Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.691
Filtrar
1.
Int J Med Microbiol ; 314: 151616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461565

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is the dominant pathogen in several infectious diseases. Currently the use of antibiotics is the main intervention to prevent NTHi infections, however with the emergence of drug resistant strains, it has compromised the treatment of respiratory infections with antibiotics. Therefore there is an urgent need to develop a safe and effective vaccine to prevent NTHi infections. We investigate the potential of C-HapS-P6 fusion protein as a vaccine for treating NTHi in murine models. PGEX-6P2/C-HapS-P6 fusion gene was constructed using overlap extension polymerase chain reaction. The recombined plasmid was transformed into Escherichia coli for protein expression. The mice were subjected to intraperitoneal immunization using purified antigens. Immunoglobulin (Ig) G in serum samples and IgA in nasal and lung lavage fluids were analyzed using enzyme-linked immunosorbent assay. Cytokine release and proliferation capacity of splenic lymphocytes in response to antigens were measured in vitro. The protective effect of the C-HapS-P6 protein against NTHi infection was evaluated by NTHi count and histological examination. The data showed that the C-HapS-P6 fusion protein increased significantly the levels of serum IgG and nasal and lung IgA, and promoted the release of interleukin (IL)-2, interferon-ϒ, IL-4, IL-5, and IL-17 and the proliferation of splenic lymphocytes compared with C-HapS or P6 protein treatment alone. Moreover, C-HapS-P6 effectively reduced the NTHi colonization in the nasopharynx and lungs of mice. In conclusion, our results demonstrated that the C-HapS-P6 fusion protein vaccine can significantly enhance humoral and cell immune responses and effectively prevent against NTHi infection in the respiratory tract in murine models.


Assuntos
Infecções por Haemophilus , Vacinas , Camundongos , Animais , Haemophilus influenzae/genética , Proteínas da Membrana Bacteriana Externa , Imunoglobulina G , Imunoglobulina A/análise , Antibacterianos , Infecções por Haemophilus/prevenção & controle , Anticorpos Antibacterianos , Camundongos Endogâmicos BALB C
2.
PeerJ ; 12: e16938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406294

RESUMO

The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is the most common cause of exacerbation of chronic obstructive pulmonary disease (COPD), of which an excessive inflammatory response is a hallmark. With the limited success of current medicines there is an urgent need for the development of novel therapeutics that are both safe and effective. In this study, we explored the regulatory potential of pomegranate-derived peptides Pug-1, Pug-2, Pug-3, and Pug-4 on NTHi-induced inflammation. Our results clearly showed that to varying degrees the Pug peptides inhibited NTHi-induced production of IL-1ß, a pivotal cytokine in COPD, and showed that these effects were not related to cytotoxicity. Pug-4 peptide exhibited the most potent inhibitory activity. This was demonstrated in all studied cell types including murine (RAW264.7) and human (differentiated THP-1) macrophages as well as human lung epithelial cells (A549). Substantial reduction by Pug-4 of TNF-α, NO and PGE2 in NTHi-infected A549 cells was also observed. In addition, Pug-4 strongly inhibited the expression of nuclear-NF-κB p65 protein and the NF-κB target genes (determined by IL-1ß, TNF-α, iNOS and COX-2 mRNA expression) in NTHi-infected A549 cells. Pug-4 suppressed the expression of NLRP3 and pro-IL-1ß proteins and inhibited NTHi-mediated cleavage of caspase-1 and mature IL-1ß. These results demonstrated that Pug-4 inhibited NTHi-induced inflammation through the NF-κB signaling and NLRP3 inflammasome activation. Our findings herein highlight the significant anti-inflammatory activity of Pug-4, a newly identified peptide from pomegranate, against NTHi-induced inflammation. We therefore strongly suggest the potential of the Pug-4 peptide as an anti-inflammatory medicine candidate for treatment of NTHi-mediated inflammation.


Assuntos
Anti-Inflamatórios , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Haemophilus influenzae/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Punica granatum/química , Fator de Necrose Tumoral alfa , Compostos Fitoquímicos/farmacologia
3.
Elife ; 122024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349818

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Assuntos
Haemophilus influenzae , Ácido N-Acetilneuramínico , Haemophilus influenzae/metabolismo , Microscopia Crioeletrônica , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo
4.
Diagn Microbiol Infect Dis ; 109(1): 116203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422664

RESUMO

Haemophilus influenzae is an important pathogen able to cause various forms of respiratory and invasive disease. To provide high sensitivity for detection, culture media must inhibit growth of residential flora from the respiratory tract. This study aimed to identify and compare the diagnostic and economic advantages of using bacitracin containing selective agar (SEL) or oleandomycin disk supplemented chocolate agar (CHOC). Growth and semi-quantitative abundance of H. influenzae and growth suppression of residential flora was prospectively assessed in a 28-week period. H. influenzae was identified in 164 (5 %) of all included samples: CHOC and SEL, CHOC only, and SEL only were positive in 95, 24, and 45 cases. Diagnostic superiority of SEL was primarily attributable to the results of throat swabs. However, on average, € 200 had to be spent for the detection of each additional isolate that was recovered only because of additional incubation on SEL.


Assuntos
Bacitracina , Chocolate , Humanos , Ágar , Bacitracina/farmacologia , Haemophilus influenzae , Oleandomicina , Meios de Cultura
5.
Eur J Clin Microbiol Infect Dis ; 43(4): 791-795, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332396

RESUMO

We report for the first time in Portugal a serotype c Haemophilus influenzae isolated from an adult, with HIV-1 infection. Whole-genome sequencing characterized the isolate as clonal complex ST-7, albeit with a novel MLST (ST2754) due to a unique atpG profile. Integration of this genome with other available H. influenzae serotype c genomes from PubMLST revealed its overall genetic distinctiveness, with the closest related isolate being identified in France in 2020. This surveillance study, involving collaboration among hospitals and reference laboratory, successfully contributed to the identification and characterization of this rare serotype.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Adulto , Humanos , Sorogrupo , Haemophilus influenzae/genética , Tipagem de Sequências Multilocus , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/microbiologia , Portugal/epidemiologia , Sorotipagem
6.
An Pediatr (Engl Ed) ; 100(3): 173-179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350792

RESUMO

INTRODUCTION: Recent studies show an increase in the prevalence of Haemophilus influenzae and a decrease in Streptococcus pneumoniae among the bacteria that cause acute otitis media (AOM). The objective of our study was to analyse the distribution of pathogens identified in children aged less than 14 years presenting to the emergency department with AOM and their patterns of antimicrobial resistance. PATIENTS AND METHODS: Single centre retrospective, analytical study in patients aged less than 14 years with a diagnosis of AOM in whom an ear drainage sample was collected for culture in the paediatric emergency department of a tertiary care hospital between 2013 and 2021. RESULTS: During the study period, there were 14 684 documented care episodes corresponding to children with a diagnosis of AOM. An ear drainage culture was performed in 768 of those episodes. The median age of the patients was 2 years, 57% were male and 70% had a previous history of AOM. The most frequently isolated pathogens were: Haemophilus influenzae (n = 188 [24.5%]; 15.5% of them resistant to ampicillin), Streptococcus pyogenes (n = 86 [11.2%]), Staphylococcus aureus (n = 82 [10.7%]), Streptococcus pneumoniae (n = 54 [6.9%]; 9.4% with intermediate resistance to penicillin), Pseudomonas aeruginosa (n = 42 [5.5%]) and Moraxella catarrhalis (n = 11 [1.4%]). No pathogen was isolated in 34.9% of cases. CONCLUSIONS: Haemophilus influenzae is the leading cause of AOM in children aged less than 14 years. This, combined with the low frequency of isolation and penicillin resistance of Streptococcus pneumoniae, calls into question the appropriateness of high-dose amoxicillin for empiric treatment of AOM.


Assuntos
Antibacterianos , Otite Média , Criança , Humanos , Masculino , Pré-Escolar , Feminino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Otite Média/tratamento farmacológico , Otite Média/epidemiologia , Otite Média/microbiologia , Streptococcus pneumoniae , Streptococcus pyogenes , Haemophilus influenzae
7.
BMC Infect Dis ; 24(1): 188, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347439

RESUMO

OBJECTIVE: Nontypeable Haemophilus influenzae (NTHi) plays an important role in respiratory tract infections, and adherence to lung epithelial cells is the first step in lung infections. To explore the role of NTHi in childhood lung infections, a comparative study was conducted on the adherence of strains isolated from sputum culture and bronchoalveolar lavage fluid to A549 lung epithelial cells. METHODS: Haemophilus influenzae strains were obtained from the sample bank of Shenzhen Children's Hospital, and identified as NTHi via PCR detection of the capsule gene bexA. NTHi obtained from healthy children's nasopharyngeal swabs culture were selected as the control group, and a comparative study was conducted on the adherence of strains isolated from sputum culture or bronchoalveolar lavage fluid of patients to A549 cells. RESULTS: The adherence bacterial counts of NTHi isolated from the nasopharyngeal cultures of healthy children to A549 cells was 58.2 CFU. In patients with lung diseases, NTHi isolated from bronchoalveolar lavage fluid was 104.3 CFU, and from sputum cultures was 115.1 CFU, both of which were significantly higher in their adherence to A549 cells compared to the strains isolated from the healthy control group. There was no significant difference in adherence between the strains isolated from sputum cultures and bronchoalveolar lavage fluid (t = 0.5217, p = 0.6033). CONCLUSION: NTHi played an important role in childhood pulmonary infections by enhancing its adherence to lung epithelial cells.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Criança , Humanos , Infecções por Haemophilus/microbiologia , Pulmão/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Células Epiteliais
9.
mSphere ; 9(3): e0000624, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38380941

RESUMO

Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE: The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Haemophilus , Humanos , Heme/metabolismo , Pulmão/microbiologia , Ferro
10.
J Microbiol Methods ; 219: 106899, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38360298

RESUMO

AIMS: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae are important causes of bacterial meningitis. In this study, the DNA binding site of the wild type Taq DNA polymerase was modified to produce a mutant enzyme with enhanced DNA affinity and PCR performance. The engineered and the wild type enzymes were integrated into qPCR-based assays for molecular detection of S. pneumoniae, N. meningitidis, H. influenzae, and serogroups and serotypes of these three pathogens. METHODS: Bio-Speedy® Bacterial DNA Isolation Kit (Bioeksen R&D Technologies, Turkiye) and 2× qPCR-Mix for hydrolysis probes (Bioeksen R&D Technologies, Turkiye) and CFX96 Instrument (Biorad Inc., USA) were used for all molecular analyses. Spiked negative clinical specimens were tested using the developed qPCR assays and the culture-based conventional methods for the analytical performance evaluation. RESULTS: All qPCR assays did not produce any positive results for the samples spiked with potential cross-reacting bacteria. Limit of detection (LOD) of the assays containing the mutant enzyme was 1 genome/reaction (10 cfu/mL sample) which is at least 3 times lower than the previously reported LOD levels for DNA amplification based molecular assays. LODs for the spiked serum and cerebrospinal fluid (CSF) samples decreased 2.3-4.7 and 1.2-3.5 times respectively when the mutant enzyme was used instead of the wild type Taq DNA polymerase. CONCLUSIONS: It is possible to enhance analytical sensitivity of qPCR assays targeting the bacterial agents of meningitis by using an engineered Taq DNA polymerase. These qPCR-based assays can be used for direct detection and serogrouping / serotyping of S. pneumoniae, N. meningitidis and H. influenzae at concentrations close to the lower limit of medical decision point.


Assuntos
Meningites Bacterianas , Neisseria meningitidis , Humanos , Neisseria meningitidis/genética , Streptococcus pneumoniae/genética , Taq Polimerase , Haemophilus influenzae/genética , Meningites Bacterianas/líquido cefalorraquidiano , Bactérias/genética , DNA
11.
BMC Pulm Med ; 24(1): 7, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166950

RESUMO

BACKGROUND: Bacterial colonization is an essential aspect of bronchiectasis. Although Haemophilus influenzae is a frequent colonizer in some regions, its clinical impacts are poorly understood. This study aimed to elucidate the impact of H. influenzae colonization in patients with bronchiectasis. METHODS: This retrospective study screened adult patients diagnosed with bronchiectasis at a tertiary referral center between April 1, 2003, and May 16, 2021, in South Korea. Propensity score matching was used to match patients with and without H. influenzae colonization. We assessed the severity of bronchiectasis as per the bronchiectasis severity index, the incidence of exacerbation, differences in lung function, and all-cause mortality. RESULTS: Out of the 4,453 patients with bronchiectasis, 79 (1.8%) were colonized by H. influenzae. After 1:2 propensity score matching, 78 and 154 patients were selected from the H. influenzae colonizer and non-colonizer groups, respectively. Although there were no significant differences between the groups regarding baseline demographics, patients colonized with H. influenzae had a higher bronchiectasis severity index (median 6 [interquartile range 4-8] vs. 4 [2-7], p = 0.002), associated with extensive radiographic involvement (52.2% vs. 37.2%, p = 0.045) and mild exacerbation without hospitalization (adjusted incidence rate ratio 0.15; 95% confidence interval 0.12-0.24). Lung function and mortality rates did not reveal significant differences, regardless of H. influenzae colonization. CONCLUSION: H. influenzae colonization in bronchiectasis was associated with more severe disease and greater incidence of mild exacerbation, but not lung function and mortality. Attention should be paid to patients with bronchiectasis with H. influenzae colonization.


Assuntos
Bronquiectasia , Haemophilus influenzae , Adulto , Humanos , Estudos Retrospectivos , Bronquiectasia/complicações , República da Coreia/epidemiologia
12.
Biochemistry ; 63(3): 294-311, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189237

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with respiratory diseases, including otitis media and exacerbations of chronic obstructive pulmonary disease. NTHi exhibits resistance to killing by host antimicrobial peptides (AMPs) mediated by SapA, the substrate binding protein of the sensitivity to antimicrobial peptides (Sap) transporter. However, the specific mechanisms by which SapA selectively binds various AMPs such as defensins and cathelicidin are unknown. In this study, we report mutational analyses of both defensin AMPs and the SapA binding pocket to define the specificity of AMP recognition. Bactericidal assays revealed that NTHi lacking SapA are more susceptible to human beta defensins and LL-37, while remaining highly resistant to a human alpha defensin. In contrast to homologues, our research underscores the distinct specificity of NTHi SapA, which selectively recognizes and binds to peptides containing the charged-hydrophobic motif PKE and RRY. These findings provide valuable insight into the divergence of SapA among bacterial species and NTHi SapA's ability to selectively interact with specific AMPs to mediate resistance.


Assuntos
Proteínas de Transporte , Otite Média , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Peptídeos Antimicrobianos , Haemophilus influenzae , Proteínas de Membrana Transportadoras/metabolismo , Otite Média/microbiologia
13.
Dtsch Arztebl Int ; 121(4): 114-120, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38229497

RESUMO

BACKGROUND: In late 2022, health care institutions in Germany reported an unusual number of severe, invasive bacterial infections in association with a high incidence of viral respiratory infections. METHODS: We analyzed routine data on invasive infections due to Haemophilus influenzae, Neisseria meningitidis, Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes (2017-2023) from a voluntary, laboratory-based surveillance system involving continuously participating facilities providing diagnostic routine data that cover approximately one-third of the German population. RESULTS: In the first quarter (Q1) of 2023, the number of invasive S. pyogenes isolates rose by 142% (n = 837 vs. mean Q1/2017-2019 = 346, 95% CI [258; 434]), while the number of H. influenzae isolates rose by 90% (n = 209 in Q1/2023 vs. mean Q1/2017-2019 = 110, 95% CI [79; 142]), compared to pre-pandemic seasonal peak values. The number of invasive S. pneumoniae isolates was high in two quarters (n = 1732 in Q4/2022 und Q1/2023). Adults aged 55 and older and children younger than 5 years were most affected by invasive H. influenzae, S. pneumoniae, and S. pyogenes infections. N. meningitidis was most commonly found in children under age 5. CONCLUSION: The reason for the marked rise in invasive bacterial infections may be an increased circulation of respiratory pathogens and elevated susceptibility in the population after relaxation of the measures taken to prevent COVID-19 infection. Coinfections with respiratory viruses may have reinforced this effect. We recommend continuous surveillance, preventive measures such as raising awareness about invasive bacterial diseases, and vaccination as recommended by the German Standing Committee on Vaccinations (STIKO).


Assuntos
Infecções Bacterianas , Neisseria meningitidis , Infecções Respiratórias , Infecções Estafilocócicas , Adulto , Criança , Humanos , Infecções Bacterianas/epidemiologia , Streptococcus pneumoniae , Haemophilus influenzae , Streptococcus pyogenes , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Antibacterianos
14.
ACS Infect Dis ; 10(2): 436-452, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38240689

RESUMO

Haemophilus influenzae is a commensal of the human upper respiratory tract that can infect diverse host niches due, at least in part, to its ability to withstand both endogenous and host-mediated oxidative stresses. Here, we show that hfeA, a gene previously linked to iron import, is essential for H. influenzae manganese recruitment via the HfeBCD transporter. Structural analyses show that metal binding in HfeA uses a unique mechanism that involves substantial rotation of the C-terminal lobe of the protein. Disruption of hfeA reduced H. influenzae manganese acquisition and was associated with decreased growth under aerobic conditions, impaired manganese-superoxide dismutase activity, reduced survival in macrophages, and changes in biofilm production in the presence of superoxide. Collectively, this work shows that HfeA contributes to H. influenzae manganese acquisition and virulence attributes. High conservation of the hfeABCD permease in Haemophilus species suggests that it may serve similar roles in other pathogenic Pasteurellaceae.


Assuntos
Haemophilus influenzae , Proteínas de Membrana Transportadoras , Humanos , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Proteínas de Membrana Transportadoras/genética , Manganês/metabolismo , Biofilmes , Homeostase
15.
BMC Infect Dis ; 24(1): 90, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225571

RESUMO

BACKGROUND: In recent decades, the prevalence of antibiotic resistance is increasing in Haemophilus influenzae (Haemophilus influenzae), which poses important challenges to global health. This research offers a comprehensive meta-analysis of the global epidemiology of multi-drug resistant (MDR) H. influenzae. METHODS: In this study, we conducted a meta-analysis based on PRISMA checklist. Electronic databases including PubMed, ISI Web of Science, Scopus, EMBASE, and Google Scholar were reviewed using keywords related to H. influenzae and antibiotic resistance. Eligible studies were selected based on stringent inclusion and exclusion criteria. Then, data from these studies were analyzed using the Comprehensive Meta-Analysis (CMA) software. RESULTS: Of 375 retrieved articles, 16 met the inclusion criteria. These studies were conducted from 2003 to 2023 and analyzed data from 19,787 clinical isolates of H. influenzae. The results showed different levels of resistance of H. influenzae to different antibiotics: ampicillin (36%), azithromycin (15.3%), ceftriaxone (1.4%), etc. The global prevalence for beta-lactamases producing H. influenzae and MDR H. influenzae was measured 34.9% and 23.1%, respectively. The prevalence rate of MDR H. influenzae was higher in Asian countries (24.6%) compared to Western regions (15.7%). MDR H. influenzae had the highest prevalence in meningitis cases (46.9%) and the lowest prevalence in acute otitis media (0.5%). CONCLUSIONS: The prevalence of MDR H. influenzae has been increasing worldwide, especially in Asian regions. This highlights the urgent need for monitoring and implementation of effective antibiotic stewardship programs globally.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Humanos , Infecções por Haemophilus/epidemiologia , Prevalência , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases
16.
J Laryngol Otol ; 138(1): 89-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37332170

RESUMO

OBJECTIVE: Acute and chronic tonsillitis are frequently treated with antibiotics. This study aimed to understand the presence of pathogenic micro-organisms on the surface and core of chronically infected tonsils among Tanzanian children. METHODS: The study enrolled children undergoing adenotonsillectomy. Surface and core tonsillar swabs were taken. Quantitative polymerase chain reaction was performed for Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, Neisseria meningitidis and Pseudomonas aeruginosa. RESULTS: Surface and core combined, isolated N meningitidis (86.1 per cent) was found the most, followed by H influenzae (74.9 per cent), S pneumoniae (42.6 per cent) and S aureus (28.7 per cent). M catarrhalis and P aeruginosa were only found in a few patients, 5.6 per cent and 0.8 per cent respectively. CONCLUSION: Colonisation of the tonsillar surface and core has been found. Potentially pathogenic micro-organisms are likely to be missed based on a throat swab. Hence, the practice of surface tonsillar swabbing may be misleading or insufficient.


Assuntos
Apneia Obstrutiva do Sono , Tonsilectomia , Tonsilite , Criança , Humanos , Tonsila Palatina/cirurgia , Tonsila Palatina/patologia , Tanzânia/epidemiologia , Tonsilite/cirurgia , Apneia Obstrutiva do Sono/cirurgia , Doença Crônica , Haemophilus influenzae , Staphylococcus aureus , Recidiva
17.
Microbiol Spectr ; 12(1): e0260123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054719

RESUMO

IMPORTANCE: Haemophilus influenzae biogroup aegyptius is a human-adapted pathogen and the causative agent of Brazilian purpuric fever (BPF), an invasive disease with high mortality, that sporadically manifests in children previously suffering conjunctivitis. Phase variation is a rapid and reversible switching of gene expression found in many bacterial species, and typically associated with outer-membrane proteins. Phase variation of cytoplasmic DNA methyltransferases has been shown to play important roles in bacterial gene regulation and can act as epigenetic switches, regulating the expression of multiple genes as part of systems called phasevarions (phase-variable regulons). This study characterized two alleles of the ModA phasevarion present in H. influenzae biogroup aegyptius, ModA13, found in non-BPF causing strains and ModA16, unique to BPF causing isolates. Phase variation of ModA13 and ModA16 led to genome-wide changes to DNA methylation resulting in altered protein expression. These changes did not affect serum resistance in H. influenzae biogroup aegyptius strains.


Assuntos
Conjuntivite Bacteriana , Infecções por Haemophilus , Criança , Humanos , Haemophilus influenzae/genética , Variação de Fase , Proteínas de Membrana/genética , Infecções por Haemophilus/microbiologia , Conjuntivite Bacteriana/microbiologia
18.
Lancet Microbe ; 5(1): e34-e42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048806

RESUMO

BACKGROUND: Deployment of non-pharmaceutical interventions such as face masking and physical distancing during the COVID-19 pandemic could have altered the transmission dynamics and carriage of respiratory organisms. We evaluated colonisation with Streptococcus pneumoniae and other upper respiratory tract bacterial colonisers before and during the COVID-19 pandemic. METHODS: We did two cross-sectional surveys in Soweto, South Africa from July 3 to Dec 13, 2018 (pre-COVID-19 period) and from Aug 4, 2021, to March 31, 2022 (COVID-19 period) in healthy children (aged ≤60 months) who had recorded HIV status and had not received antibiotics in the 21 days before enrolment. At enrolment, we collected nasopharyngeal swab samples from child participants. Following nucleic acid extraction, nanofluidic quantitative PCR was used to screen all samples for 92 S pneumoniae serotypes and 14 other bacteria. The primary objective was to compare the prevalence and density of pneumococcal nasopharyngeal colonisation, overall and stratified by 13-valent pneumococcal conjugate vaccine (PCV13) serotypes and non-vaccine serotypes. Secondary study objectives included a comparison of serotype-specific pneumococcal colonisation and density, as well as colonisation by the 14 other bacteria in the COVID-19 versus pre-COVID-19 period. We used an adjusted multiple logistic and linear regression model to compare the colonisation prevalence and density between study periods. FINDINGS: We analysed nasopharyngeal swabs from 1107 children (n=571 in the pre-COVID-19 period; n=536 in the COVID-19 period). We observed no change in overall pneumococcal colonisation between periods (274 [51%] of 536 in the COVID-19 period vs 282 [49%] of 571 in the pre-COVID-19 period; adjusted odds ratio [aOR] 1·03 [95% CI 0·95-1·12]). The prevalence of PCV13 serotypes was lower in the COVID-19 than in the pre-COVID-19 period (72 [13%] vs 106 [19%]; 0·87 [0·78-0·97]), whereas the prevalence of non-typeable S pneumoniae was higher (34 [6%] vs 63 [12%]; 1·30 [1·12-1·50]). The mean log10 density for overall pneumococcal colonisation was lower in the COVID-19 period than in the pre-COVID-19 period (3·96 [95% CI 3·85-4·07] vs 4·72 [4·63-4·80] log10 genome equivalents per mL; p<0·0001). A lower density of non-vaccine serotypes (3·63 [3·51-3·74] vs 4·08 [3·95-4·22] log10 genome equivalents per mL; p<0·0001) and non-typeable S pneumoniae (3·11 [2·94-3·29] vs 4·41 [4·06-4·75] log10 genome equivalents per mL; p<0·00001) was also observed in the COVID-19 period. There was no difference in the density of PCV13 serotypes between the periods. The prevalence of colonisation during the COVID-19 versus pre-COVID-19 period was lower for non-typeable Haemophilus influenzae (280 [49%] vs 165 [31%]; aOR 0·77 [95% CI 0·71-0·84]), Moraxella catarrhalis (328 [57%] vs 242 [45%]; 0·85 [0·79-0·92]), and Neisseria lactamica (51 [9%] vs 13 [2%]; 0·64 [0·52-0·78]), but higher for Acinetobacter baumannii (34 [6%] vs 102 [19%]; 1·55 [1·35-1·77]) and Staphylococcus aureus (29 [5%] vs 52 [10%]; 1·28 [1·10-1·50]). INTERPRETATION: There were variable effects on the colonisation prevalence and density of bacterial organisms during the COVID-19 compared with the pre-COVID-19 period. The lower prevalence of PCV13 serotype together with other respiratory organisms including non-typeable H influenzae and M catarrhalis could have in part contributed to a decrease in all-cause lower respiratory tract infections observed in South Africa during the initial stage of the COVID-19 pandemic. The pathophysiological mechanism for the increase in A baumannii and S aureus colonisation warrants further investigation, as does the clinical relevance of these findings. FUNDING: The Bill & Melinda Gates Foundation.


Assuntos
COVID-19 , Pandemias , Criança , Humanos , África do Sul/epidemiologia , Estudos Transversais , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Portador Sadio/prevenção & controle , COVID-19/epidemiologia , Streptococcus pneumoniae , Nasofaringe/microbiologia , Moraxella catarrhalis , Haemophilus influenzae , Staphylococcus aureus
19.
Biol Pharm Bull ; 47(1): 154-158, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37880110

RESUMO

The prevalence of quinolone low-susceptible Haemophilus influenzae has increased in Japan. Low quinolone susceptibility is caused by point mutations in target genes; however, it can also be caused by horizontal gene transfer via natural transformation. In this study, we examined whether this horizontal gene transfer could be associated with resistance to not only quinolones but also other antimicrobial agents. Horizontal transfer ability was quantified using the experimental transfer assay method for low quinolone susceptibility. Further, the association between horizontal transfer ability and resistance to ß-lactams, the first-choice drugs for H. influenzae infection, was investigated. The transformation efficiency of 50 clinical isolates varied widely, ranging from 102 to 106 colony forming unit (CFU) of the colonies obtained by horizontal transfer assay. Efficiency was associated with ß-lactam resistance caused by ftsI mutations, indicating that strains with high horizontal transfer ability acquired quinolone low-susceptibility as well as ß-lactam resistance more easily. Strains with high transformation efficiency increased the transcript level of comA, suggesting that enhanced com operon was associated with a high DNA uptake ability. Overall, this study revealed that the transformation ability of H. influenzae was associated with multiple antimicrobial resistance. Increase in the number of strains with high horizontal transformation ability has raised concerns regarding the rapid spread of antimicrobial-resistant H. influenzae.


Assuntos
Anti-Infecciosos , Infecções por Haemophilus , Quinolonas , Humanos , Haemophilus influenzae/genética , Antibacterianos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Testes de Sensibilidade Microbiana
20.
Infection ; 52(1): 129-137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37423969

RESUMO

OBJECTIVES: The objective of this study was to identify the pathogen spectrum of community acquired pneumonia in people living with HIV (PLWH), and to compare it with a matched HIV negative group in order to reassess therapeutic strategies for PLWH. METHODS: Seventy-three (n = 73) PLWH (median CD4 3-6 months before CAP: 515/µl; SD 309) with community acquired pneumonia (CAP) were matched with 218 HIV-negative CAP controls in a prospective study design. Pathogen identifications used blood culture, samples from the upper and lower respiratory tract (culture and multiplex PCR) and urinary pneumococcal and legionella antigen test. RESULTS: Although the vaccination rate among PLWH with CAP was significantly higher (pneumococcal vaccination: 27.4 vs. 8.3%, p < 0.001; influenza vaccination: 34.2 vs. 17.4%, p = 0.009), pneumococci were found most frequently as pathogen among both PLWH (n = 19/21.3%) and controls (n = 34/17.2%; p = 0.410), followed by Haemophilus influenzae (PLWH, n = 12/13.5%, vs. controls, n = 25 / 12.6%; p = 0.850). Staphylococcus aureus was found equally in 20.2 and 19.2% in PLWH and controls, but infection or colonization could not be distinguished. Mortality during 6-month follow-up was significantly higher for PLWH (5/73, or 6.8%) versus controls (3/218, or 1.4%), however with lower case numbers than previously reported. Typical HIV-associated pathogens such as Pneumocystis jirovecii were found only exceptionally. CONCLUSIONS: Our study underscores the persistent clinical burden of CAP for PLWH. From pathogen perspective, empirical antibiotic treatment for CAP in PLWH on antiretroviral therapy should cover pneumococci and Haemophilus influenzae and may be adopted from valid common recommendations.


Assuntos
Infecções Comunitárias Adquiridas , Infecções por HIV , Infecções por Haemophilus , Pneumonia Bacteriana , Humanos , Pneumonia Bacteriana/epidemiologia , Estudos Prospectivos , Streptococcus pneumoniae , Antibacterianos/uso terapêutico , Infecções por Haemophilus/tratamento farmacológico , Haemophilus influenzae , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Infecções por HIV/tratamento farmacológico , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...