dos Roedores , Doenças dos Suínos , Animais , Suínos , Camundongos , Escherichia coli Extraintestinal Patogênica/genética , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Tetraciclinas , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/tratamento farmacológico
3.
Sci Total Environ ; 919: 170815, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336047

RESUMO

Wildlife are implicated in the dissemination of antimicrobial resistance, but their roles as hosts for Escherichia coli that pose a threat to human and animal health is limited. Gulls (family Laridae) in particular, are known to carry diverse lineages of multiple-antibiotic resistant E. coli, including extra-intestinal pathogenic E. coli (ExPEC). Whole genome sequencing of 431 E. coli isolates from 69 healthy Australian silver gulls (Chroicocephalus novaehollandiae) sampled during the 2019 breeding season, and without antibiotic selection, was undertaken to assess carriage in an urban wildlife population. Phylogenetic analysis and genotyping resolved 123 sequence types (STs) representing most phylogroups, and identified diverse ExPEC, including an expansive phylogroup B2 cluster comprising 103 isolates (24 %; 31 STs). Analysis of the mobilome identified: i) widespread carriage of the Yersinia High Pathogenicity Island (HPI), a key ExPEC virulence determinant; ii) broad distribution of two novel phage elements, each carrying sitABCD and iii) carriage of the transmissible locus of stress tolerance (tLST), an element linked to sanitation resistance. Of the 169 HPI carrying isolates, 49 (48 %) represented diverse B2 isolates hosting FII-64 ColV-like plasmids that lacked iutABC and sitABC operons typical of ColV plasmids, but carried the serine protease autotransporter gene, sha. Diverse E. coli also carried archetypal ColV plasmids (52 isolates; 12 %). Clusters of closely related E. coli (<50 SNVs) from ST58, ST457 and ST746, sourced from healthy gulls, humans, and companion animals, were frequently identified. In summary, anthropogenically impacted gulls host an expansive E. coli population, including: i) putative ExPEC that carry ColV virulence gene cargo (101 isolates; 23.4 %) and HPI (169 isolates; 39 %); ii) atypical enteropathogenic E. coli (EPEC) (17 isolates; 3.9 %), and iii) E. coli that carry the tLST (20 isolates; 4.6 %). Gulls play an important role in the evolution and transmission of E. coli that impact human health.


Assuntos
Charadriiformes , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Microbiota , Animais , Humanos , Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Filogenia , Austrália , Antibacterianos , Fatores de Virulência/genética , Animais Selvagens
4.
PLoS One ; 19(1): e0296514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175844

RESUMO

Escherichia coli ST117 is a pandemic extraintestinal pathogenic E. coli (ExPEC) causing significant morbidity globally. Poultry are a known reservoir of this pathogen, but the characteristics of ST117 strains from other animal sources have not been adequately investigated. Here we characterize the genomes of 36 ST117 strains recovered primarily from preweaned dairy calves, but also from older postweaned calves and lactating cows, in the context of other bovine-associated strains and strains from poultry, swine, and humans. Results of this study demonstrate that bovine-associated ST117 genomes encode virulence factors (VFs) known to be involved in extraintestinal infections, but also occasionally encode the Shiga toxin, a virulence factor (VF) involved in severe gastrointestinal infections and more frequently identified in E. coli from ruminants than other animals. Bovine-associated ST117 genomes were also more likely to encode afa-VIII (adhesins), pap (P-fimbriae), cdt (cytolethal distending toxin), and stx (Shiga toxins) than were poultry and swine-associated genomes. All of the ST117 genomes were grouped into seven virulence clusters, with bovine-associated genomes grouping into Clusters 1, 2, 4, 5, but not 3, 6, or 7. Major differences in the presence of virulence factors between clusters were observed as well. Antimicrobial resistance genes were detected in 112 of 122 (91%) bovine-associated genomes, with 103 of these being multidrug-resistant (MDR). Inclusion of genomes that differed from ST117 by one multi-locus sequence type (MLST) allele identified 31 STs, four of these among the bovine-associated genomes. These non-ST117 genomes clustered with the ST117 genomes suggesting that they may cause similar disease as ST117. Results of this study identify cattle as a reservoir of ST117 strains, some of which are highly similar to those isolated from other food animals and some of which have unique bovine-specific characteristics.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Feminino , Animais , Bovinos , Suínos , Escherichia coli , Infecções por Escherichia coli/veterinária , Tipagem de Sequências Multilocus , Lactação , Fatores de Virulência/genética , Proteínas de Escherichia coli/genética , Aves Domésticas/genética
5.
Microbiol Spectr ; 12(1): e0418922, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059630

RESUMO

IMPORTANCE: Despite the increasing prevalence of antibiotic-resistant Escherichia coli strains that cause urinary tract and bloodstream infections, a major pandemic lineage of extraintestinal pathogenic E. coli (ExPEC) ST95 has a comparatively low frequency of drug resistance. We compared the genomes of 1,749 ST95 isolates to identify genetic features that may explain why most strains of ST95 resist becoming drug-resistant. Identification of such genomic features could contribute to the development of novel strategies to prevent the spread of antibiotic-resistant genes and devise new measures to control antibiotic-resistant infections.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Pandemias , Antibacterianos/farmacologia , Filogenia , Fatores de Virulência/genética
6.
Microbiol Spectr ; 12(1): e0369223, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018989

RESUMO

IMPORTANCE: Understanding the role of IncF plasmids in the success of drug-resistant bacteria has far-reaching implications for tackling antibiotic resistance. The study's use of a novel CRISPR-Cas9-mediated plasmid-curing system provides a precision tool for dissecting the specific impact of IncF plasmids on ExPEC clones, especially high-risk, multidrug-resistant strains like ST131, ST1193, and ST410. The study offers a crucial stepping stone for future research into understanding how these plasmids influence more complex aspects of bacterial behavior, such as cell invasion and in vivo fitness.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Infecções por Escherichia coli/microbiologia , Sistemas CRISPR-Cas , Plasmídeos/genética , Antibacterianos
7.
Res Vet Sci ; 166: 105106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086217

RESUMO

The clinical aspects and lineages involved in Extraintestinal pathogenic Escherichia coli (ExPEC) infections in dogs remain largely unknown. In this study, we investigated the antimicrobial resistance and molecular structures of ExPECs isolated from infected dogs in Brazil. Samples were obtained from dogs (n = 42) with suspected extraintestinal bacterial infections. Phylogroup B2 was predominant (65.1%). No association was observed between the site of infection, phylogroups, or virulence factors. Almost half of the isolates (44.2%) were MDR, and 20.9% were extended-spectrum ß-lactamase (ESBL)-positive. E. coli isolates that were resistant to fluoroquinolones (27.9%) were more likely to be MDR. The CTX-M-15 enzyme was predominant among the ESBL-producing strains, and seven sequence types were identified, including the high-risk clones ST44 and ST131. Single SNPs analysis confirmed the presence of two clonal transmissions. The present study showed a high frequency of ExPECs from phylogroup B2 infecting various sites and a high frequency of ESBL-producing strains that included STs frequently associated with human infection. This study also confirmed the nosocomial transmission of ESBL-producing E. coli, highlighting the need for further studies on the prevention and diagnosis of nosocomial infections in veterinary settings.


Assuntos
Doenças do Cão , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Cães , Humanos , Animais , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Hospitais Veterinários , Brasil/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia
8.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086616

RESUMO

AIMS: We investigate extraintestinal pathogenic genes (ExPEC) related to virulence of Escherichia coli in flies from the dairy environment. METHODS AND RESULTS: We collected 217 flies from nine dairy farms, which were submitted to microbiological culture. Fifty-one E. coli were identified using mass spectrometry. Eleven dipteran families were identified, with a predominance of Muscidae, and a minor frequency of Tachinidae, Drosophilidae, Sphaeroceridae, Ulidiidae, Syrphidae, Chloropidae, Calliphoridae, Sarcophagidae, and Piophilidae. A panel of 16 virulence-encoding genes related to ExPEC infections were investigated, which revealed predominance of serum resistance (traT, 31/51 = 60.8%; ompT, 29/51 = 56.9%), iron uptake (irp2, 17/51 = 33.3%, iucD 11/51 = 21.6%), and adhesins (papC, 6/51 = 11.8%; papA, 5/51 = 9.8%). CONCLUSIONS: Our findings reveal Dipterans from milking environment carrying ExPEC virulence-encoding genes also identified in clinical bovine E. coli-induced infections.


Assuntos
Dípteros , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Animais , Bovinos , Escherichia coli/genética , Virulência/genética , Fazendas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Insetos
9.
PLoS One ; 18(11): e0294424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992119

RESUMO

Multi-drug resistant (MDR) globally disseminated extraintestinal pathogenic high-risk Escherichia coli (ExPEC) clones are threatening the gains in bacterial disease management. In this study, we evaluated the genomic structure including the resistome and virulome of the E. coli isolates from extraintestinal infections using whole genome sequencing (WGS). The results highlight that isolates were highly resistant (≥ 90.0%) to commonly used antibiotics (Ampicillin, Trimethoprim-Sulfamethoxazole, Nalidixic acid, and Piperacillin) and were less (<14%) resistant to last resort antibiotics; Imipenem (10.94%) and Meropenem (10.20%). A greater proportion of the E. coli isolates belonged to phylogroup B2 (30.52%) and phylogroup A (27.37%). The sequence types ST131 of phylogroup B2 (21.05%) and ST648 of phylogroup F (9.3%) were the dominant pandemic high-risk clones identified in addition to the ST1193, ST410, ST69, ST38, ST405, and ST10. Many of the isolates were MDR and most (64.58%) carried the blaCTX-M-15 gene for extended-spectrum ß-lactamases. There was a high correlation between phylogroups and the occurrence of both antimicrobial resistance and virulence genes. The cephalosporin-resistance gene blaEC-5 was only found in phylogroup B2 while blaEC-8 and blaEC-19, were only found within phylogroup D and phylogroup F respectively. Aminoglycoside gene (aadA1) was only associated with phylogroups D and C. The isolates were armed with a broad range of virulence genes including adhesins, toxins, secreted proteases, iron uptake genes, and others. The yfcv, chuA, and kpsE genes preferentially occurred among isolates of phylogroup B2. The study underlines the predominance of MDR internationally disseminated high-risk ExPEC clones with a broad range of virulence genes known to be highly transmissible in healthcare and community settings.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Atenção Terciária à Saúde , Uganda , Pandemias , Genótipo , Antibacterianos/farmacologia , Fatores de Virulência/genética , beta-Lactamases/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Escherichia coli/genética
10.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37974051

RESUMO

AIMS: This study aimed to examine antibiotic resistance and the epidemiology of extended-spectrum ß-lactamases (ESBL)-producing Escherichia coli associated with bloodstream infections over a period of 10 years. METHODS AND RESULTS: Isolates were collected from January 2009 to December 2019 and those testing for E. coli were included. Antibiotic susceptibility was tested using the VITEK® system. Selected isolates were further characterized by amplification of marker genes (virulence traits, phylogroups, and sequence types). A total of 166 ESBL-producing E. coli were recovered. The blaCTX-M-15 allele was the most abundant. Most of the isolates were resistant to ceftriaxone, cefepime, ceftazidime, ampicillin/sulbactam, piperacillin/tazobactam, and ciprofloxacin. No resistance to carbapenems was registered. More than 80% of bacteria were classified as extraintestinal pathogenic E. coli (ExPEC), and the combination of virulence traits:papA-papC-kpsMII-uitA was the most common. Phylogroup B2 was the most prevalent, and bacteria predominantly belonged to ST131. CONCLUSIONS: There was an increase in the ExPEC ESBL-E coli in bloodstream infections and the relationship between the isolates found in these infections during these 10 years.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Sepse , Humanos , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Equador/epidemiologia , beta-Lactamases/genética , Sepse/microbiologia , Antibacterianos/farmacologia
11.
Infect Immun ; 91(11): e0003923, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37815368

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is responsible for severe bloodstream infections in humans and animals. However, the mechanisms underlying ExPEC's serum resistance remain incompletely understood. Through the transposon-directed insertion-site sequencing approach, our previous study identified nhaA, the gene encoding a Na+/H+ antiporter, as a crucial factor for infection in vivo. In this study, we investigated the role of NhaA in ExPEC virulence utilizing both in vitro models and systemic infection models involving avian and mammalian animals. Genetic mutagenesis analysis revealed that nhaA deletion resulted in filamentous bacterial morphology and rendered the bacteria more susceptible to sodium dodecyl sulfate, suggesting the role of nhaA in maintaining cell envelope integrity. The nhaA mutant also displayed heightened sensitivity to complement-mediated killing compared to the wild-type strain, attributed to augmented deposition of complement components (C3b and C9). Remarkably, NhaA played a more crucial role in virulence compared to several well-known factors, including Iss, Prc, NlpI, and OmpA. Our findings revealed that NhaA significantly enhanced virulence across diverse human ExPEC prototype strains within B2 phylogroups, suggesting widespread involvement in virulence. Given its pivotal role, NhaA could serve as a potential drug target for tackling ExPEC infections.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Humanos , Escherichia coli Extraintestinal Patogênica/metabolismo , Virulência/genética , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Aves/metabolismo , Aves/microbiologia , Mamíferos , Trocadores de Sódio-Hidrogênio , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas
12.
Front Cell Infect Microbiol ; 13: 1237725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876872

RESUMO

Food contamination with pathogenic Escherichia coli can cause severe disease. Here, we report the isolation of a multidrug resistant strain (A23EC) from fresh spinach. A23EC belongs to subclade C2 of ST131, a virulent clone of Extraintestinal Pathogenic E. coli (ExPEC). Most A23EC virulence factors are concentrated in three pathogenicity islands. These include PapGII, a fimbrial tip adhesin linked to increased virulence, and CsgA and CsgB, two adhesins known to facilitate spinach leaf colonization. A23EC also bears TnMB1860, a chromosomally-integrated transposon with the demonstrated potential to facilitate the evolution of carbapenem resistance among non-carbapenemase-producing enterobacterales. This transposon consists of two IS26-bound modular translocatable units (TUs). The first TU carries aac(6')-lb-cr, bla OXA-1, ΔcatB3, aac(3)-lle, and tmrB, and the second one harbors bla CXT-M-15. A23EC also bears a self-transmissible plasmid that can mediate conjugation at 20°C and that has a mosaic IncF [F(31,36):A(4,20):B1] and Col156 origin of replication. Comparing A23EC to 86 additional complete ST131 sequences, A23EC forms a monophyletic cluster with 17 other strains that share the following four genomic traits: (1) virotype E (papGII+); (2) presence of a PAI II536-like pathogenicity island with an additional cnf1 gene; (3) presence of chromosomal TnMB1860; and (4) frequent presence of an F(31,36):A(4,20):B1 plasmid. Sequences belonging to this cluster (which we named "C2b sublineage") are highly enriched in septicemia samples and their associated genetic markers align with recent reports of an emerging, virulent sublineage of the C2 subclade, suggesting significant pathogenic potential. This is the first report of a ST131 strain belonging to subclade C2 contaminating green leafy vegetables. The detection of this uropathogenic clone in fresh food is alarming. This work suggests that ST131 continues to evolve, gaining selective advantages and new routes of transmission. This highlights the pressing need for rigorous epidemiological surveillance of ExPEC in vegetables with One Health perspective.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Escherichia coli , Spinacia oleracea/genética , Infecções por Escherichia coli/epidemiologia , Escherichia coli Extraintestinal Patogênica/genética , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos
13.
mSystems ; 8(5): e0123622, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37675998

RESUMO

IMPORTANCE: Extraintestinal pathogenic Escherichia coli (ExPEC) sequence type (ST) 38 is one of the top 10 human pandemic lineages. Although a major cause of urinary tract and blood stream infections, ST38 has been poorly characterized from a global phylogenomic perspective. A comprehensive genome-scale analysis of 925 ST38 isolate genomes identified two broad ancestral clades and linkage of discrete ST38 clusters with specific bla CTX-M variants. In addition, the clades and clusters carry important virulence genes, with diverse but poorly characterized plasmids. Numerous putative interhost and environment transmission events were identified here by the presence of ST38 clones (defined as isolates with ≤35 SNPs) within humans, companion animals, food sources, urban birds, wildlife, and the environment. A small cluster of international ST38 clones from diverse sources, likely representing progenitors of a hospital outbreak that occurred in Brisbane, Australia, in 2017, was also identified. Our study emphasizes the importance of characterizing isolate genomes derived from nonhuman sources and geographical locations, without any selection bias.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Filogenia , Plasmídeos
14.
Vector Borne Zoonotic Dis ; 23(11): 568-575, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695819

RESUMO

Background: Extraintestinal pathogenic Escherichia coli (ExPEC) has become a mounting public health concern. The present study was conducted to address the role of diarrheic pet animals as potential reservoirs for major human ExPEC sequence types (STs). Materials and Methods: Rectal swabs were collected from 145 diarrheic pet animals (75 dogs and 70 cats). Samples were processed for isolation and identification of E. coli by culture methods. Afterward, ExPEC isolates were identified on a molecular basis through detection of ExPEC phylogroups (B2 and D) coupled with carriage of two or more of the virulence genes associated with ExPEC (papAH, papC, sfa/focDE, afa/draBC, iutA, and kpsMT II). ExPEC STs 131, 73, 69, and 95 were identified among ExPEC isolates by quadruplex PCR and tested for their antimicrobial susceptibility. Eventually, two isolates underwent gene sequencing for the phylogenetic analysis. Results: Of 145 pet animals, 16 (11%) E. coli strains were identified as ExPEC, in which 15 (10.3%) isolates belonged to phylogroup B2 and 1 (0.69%) strain belonged to phylogroup D. The major human ExPEC STs were detected in 13 (9%) isolates, whereas the prevalence rates were 5.3% and 12.9% for dogs and cats, respectively. The isolation rates of ExPEC STs were 4.8%, 2.8%, 0.69%, and 0.69% for ST73, ST131, ST95, and ST69, respectively. Regarding the prevalence of virulence genes among ExPEC STs, the most prevalent ones were papC and sfa/focDE (92.3%), followed by papAH (76.9%), iutA (53.8%), afa/draBC (30.8%), and kpsMT II (30.8%). Moreover, 38.5% of the obtained human ExPEC STs were multidrug resistant. The phylogenetic analysis of two ExPEC ST73 gene sequences showed high genetic relatedness to those isolated from humans in different countries. Conclusions: The fecal carriage of major human ExPEC STs among diarrheic dogs and cats poses a potential zoonotic hazard with serious public health implications.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Animais , Cães , Gatos , Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Filogenia , Doenças do Gato/epidemiologia , Saúde Pública , Doenças do Cão/epidemiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fatores de Virulência/genética
15.
Sci Rep ; 13(1): 13949, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626115

RESUMO

The Escherichia marmotae is a bacterium of the Enterobacterales order, which was first isolated from the Himalayan marmot (Marmota himalayana). Recently E. marmotae has been shown to cause severe infections in humans. Wild animals were suggested to be a natural reservoir of this bacterium. The present study describes the first case of E. marmotae isolation from an apparently healthy wild bank vole (Myodes glareolus). Phenotype, as well as genotype-based techniques, were applied to characterize E. marmotae M-12 isolate. E. marmotae M-12 had the capsule-positive phenotype, high adhesion to human erythrocytes and HEp-2 cells as well as a low invasion into HEp-2 cells. E. marmotae M-12 was avirulent in mice. The phylogenomic analyses of E. marmotae showed dispersed phylogenetic structure among isolates of different origins. Virulome analysis of M-12 isolate revealed the presence of the following factors: siderophores, heme uptake systems, capsule synthesis, curli and type I fimbriae, flagella proteins, OmpA porin, etc. Comparative virulome analysis among available E. marmotae genomes revealed the presence of capsule K1 genes mostly in pathogenic isolates and OmpA porin presence among all strains. We assume that the K1 capsule and OmpA porin play a key role in the virulence of E. marmotae. Pathogenesis of the latter might be similar to extraintestinal pathogenic E. coli.


Assuntos
Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Animais , Camundongos , Filogenia , Arvicolinae , Marmota , Porinas/genética
16.
Sci Rep ; 13(1): 12022, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491387

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) producing extended-spectrum ß-lactamases (ESBL) cause serious human infections due to their virulence and multidrug resistance (MDR) profiles. We characterized 144 ExPEC strains (collected from a tertiary cancer institute) in terms of antimicrobial susceptibility spectrum, ESBL variants, virulence factors (VF) patterns, and Clermont's phylogroup classification. The developed multiplex recombinase polymerase amplification and thermophilic helicase-dependent amplification (tHDA) assays for blaCTX-M, blaOXA, blaSHV, and blaTEM detection, respectively, were validated using PCR-sequencing results. All ESBL-ExPEC isolates carried blaCTX-M genes with following prevalence frequency of variants: blaCTX-M-15 (50.5%) > blaCTX-M-55 (17.9%) > blaCTX-M-27 (16.8%) > blaCTX-M-14 (14.7%). The multiplex recombinase polymerase amplification assay had 100% sensitivity, and specificity for blaCTX-M, blaOXA, blaSHV, while tHDA had 86.89% sensitivity, and 100% specificity for blaTEM. The VF genes showed the following prevalence frequency: traT (67.4%) > ompT (52.6%) > iutA (50.5%) > fimH (47.4%) > iha (33.7%) > hlyA (26.3%) > papC (12.6%) > cvaC (3.2%), in ESBL-ExPEC isolates which belonged to phylogroups A (28.4%), B2 (28.4%), and F (22.1%). The distribution of traT, ompT, and hlyA and phylogroup B2 were significantly different (P < 0.05) between ESBL-ExPEC and non-ESBL-ExPEC isolates. Thus, these equipment-free isothermal resistance gene amplification assays contribute to effective treatment and control of virulent ExPEC, especially antimicrobial resistance strains.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Virulência/genética , beta-Lactamases/genética , beta-Lactamases/farmacologia , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia , Infecções por Escherichia coli/epidemiologia , Escherichia coli Extraintestinal Patogênica/genética , Fatores de Virulência/genética , Fatores de Virulência/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
17.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37471138

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) are the most frequent cause of urinary tract infections (UTIs) globally. Most studies of clinical E. coli isolates are selected based on their antimicrobial resistance (AMR) phenotypes; however, this selection bias may not provide an accurate portrayal of which sequence types (STs) cause the most disease. Here, whole genome sequencing (WGS) was performed on 320 E. coli isolates from urine samples sourced from a regional hospital in Australia in 2006. Most isolates (91%) were sourced from patients with UTIs and were not selected based on any AMR phenotypes. No significant differences were observed in AMR and virulence genes profiles across age sex, and uro-clinical syndromes. While 88 STs were identified, ST73, ST95, ST127 and ST131 dominated. F virulence plasmids carrying senB-cjrABC (126/231; 55%) virulence genes were a feature of this collection. These senB-cjrABC+ plasmids were split into two categories: pUTI89-like (F29:A-:B10 and/or >95 % identity to pUTI89) (n=73) and non-pUTI89-like (n=53). Compared to all other plasmid replicons, isolates with pUTI89-like plasmids carried fewer antibiotic resistance genes (ARGs), whilst isolates with senB-cjrABC+/non-pUTI89 plasmids had a significantly higher load of ARGs and class 1 integrons. F plasmids were not detected in 89 genomes, predominantly ST73. Our phylogenomic analyses identified closely related isolates from the same patient associated with different pathologies and evidence of strain-sharing events involving isolates sourced from companion and wild animals.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Infecções Urinárias , Animais , Escherichia coli , Virulência/genética , Antibacterianos/farmacologia , Fator F , Genótipo , Farmacorresistência Bacteriana/genética , Austrália , Genômica
18.
Microbiol Spectr ; 11(4): e0521522, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367488

RESUMO

Longitudinal studies of extraintestinal pathogenic Escherichia coli (ExPEC) and epidemic clones of E. coli in association with New Delhi metallo-ß-lactamase (blaNDM) in septicaemic neonates are rare. This study captured the diversity of 80 E. coli isolates collected from septicaemic neonates in terms of antibiotic susceptibility, resistome, phylogroups, sequence types (ST), virulome, plasmids, and integron types over a decade (2009 to 2019). Most of the isolates were multidrug-resistant and, 44% of them were carbapenem-resistant, primarily due to blaNDM. NDM-1 was the sole NDM-variant present in conjugative IncFIA/FIB/FII replicons until 2013, and it was subsequently replaced by other variants, such as NDM-5/-7 found in IncX3/FII. A core genome analysis for blaNDM+ve isolates showed the heterogeneity of the isolates. Fifty percent of the infections were caused by isolates of phylogroups B2 (34%), D (11.25%), and F (4%), whereas the other half were caused by phylogroups A (25%), B1 (11.25%), and C (14%). The isolates were further distributed in approximately 20 clonal complexes (STC), including five epidemic clones (ST131, ST167, ST410, ST648, and ST405). ST167 and ST131 (subclade H30Rx) were dominant, with most of the ST167 being blaNDM+ve and blaCTX-M-15+ve. In contrast, the majority of ST131 isolates were blaNDM-ve but blaCTX-M-15+ve, and they possessed more virulence determinants than did ST167. A single nucleotide polymorphism (SNP)-based comparative genome analysis of epidemic clones ST167 and ST131 in a global context revealed that the study isolates were present in close proximity but were distant from global isolates. The presence of antibiotic-resistant epidemic clones causing sepsis calls for a modification of the recommended antibiotics with which to treat neonatal sepsis. IMPORTANCE Multidrug-resistant and virulent ExPEC causing sepsis in neonates is a challenge to neonatal health. The presence of enzymes, such as carbapenemases (blaNDM) that hydrolyze most ß-lactam antibiotic compounds, result in difficulties when treating neonates. The characterization of ExPECs collected over 10 years showed that 44% of ExPECs were carbapenem-resistant, possessing transmissible blaNDM genes. The isolates belonged to different phylogroups that are considered to be either commensals or virulent. The isolates were distributed in around 20 clonal complexes (STC), including two predominant epidemic clones (ST131 and ST167). ST167 possessed few virulence determinants but was blaNDM+ve. In contrast, ST131 harbored several virulence determinants but was blaNDM-ve. A comparison of the genomes of these epidemic clones in a global context revealed that the study isolates were present in close proximity but were distant from global isolates. The presence of epidemic clones in a vulnerable population with contrasting characteristics and the presence of resistance genes call for strict vigilance.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Sepse , Recém-Nascido , Humanos , Escherichia coli , Infecções por Escherichia coli/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Carbapenêmicos , Plasmídeos/genética , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
19.
Sci Rep ; 13(1): 5575, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019949

RESUMO

This study aimed to investigate the pathogenicity of extraintestinal pathogenic Escherichia coli (ExPEC) isolated from dog and cat lung samples in South Korea. A total of 101 E. coli isolates were analyzed for virulence factors, phylogroups, and O-serogroups, and their correlation with bacterial pneumonia-induced mortality was elucidated. P fimbriae structural subunit (papA), hemolysin D (hlyD), and cytotoxic necrotizing factor 1 (cnf1) were highly prevalent in both species, indicating correlation with bacterial pneumonia. Phylogroups B1 and B2 were the most prevalent phylogroups (36.6% and 32.7%, respectively) and associated with high bacterial pneumonia-induced mortality rates. Isolates from both species belonging to phylogroup B2 showed high frequency of papA, hlyD, and cnf1. O-serogrouping revealed 21 and 15 serogroups in dogs and cats, respectively. In dogs, O88 was the most prevalent serogroup (n = 8), and the frequency of virulence factors was high for O4 and O6. In cats, O4 was the most prevalent serogroup (n = 6), and the frequency of virulence factors was high for O4 and O6. O4 and O6 serogroups were mainly grouped under phylogroup B2 and associated with high bacterial pneumonia-induced mortality. This study characterized the pathogenicity of ExPEC and described the probability of ExPEC pneumonia-induced mortality.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Gatos , Cães , Animais , Escherichia coli , Virulência , Doenças do Gato/microbiologia , Infecções por Escherichia coli/microbiologia , Doenças do Cão/microbiologia , Fatores de Virulência , Pulmão , Filogenia
20.
Int J Infect Dis ; 132: 64-71, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059297

RESUMO

OBJECTIVES: The aim of this study was to investigate the prognostic value of reclassified new type III monomicrobial gram-negative necrotizing fasciitis (NF) and the microbial factors associated with an increased risk of mortality. METHODS: This study included 235 NF cases treated at National Taiwan University Hospital. We compared the mortality risk of NF caused by different causal microorganisms and examined the bacterial virulence genes profile and antimicrobial susceptibility pattern associated with an increase in mortality risk. RESULTS: Type III NF (n = 68) had a mortality risk two-fold higher than type I (polymicrobial, n = 64) or type II (monomicrobial gram-positive, n = 79) NF (42.6% vs 23.4% or 19.0%, P = 0.019 and 0.002, respectively). Mortality differed by causal microorganism (Escherichia coli [61.5%], Klebsiella pneumoniae [40.0%], Aeromonas hydrophila [37.5%], Vibrio vulnificus [25.0%], polymicrobial [23.4%], group A streptococci [16.7%], and Staphylococcus aureus [16.2%], in decreasing rank, P <0.001). Type III NF caused by E. coli, identified as extraintestinal pathogenic E. coli (ExPEC) via virulence gene analyses, was associated with a particularly high mortality risk (adjusted odds ratio: 6.51, P = 0.003) after adjusting for age and comorbidities. Some (38.5%/7.7%) of the E. coli strains were non-susceptible to third/fourth-generation cephalosporins but remained susceptible to carbapenems. CONCLUSION: Type III NF, especially cases caused by E. coli or K. pneumoniae, are associated with a comparatively higher mortality risk than type I or type II NF. Wound gram stain-based rapid diagnosis of type III NF may inform empirical antimicrobial therapy to include a carbapenem.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Fasciite Necrosante , Infecções Estreptocócicas , Humanos , Fasciite Necrosante/diagnóstico , Klebsiella pneumoniae/genética , Escherichia coli/genética , Infecções Estreptocócicas/microbiologia , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...