Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38573831

RESUMO

We investigated bile salts' ability to induce phenotypic changes in biofilm production and protein expression of pathogenic Escherichia coli strains. For this purpose, 82 pathogenic E. coli strains isolated from humans (n = 70), and animals (n = 12), were examined for their ability to form biofilms in the presence or absence of bile salts. We also identified bacterial proteins expressed in response to bile salts using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-electrophoresis) and liquid chromatography-mass spectrometry (LC-MS/MS). Lastly, we evaluated the ability of these strains to adhere to Caco-2 epithelial cells in the presence of bile salts. Regarding biofilm formation, two strains isolated from an outbreak in Republic of Georgia in 2009 were the only ones that showed a high and moderate capacity to form biofilm in the presence of bile salts. Further, we observed that those isolates, when in the presence of bile salts, expressed different proteins identified as outer membrane proteins (i.e. OmpC), and resistance to adverse growth conditions (i.e. F0F1, HN-S, and L7/L12). We also found that these isolates exhibited high adhesion to epithelial cells in the presence of bile salts. Together, these results contribute to the phenotypic characterization of E. coli O104: H4 strains.


Assuntos
Infecções por Escherichia coli , Escherichia coli O104 , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Humanos , Escherichia coli/metabolismo , Virulência , Células CACO-2 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Biofilmes , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Environ Microbiol Rep ; 15(6): 582-596, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37644642

RESUMO

In the current study, metabolic genes and networks that influence the persistence of pathogenic Escherichia coli O104:H4 strain C227/11Φcu in agricultural soil microenvironments at low temperature were investigated. The strain was incubated in alluvial loam (AL) and total RNA was prepared from samples at time point 0, and after 1 and 4 weeks. Differential transcriptomic analysis was performed by RNA sequencing analysis and values obtained at weeks 1 and 4 were compared to those of time point 0. We found differential expression of more than 1500 genes for either time point comparison. The two lists of differentially expressed genes were then subjected to gene set enrichment of Gene Ontology terms. In total, 17 GO gene sets and 3 Pfam domains were found to be enriched after 1 week. After 4 weeks, 17 GO gene sets and 7 Pfam domains were statistically enriched. Especially stress response genes and genes of the primary metabolism were particularly affected at both time points. Genes and gene sets for uptake of carbohydrates, amino acids were strongly upregulated, indicating adjustment to a low nutrient environment. The results of this transcriptome analysis show that persistence of C227/11Φcu in soils is associated with a complex interplay of metabolic networks.


Assuntos
Infecções por Escherichia coli , Escherichia coli O104 , Humanos , Escherichia coli O104/genética , Escherichia coli O104/metabolismo , Escherichia coli , Solo , Temperatura
3.
Microbiol Spectr ; 11(3): e0098723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212677

RESUMO

Shiga toxin-producing Escherichia coli (STEC) can give rise to a range of clinical outcomes from diarrhea to the life-threatening systemic condition hemolytic-uremic syndrome (HUS). Although STEC O157:H7 is the serotype most frequently associated with HUS, a major outbreak of HUS occurred in 2011 in Germany and was caused by a rare serotype, STEC O104:H4. Prior to 2011 and since the outbreak, STEC O104:H4 strains have only rarely been associated with human infections. From 2012 to 2020, intensified STEC surveillance was performed in Germany where the subtyping of ~8,000 clinical isolates by molecular methods, including whole-genome sequencing, was carried out. A rare STEC serotype, O181:H4, associated with HUS was identified, and like the STEC O104:H4 outbreak strain, this strain belongs to sequence type 678 (ST678). Genomic and virulence comparisons revealed that the two strains are phylogenetically related and differ principally in the gene cluster encoding their respective lipopolysaccharide O-antigens but exhibit similar virulence phenotypes. In addition, five other serotypes belonging to ST678 from human clinical infection, such as OX13:H4, O127:H4, OgN-RKI9:H4, O131:H4, and O69:H4, were identified from diverse locations worldwide. IMPORTANCE Our data suggest that the high-virulence ensemble of the STEC O104:H4 outbreak strain remains a global threat because genomically similar strains cause disease worldwide but that the horizontal acquisition of O-antigen gene clusters has diversified the O-antigens of strains belonging to ST678. Thus, the identification of these highly pathogenic strains is masked by diverse and rare O-antigens, thereby confounding the interpretation of their potential risk.


Assuntos
Infecções por Escherichia coli , Escherichia coli O104 , Escherichia coli Shiga Toxigênica , Humanos , Antígenos O/genética , Toxina Shiga , Infecções por Escherichia coli/epidemiologia , Máscaras
4.
J Food Prot ; 86(3): 100053, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916560

RESUMO

Escherichia coli O104:H4, a hybrid serotype carrying virulence factors from enteroaggregative (EAEC) and Shiga toxin-producing (STEC) pathotypes, is the reported cause of a multicountry outbreak in 2011. Evaluation of potential routes of human contamination revealed that this strain is a foodborne pathogen. In contrast to STEC strains, whose main reservoir is cattle, serotype O104:H4 has not been commonly isolated from animals or related environments, suggesting an inability to naturally colonize the gut in hosts other than humans. However, contrary to this view, this strain has been shown to colonize the intestines of experimental animals in infectious studies. In this minireview, we provide a systematic summary of reports highlighting potential evolutionary changes that could facilitate the colonization of new reservoirs by these bacteria.


Assuntos
Infecções por Escherichia coli , Escherichia coli O104 , Escherichia coli Shiga Toxigênica , Animais , Humanos , Bovinos , Infecções por Escherichia coli/microbiologia , Virulência , Fatores de Virulência , Surtos de Doenças
5.
Food Microbiol ; 111: 104188, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681389

RESUMO

The emergence of mobile colistin resistant gene (mcr-1) in Enterobacteriaceae has become a global public health concern. Dissemination of the mcr-1 gene through conjugation of bacteria associated with food may occur. This research investigated the transfer frequency of the mcr-1 gene among Escherichia coli in liquid media and during growth of mung bean sprouts. The donor strain E. coli NCTC 13846 (mcr-1 positive) and recipient strains of E. coli O157:H7 and E. coli O104:H4 were used. Mating experiments in vitro were conducted at 4, 25, and 37 °C for up to 36 h. The in vivo mating experiments (growing sprouts) were conducted in a sprout growth chamber with irrigation of 1 min/h over 6 days following inoculation of mung bean seeds with the donor and a recipient. The highest transfer frequencies in TSB media, 2.86E-07 and 3.24E-07, occurred at 37 °C after mating for 24 h for E. coli O104:H4 and E. coli O157:H7, respectively. Transconjugants were not detected in liquid media at 4 °C. Moreover, transfer frequency (5.68E-05 per recipient) of mcr-1 was greater during mung bean sprout growth for E. coli O104:H4 compared to E. coli O157:H7 (1.02E-05 per recipient) Day 3 to Day 6. This study indicates that the transfer of antibiotic resistant gene(s) among bacteria during mung bean sprout production may facilitate the spread of antibiotic resistant bacteria in the environment and to humans.


Assuntos
Escherichia coli O104 , Escherichia coli O157 , Proteínas de Escherichia coli , Fabaceae , Vigna , Antibacterianos , Colistina , Escherichia coli O104/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Fabaceae/microbiologia , Nutrientes , Plasmídeos , Farmacorresistência Bacteriana/genética
6.
Int J Food Microbiol ; 383: 109952, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36191491

RESUMO

Escherichia coli O104:H4 strain 11-3088 encoding Stx2a is epidemiologically related to the foodborne outbreak associated with sprouts in Germany, 2011. Sprouting provides suitable conditions for bacterial growth and may lead to transduction of non-pathogenic strains of E. coli with Stx phages. Although transduction of E. coli by Stx phages in food has been documented, data on the phages from E. coli O104:H4 is limited. This study determined the host range of the bacteriophage Φ11-3088 from E. coli O104:H4 using E. coli O104:H4 ∆stx2::gfp::ampr and demonstrated phage transduction during sprouting. The Φ11-3088∆stx transduced 5/45 strains, including generic E. coli, pap-positive E. coli O103:H2, ETEC, and S. sonnei. The expression level of Φ11-3088∆stx differed among lysogens upon induction. Of the 3 highly induced lysogens, the lytic cycle was induced in E. coli O104:H4∆stx2::gfp::ampr and O103:H2 but not in S. sonnei. E. coli DH5α was the only strain susceptible to lytic infection by Φ11-3088∆stx. To explore the effect of drying and rehydration during seed storage and sprouting on phage induction and transduction, mung beans inoculated with the phage donor E. coli O104:H4∆stx2::gfp::ampr (8 log CFU/g) were dried, rehydrated, and incubated with the phage recipient E. coli DH5α (7 log CFU/g) for 96 h. Sprouted seeds harbored about 3 log CFU/g of putative lysogens that acquired ampicillin resistance. At the end of sprouting, 71 % of putative lysogens encoded gfp, confirming phage transduction. Overall, stx transfer by phages may increase the cell counts of STEC during sprouting by converting generic E. coli to STEC.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Escherichia coli O104 , Escherichia coli Shiga Toxigênica , Vigna , Bacteriófagos/genética , Escherichia coli , Infecções por Escherichia coli/microbiologia , Escherichia coli Shiga Toxigênica/metabolismo
7.
Emerg Infect Dis ; 28(9): 1890-1894, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997633

RESUMO

We describe the recent detection of 3 Shiga toxin-producing enteroaggregative Escherichia coli O104:H4 isolates from patients and 1 from pork in the Netherlands that were genetically highly similar to isolates from the 2011 large-scale outbreak in Europe. Our findings stress the importance of safeguarding food supply production chains to prevent future outbreaks.


Assuntos
Infecções por Escherichia coli , Escherichia coli O104 , Escherichia coli Shiga Toxigênica , Surtos de Doenças , Infecções por Escherichia coli/epidemiologia , Alemanha/epidemiologia , Humanos , Toxina Shiga , Escherichia coli Shiga Toxigênica/genética
8.
J Food Prot ; 85(11): 1635-1639, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776056

RESUMO

ABSTRACT: The objective of the present study was to analyze the combined effect of heat treatment (55 to 62.5°C) and citral (0 to 3%) on the heat resistance of Escherichia coli O104:H4 inoculated into ground beef. Inoculated meat packages were immersed in a circulating water bath stabilized at 55, 57.5, 60, or 62.5°C for various times. The surviving microbial cells were counted after culture on tryptic soy agar. A factorial design (4 × 4) was used to analyze the effects and interaction of heat treatment and citral. Heat and citral promoted E. coli O104:H4 thermal inactivation, suggesting a synergistic effect. At 55°C, the incorporation of citral at 1, 2, and 3% decreased D-values (control = 42.75 min) by 85, 89, and 91%, respectively (P < 0.05). A citral concentration-dependent effect (P < 0.05) also was noted at other evaluated temperatures. These findings could be of value to the food industry for designing a safe thermal process for inactivating E. coli O104:H4 in ground beef under similar thermal inactivation conditions.


Assuntos
Escherichia coli O104 , Escherichia coli O157 , Animais , Bovinos , Ágar/farmacologia , Temperatura Alta , Água/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos
9.
Z Gastroenterol ; 60(7): 1104-1110, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34820797

RESUMO

BACKGROUND: In summer 2011, Shiga toxin producing Escherichia coli (EHEC) serotype O104:H4 caused the most severe EHEC outbreak in Germany to date. The case of a previously recovered patient with symptomatic postinflammatory colonic stenosis following EHEC- infection prompted us to conduct a prospective study to assess the macro- and microscopic intestinal long-term damage in a cohort of patients who had suffered from severe EHEC colitis. METHODS: Following EHEC infection in 2011, 182 patients were offered to participate in this study between January 2013 and October 2014 as part of the post-inpatient follow-up care at the University Medical Center Hamburg-Eppendorf and to undergo colonoscopy with stepwise biopsies. Prior to colonoscopy, medical history and persistent post-infectious complaints were assessed. RESULTS: Out of 182 patients, 22 (12%) participated in the study, 18 (82%) were female. All patients had been hospitalized due severe EHEC enterocolitis: 20 patients (90%) had subsequently developed hemolytic uremic syndrome (HUS), 16 patients (72%) had additionally required dialysis. On assessment prior to colonoscopy, all patients denied any abdominal complaints before EHEC-infection but 8 (36%) patients reported persistent post-infectious symptoms. According to the ROME IV criteria, 4 (18%) patients met the definition for post-infectious irritable bowel syndrome (PI-IBS). In all patients with persistent symptoms, colonoscopies and histological examination were unremarkable. Only in one symptom-free patient, biopsy revealed a locally limited cryptitis of the caecum, while all patients without complaints had inconspicuous histological and endoscopical findings. CONCLUSION: Following infection colonic stenosis is a serious but rare long-term complication in patients who had suffered from severe enterocolitis. However, a significant proportion of these patients develop PI-IBS.


Assuntos
Enterocolite , Infecções por Escherichia coli , Escherichia coli O104 , Síndrome do Intestino Irritável , Constrição Patológica/complicações , Surtos de Doenças , Enterocolite/complicações , Enterocolite/diagnóstico , Enterocolite/epidemiologia , Escherichia coli , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/epidemiologia , Feminino , Alemanha/epidemiologia , Humanos , Incidência , Masculino , Estudos Prospectivos , Toxina Shiga
10.
BMC Microbiol ; 21(1): 163, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078285

RESUMO

BACKGROUND: The intestinal microbiota plays a crucial role in human health, adjusting its composition and the microbial metabolites protects the gut against invading microorganisms. Enteroaggregative E. coli (EAEC) is an important diarrheagenic pathogen, which may cause acute or persistent diarrhea (≥14 days). The outbreak strain has the potent Shiga toxin, forms a dense biofilm and communicate via QseBC two-component system regulating the expression of many important virulence factors. RESULTS: Herein, we investigated the QseC histidine sensor kinase role in the microbiota shift during O104:H4 C227-11 infection in the colonic model SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) and in vivo mice model. The microbiota imbalance caused by C227-11 infection affected ỿ-Proteobacteria and Lactobacillus spp. predominance, with direct alteration in intestinal metabolites driven by microbiota change, such as Short-chain fatty acids (SCFA). However, in the absence of QseC sensor kinase, the microbiota recovery was delayed on day 3 p.i., with change in the intestinal production of SCFA, like an increase in acetate production. The higher predominance of Lactobacillus spp. in the microbiota and significant augmented qseC gene expression levels were also observed during C227-11 mice infection upon intestinal depletion. Novel insights during pathogenic bacteria infection with the intestinal microbiota were observed. The QseC kinase sensor seems to have a role in the microbiota shift during the infectious process by Shiga toxin-producing EAEC C227-11. CONCLUSIONS: The QseC role in C227-11 infection helps to unravel the intestine microbiota modulation and its metabolites during SHIME® and in vivo models, besides they contribute to elucidate bacterial intestinal pathogenesis and the microbiota relationships.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli O104/metabolismo , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Modelos Animais de Doenças , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
PLoS One ; 16(5): e0251096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33939753

RESUMO

Adherence of bacteria to the human intestinal mucosa can facilitate their internalization and the development of pathological processes. Escherichia coli O104:H4 is considered a hybrid strain (enteroaggregative hemorrhagic E. coli [EAHEC]), sharing virulence factors found in enterohemorrhagic (EHEC), and enteroaggregative (EAEC) E. coli pathotypes. The objective of this study was to analyze the effects of natural and synthetic antimicrobials (carvacrol, oregano extract, brazilin, palo de Brasil extract, and rifaximin) on the adherence of EHEC O157:H7, EAEC 042, and EAHEC O104:H4 to HEp-2 cells and to assess the expression of various genes involved in this process. Two concentrations of each antimicrobial that did not affect (p≤0.05) bacterial viability or damage the bacterial membrane integrity were used. Assays were conducted to determine whether the antimicrobials alter adhesion by affecting bacteria and/or alter adhesion by affecting the HEp-2 cells, whether the antimicrobials could detach bacteria previously adhered to HEp-2 cells, and whether the antimicrobials could modify the adherence ability exhibited by the bacteria for several cycles of adhesion assays. Giemsa stain and qPCR were used to assess the adhesion pattern and gene expression, respectively. The results showed that the antimicrobials affected the adherence abilities of the bacteria, with carvacrol, oregano extract, and rifaximin reducing up to 65% (p≤0.05) of E. coli adhered to HEp-2 cells. Carvacrol (10 mg/ml) was the most active compound against EHAEC O104:H4, even altering its aggregative adhesion pattern. There were changes in the expression of adhesion-related genes (aggR, pic, aap, aggA, and eae) in the bacteria and oxidative stress-related genes (SOD1, SOD2, CAT, and GPx) in the HEp-2 cells. In general, we demonstrated that carvacrol, oregano extract, and rifaximin at sub-minimal bactericidal concentrations interfere with target sites in E. coli, reducing the adhesion efficiency.


Assuntos
Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O104/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Linhagem Celular , Surtos de Doenças/prevenção & controle , Células Epiteliais/microbiologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Sorogrupo , Virulência/efeitos dos fármacos
12.
Virulence ; 12(1): 346-359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356871

RESUMO

Whereas the O104:H4 enterohemorrhagic Escherichia coli (EHEC) outbreak strain from 2011 expresses aggregative adherence fimbriae of subtype I (AAF/I), its close relative, the O104:H4 enteroaggregative Escherichia coli (EAEC) strain 55989, encodes AAF of subtype III. Tight adherence mediated by AAF/I in combination with Shiga toxin 2 production has been suggested to result in the outbreak strain's exceptional pathogenicity. Furthermore, the O104:H4 outbreak strain adheres significantly better to cultured epithelial cells than archetypal EAEC strains expressing different AAF subtypes. To test whether AAF/I expression is associated with the different virulence phenotypes of the outbreak strain, we heterologously expressed AAF subtypes I, III, IV, and V in an AAF-negative EAEC 55989 mutant and compared AAF-mediated phenotypes, incl. autoaggregation, biofilm formation, as well as bacterial adherence to HEp-2 cells. We observed that the expression of all four AAF subtypes promoted bacterial autoaggregation, though with different kinetics. Disturbance of AAF interaction on the bacterial surface via addition of α-AAF antibodies impeded autoaggregation. Biofilm formation was enhanced upon heterologous expression of AAF variants and inversely correlated with the autoaggregation phenotype. Co-cultivation of bacteria expressing different AAF subtypes resulted in mixed bacterial aggregates. Interestingly, bacteria expressing AAF/I formed the largest bacterial clusters on HEp-2 cells, indicating a stronger host cell adherence similar to the EHEC O104:H4 outbreak strain. Our findings show that, compared to the closely related O104:H4 EAEC strain 55989, not only the acquisition of the Shiga toxin phage, but also the acquisition of the AAF/I subtype might have contributed to the increased EHEC O104:H4 pathogenicity.


Assuntos
Aderência Bacteriana/genética , Escherichia coli O104/genética , Escherichia coli O104/patogenicidade , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/fisiologia , Fenótipo , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli , Escherichia coli O104/classificação , Fímbrias Bacterianas/classificação , Humanos , Família Multigênica , Sorogrupo , Virulência/genética
13.
Nucleic Acids Res ; 48(22): 12858-12873, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270887

RESUMO

Analysis of genomic DNA from pathogenic strains of Burkholderia cenocepacia J2315 and Escherichia coli O104:H4 revealed the presence of two unusual MTase genes. Both are plasmid-borne ORFs, carried by pBCA072 for B. cenocepacia J2315 and pESBL for E. coli O104:H4. Pacific Biosciences SMRT sequencing was used to investigate DNA methyltransferases M.BceJIII and M.EcoGIX, using artificial constructs. Mating properties of engineered pESBL derivatives were also investigated. Both MTases yield promiscuous m6A modification of single strands, in the context SAY (where S = C or G and Y = C or T). Strikingly, this methylation is asymmetric in vivo, detected almost exclusively on one DNA strand, and is incomplete: typically, around 40% of susceptible motifs are modified. Genetic and biochemical studies suggest that enzyme action depends on replication mode: DNA Polymerase I (PolI)-dependent ColE1 and p15A origins support asymmetric modification, while the PolI-independent pSC101 origin does not. An MTase-PolI complex may enable discrimination of PolI-dependent and independent plasmid origins. M.EcoGIX helps to establish pESBL in new hosts by blocking the action of restriction enzymes, in an orientation-dependent fashion. Expression and action appear to occur on the entering single strand in the recipient, early in conjugal transfer, until lagging-strand replication creates the double-stranded form.


Assuntos
Metilação de DNA/genética , DNA Polimerase I/genética , DNA de Cadeia Simples/genética , Metiltransferases/genética , Proteínas de Bactérias/genética , Burkholderia cenocepacia/genética , Replicação do DNA/genética , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Proteínas Ribossômicas/genética
14.
Genes (Basel) ; 11(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081159

RESUMO

Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors-active partitioning, toxin-antitoxin and conjugational transfer-are all involved in the prevalence of pESBL in the E. coli population.


Assuntos
Conjugação Genética , Infecções por Escherichia coli/transmissão , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Transferência Genética Horizontal , Plasmídeos/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Humanos , Sistemas Toxina-Antitoxina/genética
15.
Food Microbiol ; 86: 103316, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703882

RESUMO

Human disease outbreaks caused by pathogenic Escherichia coli are increasingly associated with the consumption of contaminated fresh produce. Internalization of enteroaggregative/enterohemorrhagic E. coli (EAEC/EHEC) strains into plant tissues may present a serious threat to public health. In the current study, the ability of the fluorescing Shiga toxin-negative E. coli O104:H4 strain C227/11ϕcu/pKEC2 to adhere to and to internalize into the roots of Lactuca sativa and Valerianella locusta grown in diluvial sand (DS) and alluvial loam (AL) was investigated. In parallel, the soil microbiota was analyzed by partial 16S rRNA gene sequencing. The experiments were performed in a safety level 3 greenhouse to simulate agricultural practice. The adherence of C227/11ϕcu/pKEC2 to the roots of both plant varieties was increased by at least a factor three after incubation in DS compared to AL. Compared to V. locusta, internalization into the roots of L. sativa was increased 12-fold in DS and 108-fold in AL. This demonstrates that the plant variety had an impact on the internalization ability, whereas for a given plant variety the soil type also affected bacterial internalization. In addition, microbiota analysis detected the inoculated strain and showed large differences in the bacterial composition between the soil types.


Assuntos
Aderência Bacteriana , Escherichia coli O104/fisiologia , Raízes de Plantas/microbiologia , Solo/química , Escherichia coli O104/genética , Microbiologia do Solo
16.
J Mol Med (Berl) ; 97(9): 1285-1297, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254005

RESUMO

The overuse of antibiotics has caused an increased prevalence of drug-resistant bacteria. Bacterial resistance in E. coli is regulated via production of ß-lactam-hydrolyzing ß-lactamases enzymes. Escherichia coli O104: H4 is a multi-drug resistant strain known to resist ß-lactam as well as several other antibiotics. Here, we report a molecular dynamic simulation-combined docking approach to identify, screen, and verify active pharmacophores against enterohemorrhagic Escherichia coli (EHEC). Experimental studies revealed a boronic acid cyclic monomer (BACM), a non-ß-lactam compound, to inhibit the growth of E. coli O104: H4. In vitro Kirby Bauer disk diffusion susceptibility testing coupled interaction analysis suggests BACM inhibits E. coli O104:H4 growth by not only inhibiting the ß-lactamase pathway but also via direct inhibition of the penicillin-binding protein. These results suggest that BACM could be used as a lead compound to develop potent drugs targeting beta-lactam resistant Gram-negative bacterial strains. KEY MESSAGES: • An in silico approach was reported to identify pharmacophores against E. coli O104: H4. • In vitro studies revealed a non-ß-lactam compound to inhibit the growth of E. coli O104: H4. • This non-ß-lactam compound could be used as a lead compound for targeting beta-lactam strains.


Assuntos
Antibacterianos/farmacologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli O104/efeitos dos fármacos , beta-Lactamas/farmacologia , Ácidos Borônicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos
17.
J Bacteriol ; 201(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31235511

RESUMO

Enteroaggregative Escherichia coli (EAEC) from the O104:H4 specific serotype caused a large outbreak of bloody diarrhea with some complicated cases of hemolytic-uremic syndrome (HUS) in Europe in 2011. The outbreak strain consisted in an EAEC capable to produce the Shiga toxin (Stx) subtype 2a, a characteristic from enterohemorrhagic E. coli QseBC two-component system detects AI-3/Epi/NE and mediates the chemical signaling between pathogen and mammalian host. This system coordinates a cascade of virulence genes expression in important human enteropathogens. The blocking of QseC of EAEC C227-11 (Stx+) strain by N-phenyl-4-{[(phenylamino) thioxomethyl]amino}-benzenesulfonamide (also known as LED209) in vivo demonstrated a lower efficiency of colonization. The periplasmic protein VisP, which is related to survival mechanisms in a colitis model of infection, bacterial membrane maintenance, and stress resistance, here presented high levels of expression during the initial infection within the host. Under acid stress conditions, visP expression levels were differentiated in an Stx-dependent way. Together, these results emphasize the important role of VisP and the histidine kinase sensor QseC in the C227-11 (Stx+) outbreak strain for the establishment of the infectious niche process in the C57BL/6 mouse model and of LED209 as a promising antivirulence drug strategy against these enteric pathogens.IMPORTANCE EAEC is a remarkable etiologic agent of acute and persistent diarrhea worldwide. The isolates harbor specific subsets of virulence genes and their pathogenesis needs to be better understood. Chemical signaling via histidine kinase sensor QseC has been shown as a potential target to elucidate the orchestration of the regulatory cascade of virulence factors.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli O104/metabolismo , Proteínas de Escherichia coli/metabolismo , Animais , Aderência Bacteriana , Comunicação Celular , Surtos de Doenças , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Europa (Continente)/epidemiologia , Fímbrias Bacterianas , Microbioma Gastrointestinal , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Mutação , Toxina Shiga/metabolismo , Transdução de Sinais
18.
Methods Mol Biol ; 1954: 161-174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30864131

RESUMO

The biosynthesis of O antigenic polysaccharides in enteric bacteria from nucleoside diphosphate sugars (donor substrates) is catalyzed by the corresponding glycosyltransferases and proceeds through the intermediate formation of undecaprenyl diphosphate sugars (acceptor substrates). To study this process, a chemical synthesis of the compounds having the natural structure or their modified analogs is necessary. The phosphoroimidazolidate method is a universal method for synthesis of lipid diphosphate disaccharides containing 2-acetamido-2-deoxyglycosyl residue at the reducing end of the disaccharide moiety and 11-phenoxyundecyl residue as lipid fragment of the molecule. We report here protocols to synthesize the disaccharides P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate [D-Rha(α1-3)-D-GlcNAcα-PP-PhU, Compound 1] and P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-ß-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate [D-Gal(ß1-3)-D-GalNAcα-PP-PhU, Compound 6]. We describe the procedures for identification and structure estimation of compounds by TLC, NMR, and MS. We also include the biochemical testing of Compound 6 with α2,3-sialyltransferase WbwA from Escherichia coli O104.


Assuntos
Difosfatos/síntese química , Dissacarídeos/síntese química , Escherichia coli O104/metabolismo , Proteínas de Escherichia coli/metabolismo , Antígenos O/metabolismo , Sialiltransferases/metabolismo , Vias Biossintéticas , Técnicas de Química Sintética/métodos , Cromatografia em Camada Delgada/métodos , Difosfatos/química , Difosfatos/metabolismo , Dissacarídeos/química , Dissacarídeos/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli O104/química , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Antígenos O/química
19.
Methods Mol Biol ; 1954: 187-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30864133

RESUMO

Escherichia coli serotype O104:H4 (ECO104) is a potent intestinal pathogen that causes severe bloody diarrhea and hemolytic-uremic syndrome. The O antigenic polysaccharides of ECO104 consist of repeating units with the structure [4Galα1-4Neu5,7,9Ac3α2-3Galß1-3GalNAcß1-]n. These repeating units are assembled sequentially by specific glycosyltransferases on a diphosphate-undecaprenol intermediate. Internal structures include mimics of the human T and sialyl-T antigen. This protocol describes the in vitro synthesis of the repeating unit by ß1,3-Gal-transferase WbwC, α2,3-sialyltransferase WbwA, and α1,4-Gal-transferase WbwB. All of these enzymes require acceptor substrates based on GalNAc-diphosphate-lipid. These methods are applicable for the assembly of bacterial polysaccharides of gram-negative bacteria that require sugar-diphosphate intermediates and are a basis for vaccine synthesis.


Assuntos
Escherichia coli O104/metabolismo , Proteínas de Escherichia coli/metabolismo , Galactosiltransferases/metabolismo , Antígenos O/metabolismo , Oligossacarídeos/metabolismo , Sialiltransferases/metabolismo , Ensaios Enzimáticos/métodos , Infecções por Escherichia coli/microbiologia , Escherichia coli O104/química , Humanos , Antígenos O/química , Oligossacarídeos/química
20.
Curr Top Microbiol Immunol ; 416: 117-148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30062592

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin (Stx) producing bacteria causing a disease characterized by bloody (or non-bloody) diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011, which in addition showed the so far highest incidence rate of EHEC-related HUS worldwide. The aggressive outbreak strain carries an unusual combination of virulence traits characteristic to both EHEC-a chromosomally integrated Stx-encoding bacteriophage, and enteroaggregative Escherichia coli-pAA plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to epithelia cells. There are currently still open questions regarding the 2011 EHEC outbreak, e.g., with respect to the exact molecular mechanisms resulting in the hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable therapeutic strategies. Nevertheless, our knowledge on these issues has substantially expanded since 2011. Here, we present an overview of the epidemiological, clinical, microbiological, and molecular biological data available on the 2011 German EHEC O104:H4 outbreak.


Assuntos
Surtos de Doenças , Reservatórios de Doenças/microbiologia , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O104/patogenicidade , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O104/genética , Escherichia coli O104/isolamento & purificação , Alemanha/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...