Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Environ Microbiol ; 26(3): e16605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517690

RESUMO

The Bay of Bengal (BoB) spans >2.2 million km2 in the northeastern Indian Ocean and is bordered by dense populations that depend upon its resources. Over recent decades, a shift from larger phytoplankton to picoplankton has been reported, yet the abundance, activity, and composition of primary producer communities are not well-characterized. We analysed the BoB regions during the summer monsoon. Prochlorococcus ranged up to 3.14 × 105 cells mL-1 in the surface mixed layer, averaging 1.74 ± 0.46 × 105 in the upper 10 m and consistently higher than Synechococcus and eukaryotic phytoplankton. V1-V2 rRNA gene amplicon analyses showed the High Light II (HLII) ecotype formed 98 ± 1% of Prochlorococcus amplicons in surface waters, comprising six oligotypes, with the dominant oligotype accounting for 65 ± 4% of HLII. Diel sampling of a coherent water mass demonstrated evening onset of cell division and rapid Prochlorococcus growth between 1.5 and 3.1 div day-1, based on cell cycle analysis, as confirmed by abundance-based estimates of 2.1 div day-1. Accumulation of Prochlorococcus produced by ultradian growth was restricted by high loss rates. Alongside prior Arabian Sea and tropical Atlantic rates, our results indicate Prochlorococcus growth rates should be reevaluated with greater attention to latitudinal zones and influences on contributions to global primary production.


Assuntos
Prochlorococcus , Synechococcus , Água do Mar , Prochlorococcus/metabolismo , Ecótipo , Baías , Synechococcus/genética , Fitoplâncton/genética
2.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489389

RESUMO

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Assuntos
Compostos Férricos , Prochlorococcus , Compostos Férricos/química , Proteínas de Ligação ao Ferro/metabolismo , Prochlorococcus/metabolismo , Ferro/metabolismo , Oxirredução , Transferrina/metabolismo , Água/química , Compostos Ferrosos/química , Cristalografia por Raios X
3.
Nat Commun ; 15(1): 2105, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453897

RESUMO

Photosynthesis fuels primary production at the base of marine food webs. Yet, in many surface ocean ecosystems, diel-driven primary production is tightly coupled to daily loss. This tight coupling raises the question: which top-down drivers predominate in maintaining persistently stable picocyanobacterial populations over longer time scales? Motivated by high-frequency surface water measurements taken in the North Pacific Subtropical Gyre (NPSG), we developed multitrophic models to investigate bottom-up and top-down mechanisms underlying the balanced control of Prochlorococcus populations. We find that incorporating photosynthetic growth with viral- and predator-induced mortality is sufficient to recapitulate daily oscillations of Prochlorococcus abundances with baseline community abundances. In doing so, we infer that grazers in this environment function as the predominant top-down factor despite high standing viral particle densities. The model-data fits also reveal the ecological relevance of light-dependent viral traits and non-canonical factors to cellular loss. Finally, we leverage sensitivity analyses to demonstrate how variation in life history traits across distinct oceanic contexts, including variation in viral adsorption and grazer clearance rates, can transform the quantitative and even qualitative importance of top-down controls in shaping Prochlorococcus population dynamics.


Assuntos
Ecossistema , Prochlorococcus , Oceanos e Mares , Cadeia Alimentar , Dinâmica Populacional , Água do Mar/microbiologia , Oceano Pacífico
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365237

RESUMO

In the oligotrophic sunlit ocean, the most abundant free-living planktonic bacterial lineages evolve convergently through genome reduction. The cyanobacterium Prochlorococcus responsible for 10% global oxygen production is a prominent example. The dominant theory known as "genome streamlining" posits that they have extremely large effective population sizes (Ne) such that selection for metabolic efficiency acts to drive genome reduction. Because genome reduction largely took place anciently, this theory builds on the assumption that their ancestors' Ne was similarly large. Constraining Ne for ancient ancestors is challenging because experimental measurements of extinct organisms are impossible and alternatively reconstructing ancestral Ne with phylogenetic models gives large uncertainties. Here, we develop a new strategy that leverages agent-based modeling to simulate the changes in the genome-wide ratio of radical to conservative nonsynonymous nucleotide substitution rate (dR/dC) in a possible range of Ne in ancestral populations. This proxy shows expected increases with decreases of Ne only when Ne falls to about 10 k - 100 k or lower, magnitudes characteristic of Ne of obligate endosymbiont species where drift drives genome reduction. Our simulations therefore strongly support a scenario where the primary force of Prochlorococcus genome reduction is drift rather than selection.


Assuntos
Prochlorococcus , Filogenia , Prochlorococcus/genética , Densidade Demográfica , Genoma , Plâncton , Genoma Bacteriano
5.
mSystems ; 8(5): e0126122, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37815355

RESUMO

IMPORTANCE: Approximately half of the annual carbon fixation on Earth occurs in the surface ocean through the photosynthetic activities of phytoplankton such as the ubiquitous picocyanobacterium Prochlorococcus. Ecologically distinct subpopulations (or ecotypes) of Prochlorococcus are central conduits of organic substrates into the ocean microbiome, thus playing important roles in surface ocean production. We measured the chemical profile of three cultured ecotype strains, observing striking differences among them that have implications for the likely chemical impact of Prochlorococcus subpopulations on their surroundings in the wild. Subpopulations differ in abundance along gradients of temperature, light, and nutrient concentrations, suggesting that these chemical differences could affect carbon cycling in different ocean strata and should be considered in models of Prochlorococcus physiology and marine carbon dynamics.


Assuntos
Ecótipo , Prochlorococcus , Água do Mar/microbiologia , Prochlorococcus/metabolismo , Fotossíntese , Carbono/metabolismo
6.
Environ Microbiol ; 25(12): 3349-3363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861083

RESUMO

Picocyanobacteria contribute greatly to offshore primary production with cells extending through the deep euphotic zone. Literature indicates high viral infection of cyanobacteria in ocean transition zones. We postulate that the bottom of the euphotic zone is a transition zone, where communities transition from phototrophic to aphotic processes. We use single-copy core genes to examine cyanophage to cyanobacteria ratios in cellular metagenomes in the subtropical North Atlantic and Pacific. Cyanophage to cyanobacteria terL/rpoB ratios generally increase to >10 in the deep euphotic zone. As light levels decrease in the fall, Prochlorococcus in the deep euphotic zone experience reduced light levels. We find clear differences between spring (Geotraces GA02) and fall (GA03) in the North Atlantic, with terL/rpoB ratios increasing to >40 in the fall. When examining 23 months of the North Pacific Hawaii Ocean Timeseries, the depth of elevated cyanophage to cyanobacteria ratios in cellular metagenomes negatively correlated with surface photosynthetic radiation (PAR), particularly with the change in PAR, which reflected the season. In fall, all picocyanobacteria ecotypes were found at depths enriched with viruses, while in summer, only low light ecotypes were affected. Thus, we find high cyanophage infection both in the deep euphotic zone and during seasonal transitions.


Assuntos
Cianobactérias , Prochlorococcus , Estações do Ano , Água do Mar/microbiologia , Fotossíntese , Cianobactérias/genética , Oceano Pacífico , Prochlorococcus/genética
7.
Mar Pollut Bull ; 194(Pt B): 115429, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37647696

RESUMO

Mesoscale eddies have been reported to have a substantial impact on the distribution of phytoplankton through the regulation of environmental variables in the open ocean. However, the influence of warm eddies on phytoplankton in continental slopes remains largely unknown. To reveal the impact of mesoscale eddies within slope regions, we conducted a field investigation of picophytoplankton on the northern slope of the South China Sea during an anticyclonic warm eddy propagation. We observed different picophytoplankton distribution patterns. Synechococcus dominated the picophytoplankton community in the Kuroshio-affected eddy core rather than the previously reported Prochlorococcus, and Prochlorococcus dominated outside the eddy in the shelf. In addition, through further vertical study of typical layers, we found that the influence of warm eddy varied in different layers. Analysis of the mechanisms indicated that the distributions were attributed to warm eddy-induced nutrients and light variations and the physical processes in it.


Assuntos
Nutrientes , Prochlorococcus , China , Fitoplâncton , Reprodução
8.
ISME J ; 17(10): 1671-1679, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454234

RESUMO

Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenome-assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenome-assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype's phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus.


Assuntos
Prochlorococcus , Filogeografia , Filogenia , Prochlorococcus/genética , Água do Mar , Ecótipo
9.
Appl Environ Microbiol ; 89(7): e0053923, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37409944

RESUMO

Phytoplankton-bacterium interactions are mediated, in part, by phytoplankton-released dissolved organic matter (DOMp). Two factors that shape the bacterial community accompanying phytoplankton are (i) the phytoplankton producer species, defining the initial composition of released DOMp, and (ii) the DOMp transformation over time. We added phytoplankton DOMp from the diatom Skeletonema marinoi and the cyanobacterium Prochlorococcus marinus MIT9312 to natural bacterial communities from the eastern Mediterranean and determined the bacterial responses over a time course of 72 h in terms of cell numbers, bacterial production, alkaline phosphatase activity, and changes in active bacterial community composition based on rRNA amplicon sequencing. Both DOMp types were demonstrated to serve the bacterial community as carbon and, potentially, phosphorus sources. Bacterial communities in diatom-derived DOM treatments maintained higher Shannon diversities throughout the experiment and yielded higher bacterial production and lower alkaline phosphatase activity compared to cyanobacterium-derived DOM after 24 h of incubation (but not after 48 and 72 h), indicating greater bacterial usability of diatom-derived DOM. Bacterial communities significantly differed between DOMp types as well as between different incubation times, pointing to a certain bacterial specificity for the DOMp producer as well as a successive utilization of phytoplankton DOM by different bacterial taxa over time. The highest differences in bacterial community composition with DOMp types occurred shortly after DOMp additions, suggesting a high specificity toward highly bioavailable DOMp compounds. We conclude that phytoplankton-associated bacterial communities are strongly shaped by the phytoplankton producer as well as the transformation of its released DOMp over time. IMPORTANCE Phytoplankton-bacterium interactions influence biogeochemical cycles of global importance. Phytoplankton photosynthetically fix carbon dioxide and subsequently release the synthesized compounds as dissolved organic matter (DOMp), which becomes processed and recycled by heterotrophic bacteria. Yet the importance of phytoplankton producers in combination with the time-dependent transformation of DOMp compounds on the accompanying bacterial community has not been explored in detail. The diatom Skeletonema marinoi and the cyanobacterium Prochlorococcus marinus MIT9312 belong to globally important phytoplankton genera, and our study revealed that DOMp of both species was selectively incorporated by the bacterial community. The producer species had the highest impact shortly after DOMp appropriation, and its effect diminished over time. Our results improve the understanding of the dynamics of organic matter produced by phytoplankton in the oceans as it is utilized and modified by cooccurring bacteria.


Assuntos
Diatomáceas , Prochlorococcus , Fitoplâncton/metabolismo , Matéria Orgânica Dissolvida , Fosfatase Alcalina/metabolismo , Compostos Orgânicos/química , Prochlorococcus/metabolismo , Diatomáceas/metabolismo
10.
mBio ; 14(4): e0123623, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37404012

RESUMO

Prochlorococcus is an abundant photosynthetic bacterium in the open ocean, where nitrogen (N) often limits phytoplankton growth. In the low-light-adapted LLI clade of Prochlorococcus, nearly all cells can assimilate nitrite (NO2-), with a subset capable of assimilating nitrate (NO3-). LLI cells are maximally abundant near the primary NO2- maximum layer, an oceanographic feature that may, in part, be due to incomplete assimilatory NO3- reduction and subsequent NO2- release by phytoplankton. We hypothesized that some Prochlorococcus exhibit incomplete assimilatory NO3- reduction and examined NO2- accumulation in cultures of three Prochlorococcus strains (MIT0915, MIT0917, and SB) and two Synechococcus strains (WH8102 and WH7803). Only MIT0917 and SB accumulated external NO2- during growth on NO3-. Approximately 20-30% of the NO3- transported into the cell by MIT0917 was released as NO2-, with the rest assimilated into biomass. We further observed that co-cultures using NO3- as the sole N source could be established for MIT0917 and Prochlorococcus strain MIT1214 that can assimilate NO2- but not NO3-. In these co-cultures, the NO2- released by MIT0917 is efficiently consumed by its partner strain, MIT1214. Our findings highlight the potential for emergent metabolic partnerships that are mediated by the production and consumption of N cycle intermediates within Prochlorococcus populations. IMPORTANCE Earth's biogeochemical cycles are substantially driven by microorganisms and their interactions. Given that N often limits marine photosynthesis, we investigated the potential for N cross-feeding within populations of Prochlorococcus, the numerically dominant photosynthetic cell in the subtropical open ocean. In laboratory cultures, some Prochlorococcus cells release extracellular NO2- during growth on NO3-. In the wild, Prochlorococcus populations are composed of multiple functional types, including those that cannot use NO3- but can still assimilate NO2-. We show that metabolic dependencies arise when Prochlorococcus strains with complementary NO2- production and consumption phenotypes are grown together on NO3-. These findings demonstrate the potential for emergent metabolic partnerships, possibly modulating ocean nutrient gradients, that are mediated by cross-feeding of N cycle intermediates.


Assuntos
Prochlorococcus , Synechococcus , Nitritos/metabolismo , Dióxido de Nitrogênio/metabolismo , Nitratos/metabolismo , Synechococcus/genética , Fitoplâncton
11.
J Biol Chem ; 299(8): 104958, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380083

RESUMO

Nitrogen (N) is an essential element for microbial growth and metabolism. The growth and reproduction of microorganisms in more than 75% of areas of the ocean are limited by N. Prochlorococcus is numerically the most abundant photosynthetic organism on the planet. Urea is an important and efficient N source for Prochlorococcus. However, how Prochlorococcus recognizes and absorbs urea still remains unclear. Prochlorococcus marinus MIT 9313, a typical Cyanobacteria, contains an ABC-type transporter, UrtABCDE, which may account for the transport of urea. Here, we heterologously expressed and purified UrtA, the substrate-binding protein of UrtABCDE, detected its binding affinity toward urea, and further determined the crystal structure of the UrtA/urea complex. Molecular dynamics simulations indicated that UrtA can alternate between "open" and "closed" states for urea binding. Based on structural and biochemical analyses, the molecular mechanism for urea recognition and binding was proposed. When a urea molecule is bound, UrtA undergoes a state change from open to closed surrounding the urea molecule, and the urea molecule is further stabilized by the hydrogen bonds supported by the conserved residues around it. Moreover, bioinformatics analysis showed that ABC-type urea transporters are widespread in bacteria and probably share similar urea recognition and binding mechanisms as UrtA from P. marinus MIT 9313. Our study provides a better understanding of urea absorption and utilization in marine bacteria.


Assuntos
Prochlorococcus , Água do Mar , Transportadores de Cassetes de Ligação de ATP/metabolismo , Prochlorococcus/metabolismo , Ureia/metabolismo , Água do Mar/microbiologia
12.
Proc Natl Acad Sci U S A ; 120(27): e2302388120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364109

RESUMO

Prochlorococcus is a key member of open-ocean primary producer communities. Despite its importance, little is known about the predators that consume this cyanobacterium and make its biomass available to higher trophic levels. We identify potential predators along a gradient wherein Prochlorococcus abundance increased from near detection limits (coastal California) to >200,000 cells mL-1 (subtropical North Pacific Gyre). A replicated RNA-Stable Isotope Probing experiment involving the in situ community, and labeled Prochlorococcus as prey, revealed choanoflagellates as the most active predators of Prochlorococcus, alongside a radiolarian, chrysophytes, dictyochophytes, and specific MAST lineages. These predators were not appropriately highlighted in multiyear conventional 18S rRNA gene amplicon surveys where dinoflagellates and other taxa had highest relative amplicon abundances across the gradient. In identifying direct consumers of Prochlorococcus, we reveal food-web linkages of individual protistan taxa and resolve routes of carbon transfer from the base of marine food webs.


Assuntos
Coanoflagelados , Dinoflagelados , Prochlorococcus , Prochlorococcus/genética , Bactérias , Oceanos e Mares , Água do Mar/microbiologia
13.
Proc Natl Acad Sci U S A ; 120(20): e2213271120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37159478

RESUMO

Marine picocyanobacteria Prochlorococcus and Synechococcus, the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin. Marine chitin is largely derived from arthropods, which underwent major diversifications 520 to 535 Mya, close to when marine picocyanobacteria are inferred to have appeared in the ocean. Phylogenetic analyses confirm that the chitin utilization trait was acquired at the root of marine picocyanobacteria. Together this leads us to postulate that attachment to chitin particles allowed benthic cyanobacteria to emulate their mat-based lifestyle in the water column, initiating their expansion into the open ocean, seeding the rise of modern marine ecosystems. Subsequently, transitioning to a constitutive planktonic life without chitin associations led to cellular and genomic streamlining along a major early branch within Prochlorococcus. Our work highlights how the emergence of associations between organisms from different trophic levels, and their coevolution, creates opportunities for colonizing new environments. In this view, the rise of ecological complexity and the expansion of the biosphere are deeply intertwined processes.


Assuntos
Quitosana , Prochlorococcus , Quitina , Ecossistema , Filogenia , Carbono , Plâncton/genética , Prochlorococcus/genética
14.
mBio ; 14(3): e0342522, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37052490

RESUMO

Low temperature limits the growth and the distribution of the key oceanic primary producer Prochlorococcus, which does not proliferate above a latitude of ca. 40°. Yet, the molecular basis of thermal acclimation in this cyanobacterium remains unexplored. We analyzed the transcriptional response of the Prochlorococcus marinus strain MIT9301 in long-term acclimations and in natural Prochlorococcus populations along a temperature range enabling its growth (17 to 30°C). MIT9301 upregulated mechanisms of the global stress response at the temperature minimum (17°C) but maintained the expression levels of genes involved in essential metabolic pathways (e.g., ATP synthesis and carbon fixation) along the whole thermal niche. Notably, the declining growth of MIT9301 from the optimum to the minimum temperature was coincident with a transcriptional suppression of the photosynthetic apparatus and a dampening of its circadian expression patterns, indicating a loss in their regulatory capacity under cold conditions. Under warm conditions, the cellular transcript inventory of MIT9301 was strongly streamlined, which may also induce regulatory imbalances due to stochasticity in gene expression. The daytime transcriptional suppression of photosynthetic genes at low temperature was also observed in metatranscriptomic reads mapping to MIT9301 across the global ocean, implying that this molecular mechanism may be associated with the restricted distribution of Prochlorococcus to temperate zones. IMPORTANCE Prochlorococcus is a major marine primary producer with a global impact on atmospheric CO2 fixation. This cyanobacterium is widely distributed across the temperate ocean, but virtually absent at latitudes above 40° for yet unknown reasons. Temperature has been suggested as a major limiting factor, but the exact mechanisms behind Prochlorococcus thermal growth restriction remain unexplored. This study brings us closer to understanding how Prochlorococcus functions under challenging temperature conditions, by focusing on its transcriptional response after long-term acclimation from its optimum to its thermal thresholds. Our results show that the drop in Prochlorococcus growth rate under cold conditions was paralleled by a transcriptional suppression of the photosynthetic machinery during daytime and a loss in the organism's regulatory capacity to maintain circadian expression patterns. Notably, warm temperature induced a marked shrinkage of the organism's cellular transcript inventory, which may also induce regulatory imbalances in the future functioning of this cyanobacterium.


Assuntos
Prochlorococcus , Prochlorococcus/metabolismo , Oceanos e Mares , Aclimatação , Bactérias , Fotossíntese
15.
Nat Commun ; 14(1): 1445, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922531

RESUMO

Statistically derived species distribution models (SDMs) are increasingly used to predict ecological changes on a warming planet. For Prochlorococcus, the most abundant phytoplankton, an established statistical prediction conflicts with dynamical models as they predict large, opposite, changes in abundance. We probe the SDM at various spatial-temporal scales, showing that light and temperature fail to explain both temporal fluctuations and sharp spatial transitions. Strong correlations between changes in temperature and population emerge only at very large spatial scales, as transects pass through transitions between regions of high and low abundance. Furthermore, a two-state model based on a temperature threshold matches the original SDM in the surface ocean. We conclude that the original SDM has little power to predict changes when Prochlorococcus is already abundant, which resolves the conflict with dynamical models. Our conclusion suggests that SDMs should prove efficacy across multiple spatial-temporal scales before being trusted in a changing ocean.


Assuntos
Prochlorococcus , Prochlorococcus/genética , Clima , Temperatura , Fitoplâncton , Mudança Climática
16.
BMC Genom Data ; 24(1): 11, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829130

RESUMO

OBJECTIVES: The marine cyanobacterium Prochlorococcus is a critical part of warm ocean ecosystems and a model for studying microbial evolution and ecology. To expand the representation of this organism's vast wild diversity in sequence collections, we performed a set of isolation efforts targeting low light-adapted Prochlorococcus. Three genomes resulting from this larger body of work are described here. DATA DESCRIPTION: We present draft-quality Prochlorococcus genomes from enrichment cultures P1344, P1361, and P1363, sampled in the North Pacific. The genomes were built from Illumina paired reads assembled de novo. Supporting datasets of raw reads, assessments, and sequences from co-enriched heterotrophic marine bacteria are also provided. These three genomes represent members of the low light-adapted LLIV Prochlorococcus clade that are closely related, with 99.9% average nucleotide identity between pairs, yet vary in gene content. Expanding the powerful toolkit of Prochlorococcus genomes, these sequences provide an opportunity to study fine-scale variation and microevolutionary processes.


Assuntos
Ecossistema , Prochlorococcus , Filogenia , Genoma Bacteriano , Prochlorococcus/genética , Ecologia , Bactérias/genética
17.
ISME J ; 17(5): 720-732, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36841901

RESUMO

The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change.


Assuntos
Prochlorococcus , Synechococcus , Água do Mar/microbiologia , Ecossistema , Compostos Férricos/metabolismo , Oceanos e Mares , Synechococcus/genética , Synechococcus/metabolismo , Metagenoma , Família Multigênica , Nitrogênio/metabolismo , Fósforo/metabolismo , Prochlorococcus/genética , Filogenia
18.
ISME J ; 17(2): 185-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36273241

RESUMO

Establishing links between microbial diversity and environmental processes requires resolving the high degree of functional variation among closely related lineages or ecotypes. Here, we implement and validate an improved metagenomic approach that estimates the spatial biogeography and environmental regulation of ecotype-specific replication patterns (RObs) across ocean regions. A total of 719 metagenomes were analyzed from meridional Bio-GO-SHIP sections in the Atlantic and Indian Ocean. Accounting for sequencing bias and anchoring replication estimates in genome structure were critical for identifying physiologically relevant biological signals. For example, ecotypes within the dominant marine cyanobacteria Prochlorococcus exhibited distinct diel cycles in RObs that peaked between 19:00-22:00. Additionally, both Prochlorococcus ecotypes and ecotypes within the highly abundant heterotroph Pelagibacter (SAR11) demonstrated systematic biogeographies in RObs that differed from spatial patterns in relative abundance. Finally, RObs was significantly regulated by nutrient stress and temperature, and explained by differences in the genomic potential for nutrient transport, energy production, cell wall structure, and replication. Our results suggest that our new approach to estimating replication is reflective of gross population growth. Moreover, this work reveals that the interaction between adaptation and environmental change drives systematic variability in replication patterns across ocean basins that is ecotype-specific, adding an activity-based dimension to our understanding of microbial niche space.


Assuntos
Ecótipo , Prochlorococcus , Água do Mar/microbiologia , Oceano Índico , Metagenoma
19.
Environ Microbiol ; 25(5): 1007-1021, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36567447

RESUMO

Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22-30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55-0.80 day-1 ) and cell size (0.04-0.07 µm3 ) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.


Assuntos
Prochlorococcus , Oceano Índico , Prochlorococcus/genética , Temperatura , Carbono , Tamanho Celular
20.
Biochim Biophys Acta Bioenerg ; 1864(2): 148954, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563737

RESUMO

The marine cyanobacterium Prochlorococcus is one of the main primary producers on Earth, which can take up glucose by using the high affinity, multiphasic transporter GlcH. We report here the overexpression of glcH from Prochlorococcus marinus strain SS120 in Escherichia coli. Modeling studies of GlcH using the homologous MelB melibiose transporter from Salmonella enterica serovar Typhimurium showed high conservation at the overall fold. We observed that an important structural interaction, mediated by a strong hydrogen bond between D8 and R141, is conserved in Prochlorococcus, although the corresponding amino acids in MelB from Salmonella are different. Biased docking studies suggested that when glucose reaches the pocket of the transporter and interacts with D8 and R141, the hydrogen bond network in which these residues are involved could be disrupted, favoring a conformational change with the subsequent translocation of the glucose molecule towards the cytoplasmic region of the pmGlcH structure. Based on these theoretical predictions and on the conservation of N117 and W348 in other MelB structures, D8, N117, R141 and W348 were mutated to glycine residues. Their key role in glucose transport was evaluated by glucose uptake assays. N117G and W348G mutations led to 17 % decrease in glucose uptake, while D8G and R141G decreased the glucose transport by 66 % and 92 % respectively. Overall, our studies provide insights into the Prochlorococcus 3D-structure of GlcH, paving the way for further analysis to understand the features which are involved in the high affinity and multiphasic kinetics of this transporter.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Prochlorococcus , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Prochlorococcus/genética , Prochlorococcus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Escherichia coli/genética , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...