Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.747
Filtrar
1.
Science ; 384(6691): 100-105, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574144

RESUMO

Phage viruses shape the evolution and virulence of their bacterial hosts. The Salmonella enterica genome encodes several stress-inducible prophages. The Gifsy-1 prophage terminase protein, whose canonical function is to process phage DNA for packaging in the virus head, unexpectedly acts as a transfer ribonuclease (tRNase) under oxidative stress, cleaving the anticodon loop of tRNALeu. The ensuing RNA fragmentation compromises bacterial translation, intracellular survival, and recovery from oxidative stress in the vertebrate host. S. enterica adapts to this transfer RNA (tRNA) fragmentation by transcribing the RNA repair Rtc system. The counterintuitive translational arrest provided by tRNA cleavage may subvert prophage mobilization and give the host an opportunity for repair as a way of maintaining bacterial genome integrity and ultimately survival in animals.


Assuntos
Endodesoxirribonucleases , Prófagos , Fagos de Salmonella , Salmonella enterica , Proteínas Virais , Animais , Endodesoxirribonucleases/metabolismo , Estresse Oxidativo , Prófagos/enzimologia , Prófagos/genética , RNA , RNA de Transferência , Salmonella enterica/genética , Fagos de Salmonella/enzimologia , Fagos de Salmonella/genética , Proteínas Virais/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1375887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505286

RESUMO

Salmonella enterica is a food-borne pathogen able to cause a wide spectrum of diseases ranging from mild gastroenteritis to systemic infections. During almost all stages of the infection process Salmonella is likely to be exposed to a wide variety of host-derived antimicrobial peptides (AMPs). AMPs are important components of the innate immune response which integrate within the bacterial membrane, thus forming pores which lead ultimately to bacterial killing. In contrast to other AMPs Bactericidal/Permeability-increasing Protein (BPI) displayed only weak bacteriostatic or bactericidal effects towards Salmonella enterica sv. Typhimurium (STM) cultures. Surprisingly, we found that sub-antimicrobial concentrations of BPI fold-containing (BPIF) superfamily members mediated adhesion of STM depending on pre-formed type 1 fimbriae. BPIF proteins directly bind to type 1 fimbriae through mannose-containing oligosaccharide modifications. Fimbriae decorated with BPIF proteins exhibit extended binding specificity, allowing for bacterial adhesion on a greater variety of abiotic and biotic surfaces likely promoting host colonization. Further, fimbriae significantly contributed to the resistance against BPI, probably through sequestration of the AMP before membrane interaction. In conclusion, functional subversion of innate immune proteins of the BPIF family through binding to fimbriae promotes Salmonella virulence by survival of host defense and promotion of host colonization.


Assuntos
Salmonella enterica , Salmonella typhimurium , Fímbrias Bacterianas/metabolismo , Aderência Bacteriana , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1347813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487353

RESUMO

Introduction: Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods: These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results: Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion: Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Salmonella enterica , Humanos , Animais , Camundongos , Coelhos , Antígenos O/genética , Salmonella enterica/genética , Salmonella typhimurium/genética , Sorogrupo , Imunidade , Modelos Animais , Vacinas contra Salmonella/genética
4.
PLoS One ; 19(3): e0299354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483966

RESUMO

The goal of this study is to investigate the origin, prevalence, and evolution of the pESI megaplasmid in Salmonella isolated from animals, foods, and humans. We queried 510,097 Salmonella genomes under the National Center for Biotechnology Information (NCBI) Pathogen Detection (PD) database for the presence of potential sequences containing the pESI plasmid in animal, food, and environmental sources. The presence of the pESI megaplasmid was confirmed by using seven plasmid-specific markers (rdA, pilL, SogS, TrbA, ipf, ipr2 and IncFIB(pN55391)). The plasmid and chromosome phylogeny of these isolates was inferred from single nucleotide polymorphisms (SNPs). Our search resolved six Salmonella clusters carrying the pESI plasmid. Four were emergent Salmonella Infantis clusters, and one each belonged to serovar Senftenberg and Alachua. The Infantis cluster with a pESI plasmid carrying blaCTX-M-65 gene was the biggest of the four emergent Infantis clusters, with over 10,000 isolates. This cluster was first detected in South America and has since spread widely in United States. Over time the composition of pESI in United States has changed with the average number of resistance genes showing a decrease from 9 in 2014 to 5 in 2022, resulting from changes in gene content in two integrons present in the plasmid. A recent and emerging cluster of Senftenberg, which carries the blaCTX-M-65 gene and is primarily associated with turkey sources, was the second largest in the United States. SNP analysis showed that this cluster likely originated in North Carolina with the recent acquisition of the pESI plasmid. A single Alachua isolate from turkey was also found to carry the pESI plasmid containing blaCTX-M-65 gene. The study of the pESI plasmid, its evolution and mechanism of spread can help us in developing appropriate strategies for the prevention and further spread of this multi-drug resistant plasmid in Salmonella in poultry and humans.


Assuntos
Salmonella enterica , Humanos , Animais , Estados Unidos , Sorogrupo , Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Galinhas/genética , Virulência/genética , Salmonella , Plasmídeos/genética , Farmacorresistência Bacteriana Múltipla/genética
5.
Food Microbiol ; 120: 104495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431315

RESUMO

This study assessed the fate of a Salmonella enterica cocktail (S. Typhimurium, S. Enteritidis, S. Newport, S. Agona and S. Anatum; initial counts 3.5 log CFU/g) in minimally processed sliced chard, broccoli and red cabbage at 16 conditions of different temperature (7, 14, 21 and 37 °C) and relative humidity (RH; 15, 35, 65 and 95%) over six days (144 h). Linear regression was used to estimate the rate change of Salmonella in cut vegetables as a function of temperature and relative humidity (RH). R2 value of 0.85, 0.87, and 0.78 were observed for the rates of change in chard, broccoli, and red cabbage, respectively. The interaction between temperature and RH was significant in all sliced vegetables. Higher temperatures and RH values favored Salmonella growth. As temperature or RH decreased, the rate of S. enterica change varied by vegetable. The models developed here can improve risk management of Salmonella in fresh cut vegetables.


Assuntos
Beta vulgaris , Brassica , Salmonella enterica , Temperatura , Microbiologia de Alimentos , Contaminação de Alimentos/análise , Umidade , Contagem de Colônia Microbiana , Salmonella , Verduras
6.
World J Microbiol Biotechnol ; 40(4): 133, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480610

RESUMO

Campylobacter and Salmonella are the two most prominent foodborne zoonotic pathogens reported in the European Union. As poultry is one of the major sources of these pathogens, it is imperative to mitigate the colonization of these pathogens in poultry. Many strains of lactic acid bacteria (LAB) have demonstrated anti-Salmonella and anti-Campylobacter characteristics to varying degrees and spectrums which are attributed to the production of various metabolites. However, the production of these compounds and consequent antimicrobial properties are highly strain dependent. Therefore, the current study was performed to select a potent LAB and determine its causal attribute in inhibiting Salmonella enterica and Campylobacter jejuni, in-vitro. Six LAB (Lactiplantibacillus plantarum (LP), Lacticaseibacillus casei (LC), Limosilactobacillus reuteri (LR), Lacticaseibacillus rhamnosus (LRh), Leuconostoc mesenteroides (LM) and Pediococcus pentosaceus (PP)) and three serovars of Salmonella enterica (Typhimurium, Enterica and Braenderup) and Campylobacter jejuni were used in the current study. Spot overlays, well diffusion, co-culture and co-aggregation assays against Salmonella and well diffusion assays against Campylobacter jejuni were performed. Organic acid profiling of culture supernatants was performed using HPLC. The results indicated that LRh, LM and PP had the most significant anti-Salmonella effects while LP, LC, LM and PP displayed the most significant anti-Campylobacter effects. Lactic acid and formic acid detected in the culture supernatants seem the most likely source of the anti-Salmonella and anti-Campylobacter effects exhibited by these LAB. In conclusion, Leuconostoc mesenteroides displayed the most significant overall anti-pathogenic effects when compared to the other LAB strains studied, indicating its potential application in-vivo.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Lactobacillales , Lactobacillus plantarum , Doenças das Aves Domésticas , Salmonella enterica , Animais , Galinhas/microbiologia , Salmonella , Infecções por Campylobacter/microbiologia , Doenças das Aves Domésticas/microbiologia
7.
J Food Prot ; 87(4): 100259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447927

RESUMO

Fresh vegetables have been linked to multiple foodborne outbreaks in the U.S., with Listeria monocytogenes and Salmonella enterica identified as leading causes. Beyond raw vegetables, cooked vegetables can also pose food safety concerns due to improper cooking temperature and time combinations or postcooking contamination. Cooked vegetables, having had their native microbiota reduced through heat inactivation, might provide an environment that favors the growth of pathogens due to diminished microbial competition. While the risks associated with raw vegetables are recognized, the survival and growth of pathogens on cooked vegetables remain inadequately studied. This study investigated the growth kinetics of both L. monocytogenes and S. enterica on various cooked vegetables (carrot, corn, onions, green bell pepper, and potato). Vegetables were cooked at 177°C until the internal temperature reached 90°C and then cooled to 5°C. Cooled vegetables were inoculated with a four-strain cocktail of either L. monocytogenes or S. enterica at 3 log CFU/g, then stored at different temperatures (5, 10, or 25°C) for up to 7 days. Both pathogens survived on all vegetables when stored at 5°C. At 10°C, both pathogens proliferated on all vegetables, with the exception of L. monocytogenes on pepper. At 25°C, the highest growth rates were observed by both pathogens on carrot (5.55 ± 0.22 and 6.42 ± 0.23 log CFU/g/d for L. monocytogenes and S. enterica, respectively). S. enterica displayed higher growth rates at 25°C compared to L. monocytogenes on all vegetables. Overall, these results bridge the knowledge gap concerning the growth kinetics of both S. enterica and L. monocytogenes on various cooked vegetables, offering insights to further enhance food safety.


Assuntos
Listeria monocytogenes , Salmonella enterica , Verduras , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Culinária , Temperatura
8.
PLoS One ; 19(3): e0298419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452024

RESUMO

Genetic screening of pools of mutants can reveal genetic determinants involved in complex biological interactions, processes, and systems. We previously constructed two single-gene deletion resources for Salmonella enterica serovar Typhimurium 14028s in which kanamycin (KanR) and chloramphenicol (CamR) cassettes were used to replace non-essential genes. We have now used lambda-red recombination to convert the antibiotic cassettes in these resources into a tetracycline-resistant (TetR) version where each mutant contains a different 21-base barcode flanked by Illumina Read1 and Read2 primer sequences. A motility assay of a pool of the entire library, followed by a single-tube processing of the bacterial pellet, PCR, and sequencing, was used to verify the performance of the barcoded TetR collection. The new resource is useful for experiments with defined subsets of barcoded mutant strains where biological bottlenecks preclude high numbers of founder bacteria, such as in animal infections. The TetR version of the library will also facilitate the construction of triple mutants by transduction. The resource of 6197 mutants covering 3490 genes is deposited at Biological and Emerging Infections Resources (beiresources.org).


Assuntos
Salmonella enterica , Salmonella typhimurium , Animais , Salmonella typhimurium/genética , Sorogrupo , Deleção de Genes , Antibacterianos , Tetraciclina , Bactérias
9.
BMJ Case Rep ; 17(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538103

RESUMO

Infections with non-typhoidal salmonella (NTS) most commonly cause localised infections such as cutaneous abscesses in humans and are a leading source of foodborne illness. Here, we present a unique case of NTS Choleraesuis in a perianal abscess in an immunocompetent patient without any comorbidities.A woman in her late 40s was diagnosed with a perianal abscess with an unknown origin of infection. The patient has undergone an incision and drainage. Her pus culture and sensitivity report yielded Salmonella enterica serotype Choleraesuis. Then, the patient recovered after treatment with intravenous antibiotics and supportive treatment.We present an unusual case of S. enterica serotype Choleraesuis, which is rarely reported as a causative agent of perianal abscess in India. This case has been reported for its rarity in India.


Assuntos
Infecções por Salmonella , Salmonella enterica , Dermatopatias , Febre Tifoide , Feminino , Humanos , Abscesso/diagnóstico , Infecções por Salmonella/complicações , Infecções por Salmonella/diagnóstico , Infecções por Salmonella/tratamento farmacológico , Sorogrupo , Antibacterianos/uso terapêutico , Dermatopatias/tratamento farmacológico , Febre Tifoide/tratamento farmacológico
10.
Emerg Infect Dis ; 30(4): 691-700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526124

RESUMO

Salmonella enterica serovar Abortusovis is a ovine-adapted pathogen that causes spontaneous abortion. Salmonella Abortusovis was reported in poultry in 2009 and has since been reported in human infections in New South Wales, Australia. Phylogenomic analysis revealed a clade of 51 closely related isolates from Australia originating in 2004. That clade was genetically distinct from ovine-associated isolates. The clade was widespread in New South Wales poultry production facilities but was only responsible for sporadic human infections. Some known virulence factors associated with human infections were only found in the poultry-associated clade, some of which were acquired through prophages and plasmids. Furthermore, the ovine-associated clade showed signs of genome decay, but the poultry-associated clade did not. Those genomic changes most likely led to differences in host range and disease type. Surveillance using the newly identified genetic markers will be vital for tracking Salmonella Abortusovis transmission in animals and to humans and preventing future outbreaks.


Assuntos
Salmonella enterica , Salmonella , Gravidez , Feminino , Humanos , Animais , Ovinos , Aves Domésticas , Sorogrupo , New South Wales/epidemiologia , Austrália/epidemiologia
11.
EMBO J ; 43(8): 1499-1518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528181

RESUMO

The intestinal pathogen Salmonella enterica rapidly enters the bloodstream after the invasion of intestinal epithelial cells, but how Salmonella breaks through the gut-vascular barrier is largely unknown. Here, we report that Salmonella enters the bloodstream through intestinal CX3CR1+ macrophages during early infection. Mechanistically, Salmonella induces the migration/invasion properties of macrophages in a manner dependent on host cell actin and on the pathogen effector SteC. SteC recruits host myosin light chain protein Myl12a and phosphorylates its Ser19 and Thr20 residues. Myl12a phosphorylation results in actin rearrangement, and enhanced migration and invasion of macrophages. SteC is able to utilize a wide range of NTPs other than ATP to phosphorylate Myl12a. We further solved the crystal structure of SteC, which suggests an atypical dimerization-mediated catalytic mechanism. Finally, in vivo data show that SteC-mediated cytoskeleton manipulation is crucial for Salmonella breaching the gut vascular barrier and spreading to target organs.


Assuntos
Cadeias Leves de Miosina , Salmonella enterica , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Actinas/metabolismo , Células Epiteliais/metabolismo , Macrófagos/metabolismo
12.
Emerg Infect Dis ; 30(4): 701-710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526070

RESUMO

Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen.


Assuntos
Saúde Única , Salmonella enterica , Animais , Humanos , Sorogrupo , Antibacterianos/farmacologia , Salmonella/genética , Aves Domésticas , Farmacorresistência Bacteriana Múltipla/genética
13.
Cells ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534358

RESUMO

Nontyphoidal salmonellosis is an important foodborne and zoonotic infection that causes significant global public health concern. Diverse serovars are multidrug-resistant and encode several virulence indicators; however, little is known on the role prophages play in driving these traits. Here, we extracted prophages from seventy-five Salmonella genomes which represent the fifteen important serovars in the United Kingdom. We analyzed the intact prophages for the presence of virulence genes and established their genomic relationships. We identified 615 prophages from the Salmonella strains, from which 195 prophages are intact, 332 are incomplete, while 88 are questionable. The average prophage carriage was found to be 'extreme' in S. Heidelberg, S. Inverness, and S. Newport (10.2-11.6 prophages/strain), 'high' in S. Infantis, S. Stanley, S. Typhimurium, and S. Virchow (8.2-9.0 prophages/strain), 'moderate' in S. Agona, S. Braenderup, S. Bovismorbificans, S. Choleraesuis, S. Dublin, and S. Java (6.0-7.8 prophages/strain), and 'low' in S. Javiana and S. Enteritidis (5.8 prophages/strain). Cumulatively, 61 virulence genes (1500 gene copies) were detected from representative intact prophages and linked to Salmonella delivery/secretion system (42.62%), adherence (32.7%), magnesium uptake (3.88%), regulation (5%), stress/survival (1.6%), toxins (10%), and antivirulence (1.6%). Diverse clusters were formed among the intact prophages and with bacteriophages of other enterobacteria, suggesting different lineages and associations. Our work provides a strong body of data to support the contributions diverse prophages make to the pathogenicity of Salmonella, including thirteen previously unexplored serovars.


Assuntos
Salmonella enterica , Salmonella enterica/genética , Virulência/genética , Prófagos/genética , Sorogrupo , Salmonella
14.
Front Biosci (Landmark Ed) ; 29(3): 112, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538253

RESUMO

BACKGROUND: With the recent evolution of multidrug-resistant strains, the genetic characteristics of foodborne Salmonella enterica serovar Enteritidis and clinical isolates have changed. ST11 is now the most common genotype associated with S. Enteritidis isolates. METHODS: A total of 83 strains of S. Enteritidis were collected at the General Hospital of the People's Liberation Army. Of these, 37 were from aseptic sites in patients, 11 were from the feces of patients with diarrhea, and the remaining 35 were of chicken-origin. The minimum inhibitory concentration of S. Enteritidis was determined by the broth microdilution method. Genomic DNA was extracted using the QiAamp DNA Mini Kit, and whole-genome sequencing (WGS) was performed using an Illumina X-ten platform. Prokka was used for gene prediction and annotation, and bioinformatic analysis tools included Resfinder, ISFinder, Virulence Factor Database, and PlasmidFinder. IQ-TREE was used to build a maximum likelihood phylogenetic tree. The phylogenetic relationship and distribution of resistance genes was displayed using iTOL. Comparative population genomics was used to analyze the phenotypes and genetic characteristics of antibiotic resistance in clinical and chicken-origin isolates of S. Enteritidis. RESULTS: The chicken-origin S. Enteritidis isolates were more resistant to antibiotics than clinical isolates, and had a broader antibiotic resistance spectrum and higher antibiotic resistance rate. A higher prevalence of antibiotic-resistance genes was observed in chicken-origin S. Enteritidis compared to clinical isolates, along with distinct patterns in the contextual characteristics of these genes. Notably, genes such as blaCTX-M and dfrA17 were exclusive to plasmids in clinical S. Enteritidis, whereas in chicken-origin S. Enteritidis they were found in both plasmids and chromosomes. Additionally, floR was significantly more prevalent in chicken-origin isolates than in clinical isolates. Careful analysis revealed that the delayed isolation of chicken-origin S. Enteritidis contributes to accelerated gene evolution. Of note, certain resistance genes tend to integrate seamlessly and persist steadfastly within the chromosome, thereby expediting the evolution of resistance mechanisms against antibiotics. Our comparative analysis of virulence genes in S. Enteritidis strains from various sources found no substantial disparities in the distribution of other virulence factors. In summary, we propose that chicken-origin S. Enteritidis has the potential to cause clinical infections. Moreover, the ongoing evolution and dissemination of these drug-resistant genes poses a formidable challenge to clinical treatment. CONCLUSIONS: Constant vigilance is needed to monitor the dynamic patterns of drug resistance in S. Enteritidis strains sourced from diverse origins.


Assuntos
Salmonella enterica , Salmonella enteritidis , Animais , Humanos , Salmonella enteritidis/genética , Antibacterianos/farmacologia , Filogenia , Farmacorresistência Bacteriana/genética , Galinhas/genética , Testes de Sensibilidade Microbiana , Genômica , DNA , Salmonella enterica/genética , Farmacorresistência Bacteriana Múltipla/genética
15.
Avian Dis ; 67(4): 427-440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38300661

RESUMO

This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.


Estudio recapitulativo- Vacunas para controlar Salmonella en la avicultura. Esta revisión se centra en describir y analizar los medios mediante los cuales las cepas de serotipo de Salmonella enterica han sido modificadas genéticamente con el propósito de desarrollar vacunas seguras y eficaces para proteger contra la enfermedad inducida por Salmonella en la avicultura y prevenir la colonización de las aves por Salmonella para reducir la transmisión a través de la cadena alimentaria por la contaminación en el interior y exterior del huevo y en los productos cárnicos de origen avícola. Se hace hincapié en el uso de medios desarrollados recientemente para generar mutaciones definidas de deleción para eliminar secuencias genéticas que confieren resistencia contra los antimicrobianos o elementos residuales que podrían conducir a inestabilidad genética. Se analizan los problemas asociados con los medios anteriores para desarrollar vacunas y se presentan diversos medios mediante los cuales estos problemas se han reducido, si no eliminado. También se discuten las consideraciones prácticas para facilitar medios para transferir a condiciones comerciales y de mercado, los procedimientos de vacunación y candidatos a vacunas que han sido exitosos mediante pruebas en el lab-oratorio para beneficiar a la industria avícola.


Assuntos
Doenças das Aves Domésticas , Salmonella enterica , Vacinas , Animais , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle , Salmonella/genética
16.
Lancet Glob Health ; 12(3): e406-e418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365414

RESUMO

BACKGROUND: Enteric fever, a systemic infection caused by Salmonella enterica serovars Typhi and Paratyphi A, remains a major cause of morbidity and mortality in low-income and middle-income countries. Enteric fever is preventable through the provision of clean water and adequate sanitation and can be successfully treated with antibiotics. However, high levels of antimicrobial resistance (AMR) compromise the effectiveness of treatment. We provide estimates of the prevalence of AMR S Typhi and S Paratyphi A in 75 endemic countries, including 30 locations without data. METHODS: We used a Bayesian spatiotemporal modelling framework to estimate the percentage of multidrug resistance (MDR), fluoroquinolone non-susceptibility (FQNS), and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections for 1403 administrative level one districts in 75 endemic countries from 1990 to 2019. We incorporated data from a comprehensive systematic review, public health surveillance networks, and large multicountry studies on enteric fever. Estimates of the prevalence of AMR and the number of AMR infections (based on enteric fever incidence estimates by the Global Burden of Diseases study) were produced at the country, super-region, and total endemic area level for each year of the study. FINDINGS: We collated data from 601 sources, comprising 184 225 isolates of S Typhi and S Paratyphi A, covering 45 countries over 30 years. We identified a decline of MDR S Typhi in south Asia and southeast Asia, whereas in sub-Saharan Africa, the overall prevalence increased from 6·0% (95% uncertainty interval 4·3-8·0) in 1990 to 72·7% (67·7-77·3) in 2019. Starting from low levels in 1990, the prevalence of FQNS S Typhi increased rapidly, reaching 95·2% (91·4-97·7) in south Asia in 2019. This corresponded to 2·5 million (1·5-3·8) MDR S Typhi infections and 7·4 million (4·7-11·3) FQNS S Typhi infections in endemic countries in 2019. The prevalence of third-generation cephalosporin-resistant S Typhi remained low across the whole endemic area over the study period, except for Pakistan where prevalence of third-generation cephalosporin resistance in S Typhi reached 61·0% (58·0-63·8) in 2019. For S Paratyphi A, we estimated low prevalence of MDR and third-generation cephalosporin resistance in all endemic countries, but a drastic increase of FQNS, which reached 95·0% (93·7-96·1; 3·5 million [2·2-5·6] infections) in 2019. INTERPRETATION: This study provides a comprehensive and detailed analysis of the prevalence of MDR, FQNS, and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections in endemic countries, spanning the last 30 years. Our analysis highlights the increasing levels of AMR in this preventable infection and serves as a resource to guide urgently needed public health interventions, such as improvements in water, sanitation, and hygiene and typhoid fever vaccination campaigns. FUNDING: Fleming Fund, UK Department of Health and Social Care; Wellcome Trust; and Bill and Melinda Gates Foundation.


Assuntos
Salmonella enterica , Febre Tifoide , Humanos , Febre Tifoide/tratamento farmacológico , Febre Tifoide/epidemiologia , Prevalência , Teorema de Bayes , Sorogrupo , Salmonella paratyphi A , Salmonella typhi , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Água , Farmacorresistência Bacteriana
17.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366187

RESUMO

Strains of Salmonella Enteritidis (SEnt, n = 10) and S. Typhimurium (STm, n = 11), representing clones with high impact on human health, and strains of S. 4,12: b:- (S412B n = 11) and S. Liverpool (SLiv, n = 4), representing clones with minor impact on human health were characterized for 16 growth, stress, and virulence phenotypes to investigate whether systematic differences exist in their performance in these phenotypes and whether there was correlation between performance in different phenotypes. The term serotype was not found to be predictive of a certain type of performance in any phenotype, and surprisingly, on average, strains of SEnt and STm were not significantly better in adhering to and invading cultured intestinal cells than the less pathogenic types. Forest analysis identified desiccation tolerance and the ability to grow at 42°C with high salt as the characters that separated serovars with low human health impact (S412B/SLiv) from serovars with high human health impact (SEnt/STm). The study showed that variation in phenotypes was high even within serovars and correlation between phenotypes was low, i.e. the way that a strain performed phenotypically in one of the tested conditions had a low predictive value for the performance of the strain in other conditions.


Assuntos
Salmonelose Animal , Salmonella enterica , Humanos , Animais , Salmonella enteritidis/genética , Virulência , Salmonella typhimurium/genética , Fenótipo , Sorogrupo
18.
mSystems ; 9(3): e0075723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319092

RESUMO

The resolution of variation within species is critical for interpreting and acting on many microbial measurements. In the key foodborne pathogens Salmonella and Escherichia coli, the primary subspecies classification scheme used is serotyping: differentiating variants within these species by surface antigen profiles. Serotype prediction from whole-genome sequencing (WGS) of isolates is now seen as comparable or preferable to traditional laboratory methods where WGS is available. However, laboratory and WGS methods depend on an isolation step that is time-consuming and incompletely represents the sample when multiple strains are present. Community sequencing approaches that skip the isolation step are, therefore, of interest for pathogen surveillance. Here, we evaluated the viability of amplicon sequencing of the full-length 16S rRNA gene for serotyping Salmonella enterica and E. coli. We developed a novel algorithm for serotype prediction, implemented as an R package (Seroplacer), which takes as input full-length 16S rRNA gene sequences and outputs serovar predictions after phylogenetic placement into a reference phylogeny. We achieved over 89% accuracy in predicting Salmonella serotypes on in silico test data and identified key pathogenic serovars of Salmonella and E. coli in isolate and environmental test samples. Although serotype prediction from 16S rRNA gene sequences is not as accurate as serotype prediction from WGS of isolates, the potential to identify dangerous serovars directly from amplicon sequencing of environmental samples is intriguing for pathogen surveillance. The capabilities developed here are also broadly relevant to other applications where intraspecies variation and direct sequencing from environmental samples could be valuable.IMPORTANCEIn order to prevent and stop outbreaks of foodborne pathogens, it is important that we can detect when pathogenic bacteria are present in a food or food-associated site and identify connections between specific pathogenic bacteria present in different samples. In this work, we develop a new computational technology that allows the important foodborne pathogens Escherichia coli and Salmonella enterica to be serotyped (a subspecies level classification) from sequencing of a single-marker gene, and the 16S rRNA gene often used to surveil bacterial communities. Our results suggest current limitations to serotyping from 16S rRNA gene sequencing alone but set the stage for further progress that we consider likely given the rapid advance in the long-read sequencing technologies and genomic databases our work leverages. If this research direction succeeds, it could enable better detection of foodborne pathogens before they reach the public and speed the resolution of foodborne pathogen outbreaks.


Assuntos
Escherichia coli , Salmonella enterica , Sorogrupo , RNA Ribossômico 16S/genética , Filogenia , Escherichia coli/genética , Genes de RNAr , Salmonella/genética , Salmonella enterica/genética
19.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364315

RESUMO

The objective of this study is to validate the US Food and Drug Administration (FDA) rea-time polymerase chain reaction (qPCR) assay, the Neogen Amplified Nucleic Single Temperature Reaction (ANSR) assay, and the Vitek ImmunoDiagnostic Assay System (VIDAS) SLM procedure against the FDA cultural procedure for Salmonella detection in green chile pepper. Green chile was artificially contaminated with Salmonella according to the FDA guidelines (FDA. Guidelines for the Validation of Microbiological Methods for the FDA Foods Program, 3rd Edition. 2019. www.fda.gov/media/83812/download?attachment (17 March 2024, date last accessed)) at a fractional recovery level (where 50%-25% tests positive and at a level +1 log greater for each organism tested). Enriched samples were tested directly by the ANSR Salmonella test and by qPCR, and were subcultured into Rappaport-Vassiliadis and tetrathionate brilliant green broth for cultural detection and qPCR. For the VIDAS-SLM assay, the selective enrichments were further cultured in M broth before testing. Presumptive salmonellae were confirmed with biochemical tests, serology, and qPCR. All three rapid assays were compared favorably with the FDA-BAM (Bacteriological Analytical Manual) method. No significant differences at P < .05 were found between the procedures using McNemar's χ2 test. The three procedures were found to be rapid and reliable alternatives to cultural detection of Salmonella enterica in green chile.


Assuntos
Microbiologia de Alimentos , Salmonella enterica , Meios de Cultura , Salmonella enterica/genética , Chile , Técnicas Bacteriológicas/métodos , Salmonella
20.
Int J Food Microbiol ; 415: 110648, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38422677

RESUMO

The objectives of the current study were: i) to investigate the antimicrobial activity of 0.125, 0.250 and 0.50 % (7.54, 15.08 and 30.17 mmol/Kg of eugenol) and (8.15, 16.31, and 33.61 mmol/Kg of carvacrol) against S. enterica and E. coli O157:H7 in falafel paste (FP) stored at 4, 10 or 25 °C for 10 d; and ii) to study the sensory properties of fried falafel treated with eugenol and carvacrol. S. enterica grew well in untreated falafel (control) samples at 10 and 25 °C, while E. coli O157:H7 grew only at 25 °C. However, numbers of S. enterica and E. coli O157:H7 in FP stored at 4 °C were reduced by 1.4-1.6 log CFU/g after 10 d. The antimicrobial agents were more effective at 25 °C against S. enterica, but were better at 4 and 10 °C against E. coli O157:H7. Addition of 0.125-0.5 % eugenol or carvacrol reduced the S. enterica numbers to undetectable level by direct plating (2 log CFU/g) by 2-10 d at 25 °C. FP samples treated with 0.5 % eugenol or 0.25-0.5 % carvacrol were negative for S. enterica cells by enrichment (1 CFU/5 g) by 10 d at 25 °C. In contrast, viable E. coli O157:H7 were not detected by direct plating when FP was treated with 0.25-0.5 % carvacrol or 0.5 % eugenol and stored at 4 °C by 2 d. Addition of eugenol or carvacrol did not affect the color, texture, and appearance of fried falafel but decreased the flavor and overall acceptability scores compared to untreated falafel. Using eugenol and carvacrol as natural antimicrobials have the potential to enhance the safety of FP by reducing the threat from foodborne pathogens.


Assuntos
Anti-Infecciosos , Cimenos , Escherichia coli O157 , Salmonella enterica , Eugenol/farmacologia , Temperatura , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...