Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Helicobacter ; 29(1): e13053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332674

RESUMO

BACKGROUND: Helicobacter species (spp.) have been detected in human bile and hepatobiliary tissue Helicobacter spp. promote gallstone formation and hepatobiliary tumors in laboratory studies, though it remains unclear whether Helicobacter spp. contribute to these cancers in humans. We used a multiplex panel to assess whether seropositivity to Helicobacter (H.) hepaticus or H. bilis proteins was associated with the development of hepatobiliary cancers in the Finnish Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, and US-based Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). METHODS: We included 62 biliary and 121 liver cancers, and 190 age-matched controls from ATBC and 74 biliary and 105 liver cancers, and 364 age- and sex-matched controls from PLCO. Seropositivity to 14 H. hepaticus and H. bilis antigens was measured using a multiplex assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were adjusted for major hepatobiliary cancer risk factors and Helicobacter pylori serostatus. RESULTS: Seropositivity to the H. bilis antigen, P167D, was associated with more than a twofold higher risk of liver cancer (OR: 2.38; 95% CI: 1.06, 5.36) and seropositivity to the H. hepaticus antigens HH0407 or HH1201, or H. bilis antigen, HRAG 01470 were associated with higher risk of biliary cancer (OR: 5.01; 95% CI: 1.53, 16.40; OR: 2.40; 95% CI: 1.00, 5.76; OR: 3.27; 95% CI: 1.14, 9.34, respectively) within PLCO. No associations for any of the H. hepaticus or H. bilis antigens were noted for liver or biliary cancers within ATBC. CONCLUSIONS: Further investigations in cohort studies should examine the role of Helicobacter spp. in the etiology of liver and biliary cancers.


Assuntos
Neoplasias do Sistema Biliar , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Hepáticas , Humanos , Masculino , Neoplasias do Sistema Biliar/epidemiologia , Helicobacter hepaticus , Infecções por Helicobacter/complicações , Feminino , Ensaios Clínicos como Assunto
2.
Cell Immunol ; 393-394: 104779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37935074

RESUMO

Inflammatory bowel diseases are associated with dysregulated inflammatory immune responses in the gastrointestinal tract. We found that deficiencies of both IL-4 receptor alpha chain (IL-4Rα) and IL-10 in BALB/c mice (IL-4Rα × IL-10 KO mice) highly induced spontaneous rectal prolapse and diarrhea. These mice also exhibited severe colitis in their cecum and colon and marked elevation of serum proinflammatory cytokines including TNFα and IFNγ. These pathologies were transmittable with their cecal contents containing Helicobacter spp. Their mesenteric LN cells produced TNFα and IFNγ in response to soluble H. hepaticus antigens and high titers of H. hepaticus-specific serum IgG were also detected. These results suggested the important function of IL-4Rα signaling in controlling the intestinal inflammation and the susceptibility to intestinal microbes including H. hepaticus. Therefore, these IL-4Rα × IL-10 KO mice potentially provide the significant murine model for clarifying the causes and control of spontaneous colitis and intestinal inflammation.


Assuntos
Colite , Interleucina-10 , Receptores de Interleucina-4 , Animais , Camundongos , Colite/genética , Helicobacter hepaticus/fisiologia , Inflamação/patologia , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-4/genética , Fator de Necrose Tumoral alfa
3.
J Biol Chem ; 299(11): 105332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827288

RESUMO

We evaluate cryoEM and crystal structures of two molecular machines that traffick heme and attach it to cytochrome c (cyt c), the second activity performed by a cyt c synthase. These integral membrane proteins, CcsBA and CcmF/H, both covalently attach heme to cyt c, but carry it out via different mechanisms. A CcsB-CcsA complex transports heme through a channel to its external active site, where it forms two thioethers between reduced (Fe+2) heme and CysXxxXxxCysHis in cyt c. The active site is formed by a periplasmic WWD sequence and two histidines (P-His1 and P-His2). We evaluate each proposed functional domain in CcsBA cryoEM densities, exploring their presence in other CcsB-CcsA proteins from a wide distribution of organisms (e.g., from Gram positive to Gram negative bacteria to chloroplasts.) Two conserved pockets, for the first and second cysteines of CXXCH, explain stereochemical heme attachment. In addition to other universal features, a conserved periplasmic beta stranded structure, called the beta cap, protects the active site when external heme is not present. Analysis of CcmF/H, here called an oxidoreductase and cyt c synthase, addresses mechanisms of heme access and attachment. We provide evidence that CcmF/H receives Fe+3 heme from holoCcmE via a periplasmic entry point in CcmF, whereby heme is inserted directly into a conserved WWD/P-His domain from above. Evidence suggests that CcmF acts as a heme reductase, reducing holoCcmE (to Fe+2) through a transmembrane electron transfer conduit, which initiates a complicated series of events at the active site.


Assuntos
Proteínas de Bactérias , Citocromos c , Helicobacter hepaticus , Heme , Transporte Biológico , Citocromos c/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/metabolismo
4.
Helicobacter ; 28(5): e13001, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334992

RESUMO

BACKGROUND: It has been documented that Helicobacter hepaticus produces a nickel-containing hydrogen-oxidizing hydrogenase enzyme, which is necessary for hydrogen-supported amino acid uptake. Although H. hepaticus infection has been shown to promote liver inflammation and fibrosis in BALB/c mice, the impact of hydrogenase on the progression of liver fibrosis induced by H. hepaticus has not been explored. MATERIALS AND METHODS: BALB/c mice were inoculated with hydrogenase mutant (ΔHyaB) or wild type (WT) H. hepaticus 3B1 for 12 and 24 weeks. H. hepaticus colonization, hepatic histopathology, serum biochemistry, expression of inflammatory cytokines, and oxidative stress signaling pathways were detected. RESULTS: We found that ΔHyaB had no influence on the colonization of H. hepaticus in the liver of mice at 12 and 24 weeks post infection (WPI). However, mice infected by ΔHyaB strains developed significantly alleviated liver inflammation and fibrosis compared with WT infection. Moreover, ΔHyaB infection remarkably increased the expression of hepatic GSH, SOD, and GSH-Px, and decreased the liver levels of MDA, ALT, and AST compared to WT H. hepaticus infected group from 12 to 24 WPI. Furthermore, mRNA levels of Il-6, Tnf-α, iNos, Hmox-1, and α-SMA were significantly decreased with an increase of Nfe2l2 in the liver of mice infected by ΔHyaB strains. In addition, ΔHyaB H. hepaticus restored the activation of the Nrf2/HO-1 signaling pathway, which is inhibited by H. hepaticus infection. CONCLUSIONS: These data demonstrated that H. hepaticus hydrogenase promoted liver inflammation and fibrosis development mediated by oxidative stress in male BALB/c mice.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Hidrogenase , Masculino , Animais , Camundongos , Helicobacter hepaticus/genética , Hidrogenase/genética , Hidrogenase/metabolismo , Camundongos Endogâmicos BALB C , Infecções por Helicobacter/patologia , Helicobacter pylori/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/patologia , Fibrose , Estresse Oxidativo , Hidrogênio/metabolismo
5.
Mol Psychiatry ; 28(3): 1337-1350, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36543925

RESUMO

Gut dysbiosis contributes to Parkinson's disease (PD) pathogenesis. Gastrointestinal disturbances in PD patients, along with gut leakage and intestinal inflammation, take place long before motor disorders. However, it remains unknown what bacterial species in gut microbiomes play the key role in driving PD pathogenesis. Here we show that Helicobacter hepaticus (H. hepaticus), abundant in gut microbiota from rotenone-treated human α-Synuclein gene (SNCA) transgenic mice and PD patients, initiates α-Synuclein pathology and motor deficits in an AEP-dependent manner in SNCA mice. Chronic Dextran sodium sulfate (DSS) treatment, an inflammatory inducer in the gut, activates AEP (asparagine endopeptidase) that cleaves α-Synuclein N103 and triggers its aggregation, promoting inflammation in the gut and the brain and motor defects in SNCA mice. PD fecal microbiota transplant or live H. hepaticus administration into antibiotics cocktail (Abx)-pretreated SNCA mice induces α-Synuclein pathology, inflammation in the gut and brain, and motor dysfunctions, for which AEP is indispensable. Hence, Helicobacter hepaticus enriched in PD gut microbiomes may facilitate α-Synuclein pathologies and motor impairments via activating AEP.


Assuntos
Transtornos Motores , Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/genética , alfa-Sinucleína , Helicobacter hepaticus , Camundongos Transgênicos , Dopamina , Inflamação
6.
Oncoimmunology ; 11(1): 2057399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371619

RESUMO

Microbial dysbiosis plays an important role in the development of intestinal diseases. Recent studies suggest a link between intestinal bacteria and mammary cancer. Here, we report that female ApcMin/+ mice infected with Helicobacter hepaticus exhibited an increased mammary and small/large intestine tumor burden compared with uninfected littermates. H. hepaticus DNA was detected in small/large intestine, mammary tumors, and adjacent lymph nodes, suggesting a migration pathway. CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) infiltrated and expressed high levels of Wnts, likely enhancing tumorigenesis through activation of Wnt/ß-catenin pathway. Our previous studies indicated that histidine decarboxylase (Hdc) marks a population of myeloid-biased hematopoietic stem cells and granulocytic MDSCs. Cytokines/chemokines secreted by IL-17-expressing mast cells and tumor tissues promoted Hdc+ MDSCs expansion and trafficking toward mammary tumors. Adoptive transfer of MDSCs isolated from H. hepaticus-infected mice increased MDSCs frequencies in peripheral blood, mesenteric lymph nodes, mammary gland, and lymph nodes in recipient ApcMin/+ mice. The adoptive transfer of H. hepaticus primed MDSCs also increased the size and number of mammary tumors. Our results demonstrate that H. hepaticus can translocate from the intestine to mammary tissues to promote mammary tumorigenesis with MDSCs. Targeting bacteria and MDSCs may be useful for the prevention and therapy of extraintestinal cancers. Abbreviations: Helicobacter hepaticus, Hh; myeloid-derived suppressor cell, MDSC; histidine decarboxylase, Hdc; Breast cancer, BC; T regulatory, TR; inflammatory bowel disease, IBD; fluorescence in situ hybridization, FISH; myeloid-biased hematopoietic stem cells, MB-HSCs; granulocytic MDSCs, PMN-MDSCs; Lipopolysaccharide, LPS; Toll-like receptors, TLRs; Mast cells, MCs; Granulocyte-macrophage colony-stimulating factor, GM-CSF; epithelial-mesenchymal transition, EMT; Intestinal epithelial cells, IECs.


Assuntos
Células Supressoras Mieloides , Animais , Transformação Celular Neoplásica/metabolismo , Feminino , Helicobacter hepaticus , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/metabolismo
7.
Biochem Biophys Res Commun ; 598: 40-46, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35151202

RESUMO

Hepatocytes injury caused by cytolethal distending toxin (CDT) are major events during helicobacter hepaticus (H.hepaticus) infection. Recent study showed that pre-survival autophagy was promoted against CdtB subunit induced DNA damage. In the present study, we demonstrated that inflammatory cytokines IL-6, IL-1ß, TNF-α, IFN-α, IFN-γ expression and STAT phosphorylation were promoted by CdtB. Besides, CdtB decreased cell viability while promote apoptosis in mouse liver (AML12) cells. Especially, apoptotic protein caspase-9, caspase-3 and PARP were activated while the ratio of Bcl-2/Bax was decreased after CdtB treatment. Moreover, apoptosis induced by CdtB was inhibited due to Erk/p38 MAPK signaling pathway suppression performed with SB203580 or U0126. Meanwhile, we found that CdtB increased autophagic marker levels accompanied by Akt/mTOR/P70S6K signaling pathway in a dose dependent manner. To assess the correlation between autophagy and apoptosis induced by H.hepaticus, chloroquine (CQ, 50 µM) was employed to inhibit autophagy. The result showed that inhibition of autophagy with CQ treatment promoted apoptosis induced by CdtB. Altogether, all these results suggest that CdtB triggers apoptosis via MAPK/Erk/p38 signaling pathway in caspase dependent manner, which was prevented by autophagy in AML12 cells. Collectively, our findings provide new insights into the virulence potential of CdtB on the molecular pathogenesis throughout H.hepaticus infection.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Caspases/genética , Caspases/metabolismo , Linhagem Celular , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Helicobacter hepaticus/patogenicidade , Hepatócitos/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos
8.
Curr Opin Microbiol ; 65: 145-155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883389

RESUMO

Pathobionts are members of the gut microbiota with the capacity to cause disease when there is malfunctioning intestinal homeostasis. These organisms are thought to be major contributors to the pathogenesis of inflammatory bowel disease (IBD), a group of chronic inflammatory disorders driven by dysregulated responses towards the microbiota. Over two decades have passed since the discovery of Helicobacter hepaticus, a mouse pathobiont which causes colitis in the context of immune deficiency. During this time, we have developed a detailed understanding of the cellular players and cytokine networks which drive H. hepaticus immunopathology. However, we are just beginning to understand the microbial factors that enable H. hepaticus to interact with the host and influence colonic health and disease. Here we review key H. hepaticus-host interactions, their relevance to other exemplar pathobionts and how when maladapted they drive colitis. Further understanding of these pathways may offer new therapeutic approaches for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Helicobacter hepaticus/genética , Doenças Inflamatórias Intestinais/genética , Intestinos , Camundongos
9.
Exp Anim ; 71(1): 28-35, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34456201

RESUMO

Pathogens can affect physiological and immunological reactions in immunocompromised animals and genetically engineered mice. Specifically, murine norovirus (MNV), Helicobacter, and intestinal protozoa are prevalent in rodent laboratory facilities worldwide. In this study, microbiological test results of the soiled bedding of sentinel mice showed the prevalence of MNV (50.9%, 28/55), Helicobacter hepaticus (29.1%, 16/55), Trichomonas spp. (14.5%, 8/55), and Entamoeba spp. (32.7%, 18/55). No single infections were detected as all cases were confirmed to have complex infections with two or four pathogens. In previous studies, the success rate of the cross-fostering method was not perfect; therefore, in this study, the entire mouse strain of the SPF rodent facility was rederived using embryo transfer. For up to three years, we confirmed that the results were negative with regular health surveillance tests. Embryo transfer was, thus, determined to be an effective method for the rederivation of specific pathogen free (SPF) barrier mouse facilities. This is the report for the effectiveness of embryo transfer as an example of successful microbiological clean-up of a mouse colony with multiple infections in an entire SPF mouse facility and embryo transfer may be useful for rederiving.


Assuntos
Infecções por Helicobacter , Helicobacter , Norovirus , Doenças dos Roedores , Animais , Transferência Embrionária , Infecções por Helicobacter/veterinária , Helicobacter hepaticus , Abrigo para Animais , Camundongos , Doenças dos Roedores/epidemiologia
10.
Immunity ; 54(12): 2812-2824.e4, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861182

RESUMO

The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Colo/patologia , Neoplasias Colorretais/imunologia , Microbioma Gastrointestinal/imunologia , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/fisiologia , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células T Auxiliares Foliculares/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
11.
Immunology ; 164(3): 476-493, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34322877

RESUMO

In recent years, an increasing number of studies have reported that intestinal microbiota have an important effect on tumour immunity by affecting the tumour microenvironment (TME). The intestinal microbiota are closely associated with various immune cells, such as T lymphocytes, natural killer cells (NK cells) and macrophages. Some bacteria, such as Akkermansia muciniphila (A. muciniphila) and Lactobacillus reuteri (L. reuteri), have been shown to improve the effect of tumour immunity. Furthermore, microbial imbalance, such as the increased abundance of Fusobacterium nucleatum (F. nucleatum) and Helicobacter hepaticus (H. hepaticus), generally causes tumour formation and progression. In addition, some microbiota also play important roles in tumour immunotherapy, especially PD-L1-related therapies. Therefore, what is the relationship between these processes and how do they affect each other? In this review, we summarize the interactions and corresponding mechanisms among the intestinal microbiota, immune system and TME to facilitate the research and development of new targeted drugs and provide new approaches to tumour therapy.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Modelos Animais de Doenças , Progressão da Doença , Disbiose/microbiologia , Disbiose/patologia , Fusobacterium nucleatum/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Helicobacter hepaticus/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/microbiologia , Neoplasias/patologia , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos
12.
Front Cell Infect Microbiol ; 11: 616218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777833

RESUMO

It has been well documented that cytolethal distending toxin (CDT) from Helicobacter hepaticus (H. hepaticus), Campylobacter jejuni (C. jejuni) and other Gram-negative intestinal pathogens is linked to the inflammatory bowel disease (IBD). However, the mechanisms underlying the progression of H. hepaticus induced colitis remains unclear. In this study, male B6.129P2-IL10tm1Cgn /J mice were infected by H. hepaticus and ΔCdtB H. hepaticus for 6, 12, 18, and 24 weeks. Histopathology, H. hepaticus colonization levels, expression of inflammatory cytokines, signaling pathways, and content of NO in proximal colon were examined. We found that Cytolethal distending toxin subunit B (CdtB) deletion had no influence on colonization ability of H. hepaticus in colon of B6.129P2-IL10tm1cgn/J mice, and there was no significant difference in abundance of colonic H. hepaticus over infection duration. H. hepaticus aggravated rectocele and proximal colonic inflammation, especially at 24 WPI, while ΔCdtB H. hepaticus could not cause significant symptom. Furthermore, mRNA levels of Il-6, Tnf-α, Il-1ß, and iNOS significantly increased in the proximal colon of H. hepaticus-infected mice compared to ΔCdtB H. hepaticus infected group from 12 WPI to 24 WPI. In addition, the elevated content of NO and activated Stat3 and Jak2 in colon were observed in H. hepaticus infected mice. These data demonstrated that CdtB promote colitis development in male B6.129P2-IL10tm1Cgn /J mice by induction of inflammatory response and activation of Jak-Stat signaling pathway.


Assuntos
Colite , Infecções por Helicobacter , Animais , Toxinas Bacterianas , Helicobacter hepaticus , Interleucina-10 , Masculino , Camundongos , Transdução de Sinais
13.
PLoS Pathog ; 17(3): e1009320, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33662035

RESUMO

Humans are frequently exposed to bacterial genotoxins of the gut microbiota, such as colibactin and cytolethal distending toxin (CDT). In the present study, whole genome microarray-based identification of differentially expressed genes was performed in vitro on HT29 intestinal cells while following the ectopic expression of the active CdtB subunit of Helicobacter hepaticus CDT. Microarray data showed a CdtB-dependent upregulation of transcripts involved in positive regulation of autophagy concomitant with the downregulation of transcripts involved in negative regulation of autophagy. CdtB promotes the activation of autophagy in intestinal and hepatic cell lines. Experiments with cells lacking autophagy related genes, ATG5 and ATG7 infected with CDT- and colibactin-producing bacteria revealed that autophagy protects cells against the genotoxin-induced apoptotic cell death. Autophagy induction could also be associated with nucleoplasmic reticulum (NR) formation following DNA damage induced by these bacterial genotoxins. In addition, both genotoxins promote the accumulation of the autophagic receptor P62/SQSTM1 aggregates, which colocalized with foci concentrating the RNA binding protein UNR/CSDE1. Some of these aggregates were deeply invaginated in NR in distended nuclei together or in the vicinity of UNR-rich foci. Interestingly, micronuclei-like structures and some vesicles containing chromatin and γH2AX foci were found surrounded with P62/SQSTM1 and/or the autophagosome marker LC3. This study suggests that autophagy and P62/SQSTM1 regulate the abundance of micronuclei-like structures and are involved in cell survival following the DNA damage induced by CDT and colibactin. Similar effects were observed in response to DNA damaging chemotherapeutic agents, offering new insights into the context of resistance of cancer cells to therapies inducing DNA damage.


Assuntos
Autofagia/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Autofagia/fisiologia , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Helicobacter hepaticus/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Mutagênicos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/genética
14.
Am J Physiol Heart Circ Physiol ; 320(5): H1887-H1902, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33710922

RESUMO

Inflammatory bowel disease (IBD) is associated with both impaired intestinal blood flow and increased risk of cardiovascular disease, but the functional role of perivascular nerves that control vasomotor function of mesenteric arteries (MAs) perfusing the intestine during IBD is unknown. Because perivascular sensory nerves and their transmitters calcitonin gene-related peptide (CGRP) and substance P (SP) are important mediators of both vasodilation and inflammatory responses, our objective was to identify IBD-related deficits in perivascular sensory nerve function and vascular neurotransmitter signaling. In MAs from an interleukin-10 knockout (IL-10-/-) mouse model, IBD significantly impairs electrical field stimulation (EFS)-mediated sensory vasodilation and inhibition of sympathetic vasoconstriction, despite decreased sympathetic nerve density and vasoconstriction. The MA content and EFS-mediated release of both CGRP and SP are decreased with IBD, but IBD has unique effects on each transmitter. CGRP nerve density, receptor expression, hyperpolarization, and vasodilation are preserved with IBD. In contrast, SP nerve density and receptor expression are increased, and SP hyperpolarization and vasodilation are impaired with IBD. A key finding is that blockade of SP receptors restores EFS-mediated sensory vasodilation and enhanced CGRP-mediated vasodilation in MAs from IBD but not Control mice. Together, these data suggest that an aberrant role for the perivascular sensory neurotransmitter SP and its downstream signaling in MAs underlies vascular dysfunction with IBD. We propose that with IBD, SP signaling impedes CGRP-mediated sensory vasodilation, contributing to impaired blood flow. Thus, substance P and NK1 receptors may represent an important target for treating vascular dysfunction in IBD.NEW & NOTEWORTHY Our study is the first to show that IBD causes profound impairment of sensory vasodilation and inhibition of sympathetic vasoconstriction in mesenteric arteries. This occurs alongside decreased SP-containing nerve density and increased expression of NK1 receptors for SP. In contrast, CGRP dilation, nerve density, and receptor expression are unchanged. Blocking NK1 receptors restores sensory vasodilation in MAs and increases CGRP-mediated vasodilation, indicating that SP interference with CGRP signaling may underlie impaired sensory vasodilation with IBD.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Artérias Mesentéricas/inervação , Células Receptoras Sensoriais/metabolismo , Circulação Esplâncnica , Substância P/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Helicobacter hepaticus , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/fisiopatologia , Interleucina-10/deficiência , Interleucina-10/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais , Vasoconstrição , Vasodilatação
15.
Gut Microbes ; 13(1): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550886

RESUMO

Gut microbiota and the immune system are in constant exchange shaping both host immunity and microbial communities. Here, improper immune regulation can cause inflammatory bowel disease (IBD) and colitis. Antibody therapies blocking signaling through the CD40-CD40L axis showed promising results as these molecules are deregulated in certain IBD patients. To better understand the mechanism, we used transgenic DC-LMP1/CD40 animals with a constitutive CD40-signal in CD11c+ cells, causing a lack of intestinal CD103+ dendritic cells (DCs) and failure to induce regulatory T (iTreg) cells. These mice rapidly develop spontaneous fatal colitis, accompanied by dysbiosis and increased inflammatory IL-17+IFN-γ+ Th17/Th1 and IFN-γ + Th1 cells. In the present study, we analyzed the impact of the microbiota on disease development and detected elevated IgA- and IgG-levels in sera from DC-LMP1/CD40 animals. Their serum antibodies specifically bound intestinal bacteria, and by proteome analysis, we identified a 60 kDa chaperonin GroEL (Hsp60) from Helicobacter hepaticus (Hh) as the main specific antigen targeted in the absence of iTregs. When re-derived to a different Hh-free specific-pathogen-free (SPF) microbiota, mice showed few signs of disease, normal microbiota, and no fatality. Upon recolonization of mice with Hh, the disease developed rapidly. Thus, the present work identifies GroEL/Hsp60 as a major Hh-antigen and its role in disease onset, progression, and outcome in this colitis model. Our results highlight the importance of CD103+ DC- and iTreg-mediated immune tolerance to specific pathobionts to maintain healthy intestinal balance.


Assuntos
Chaperonina 60/imunologia , Colite/microbiologia , Helicobacter hepaticus/patogenicidade , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Colite/imunologia , Células Dendríticas/imunologia , Helicobacter hepaticus/imunologia , Cadeias alfa de Integrinas/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Transgênicos , Organismos Livres de Patógenos Específicos , Linfócitos T Reguladores/imunologia
16.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255175

RESUMO

The prevalence of gastric Helicobacter pylori (Hp) infection is ~50% of the world population. However, how Hp infection influences inflammatory bowel disease in humans is not fully defined. In this study, we examined whether co-infection with Hp influenced Helicobacter hepaticus (Hh)-induced intestinal pathology in Rag2-/- mice. Rag2-/- mice of both sexes were infected with Hh, of which a subgroup was followed by infection with Hp two weeks later. Co-infected males, but not females, had significantly higher total colitis index scores in the colon at both 10 and 21 weeks post-Hh infection (WPI) and developed more severe dysplasia at 21 WPI compared with mono-Hh males. There were no significant differences in colonization levels of gastric Hp and colonic Hh between sexes or time-points. In addition, mRNA levels of colonic Il-1ß, Ifnγ, Tnfα, Il-17A, Il-17F, Il-18, and Il-23, which play important roles in the development and function of proinflammatory innate lymphoid cell groups 1 and 3, were significantly up-regulated in the dually infected males compared with mono-Hh males at 21 WPI. These data suggest that concomitant Hp infection enhances the inflammatory responses in the colon of-Hh-infected Rag2-/- males, which results in more severe colitis and dysplasia.


Assuntos
Colite/genética , Proteínas de Ligação a DNA/genética , Infecções por Helicobacter/genética , Caracteres Sexuais , Animais , Coinfecção/genética , Coinfecção/microbiologia , Colite/microbiologia , Colite/patologia , Feminino , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter hepaticus/patogenicidade , Helicobacter pylori/patogenicidade , Humanos , Masculino , Camundongos , Camundongos Knockout
17.
Sci Immunol ; 5(47)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444476

RESUMO

Mononuclear phagocytes (MNPs) are vital for maintaining intestinal homeostasis but, in response to acute microbial stimulation, can also trigger immunopathology, accelerating recruitment of Ly6Chi monocytes to the gut. The regulators that control monocyte tissue adaptation in the gut remain poorly understood. Interferon regulatory factor 5 (IRF5) is a transcription factor previously shown to play a key role in maintaining the inflammatory phenotype of macrophages. Here, we investigate the impact of IRF5 on the MNP system and physiology of the gut at homeostasis and during inflammation. We demonstrate that IRF5 deficiency has a limited impact on colon physiology at steady state but ameliorates immunopathology during Helicobacter hepaticus-induced colitis. Inhibition of IRF5 activity in MNPs phenocopies global IRF5 deficiency. Using a combination of bone marrow chimera and single-cell RNA-sequencing approaches, we examined the intrinsic role of IRF5 in controlling colonic MNP development. We demonstrate that IRF5 promotes differentiation of Ly6Chi monocytes into CD11c+ macrophages and controls the production of antimicrobial and inflammatory mediators by these cells. Thus, we identify IRF5 as a key transcriptional regulator of the colonic MNP system during intestinal inflammation.


Assuntos
Antígenos CD11/imunologia , Inflamação/imunologia , Fatores Reguladores de Interferon/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Helicobacter hepaticus/imunologia , Inflamação/patologia , Fatores Reguladores de Interferon/deficiência , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Fenótipo
18.
Biochem Biophys Res Commun ; 525(3): 654-661, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32122655

RESUMO

It has been documented that Helicobacter hepaticus (H. hepaticus) infection is linked to hepatic inflammation and fibrosis. Interleukin 33 (IL-33) is a cytokine involved in inflammatory and fibrotic diseases, but its relevance to H. hepaticus infection-induced liver inflammation and fibrosis is unknown. In this study, we found that the expression of IL-33 in mice liver was significantly induced by H. hepaticus infection at 24 weeks post infection (WPI). Immunohistochemistry analysis revealed that IL-33 was transferred from the nucleus to the cytoplasm due to infection. The quantitation of inflammatory cytokine and histopathology evaluation showed that IL-33 knockdown attenuated the H. hepaticus-induced hepatic inflammation and fibrosis. More importantly, H. hepaticus promoted the expression of the IL-33 receptor ST2 on cell surfaces, and the expression of ST2 then activated the expression nuclear factor-κB (p65), α-SMA, and Erk1/2. These observations provide novel insights into the pathogenic mechanism of hepatic inflammation and fibrosis during H. hepaticus infection.


Assuntos
Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/patogenicidade , Inflamação/microbiologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Cirrose Hepática/microbiologia , Fígado/patologia , Transdução de Sinais , Animais , Infecções por Helicobacter/patologia , Hepatite Crônica/complicações , Hepatite Crônica/microbiologia , Hepatite Crônica/patologia , Inflamação/complicações , Inflamação/patologia , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Helicobacter ; 25(2): e12677, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31881556

RESUMO

BACKGROUND: It has been documented that Helicobacter hepaticus (H hepaticus) infection is linked to chronic hepatitis and liver cancer. However, our understanding of the molecular mechanisms underlying progression of the H hepaticus-induced hepatic inflammation to cellular hepatocarcinoma is still limited. MATERIALS AND METHODS: In our study, male BALB/c mice were infected by H hepaticus for 8, 12, 16, 20, and 24 weeks. Histopathology, H hepaticus colonization dynamics, select signaling pathways, and expression of key inflammatory cytokines in the liver were examined. RESULTS: We found that H hepaticus was detectible in feces of mice at 7 days postinfection (DPI) by PCR, but it was not detected in the livers by PCR until 8 weeks postinfection (WPI). In addition, abundance of colonic and hepatic H hepaticus was progressively increased over the infection duration. H hepaticus-induced hepatic inflammation and fibrosis were aggravated over the infection duration, and necrosis or cirrhosis developed in the infected liver at 24 WPI H hepaticus infection increased levels of alanine aminotransferase and aspartate aminotransferase. Moreover, mRNA levels of Il-6 and Tnf-α were significantly elevated in the livers of H hepaticus-infected mice compared to uninfected control from 8 WPI to 24 WPI. Furthermore, Stat3, nuclear factor-κB (p65), and MAPK (Erk1/2 and p38) were activated by H hepaticus infection. CONCLUSIONS: These data demonstrated that male BALB/c mice can be used as a new mouse model of H hepaticus-induced liver diseases and that the H hepaticus-induced liver injury is triggered by NF-κB, Jak-Stat, and MAPK signaling pathways.


Assuntos
Fibrose/microbiologia , Helicobacter hepaticus , Hepatite Crônica/microbiologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Citocinas/biossíntese , Fezes/microbiologia , Infecções por Helicobacter/patologia , Helicobacter hepaticus/genética , Helicobacter hepaticus/isolamento & purificação , Fígado/microbiologia , Fígado/patologia , Neoplasias Hepáticas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Int J Cancer ; 145(4): 1042-1054, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30977112

RESUMO

Inflammatory bowel disease and colonic tumors induced by Helicobacter hepaticus (Hh) infection in susceptible mouse strains are utilized to dissect the mechanisms underlying similar human diseases. In our study, infection with genotoxic cytolethal distending toxin-producing Hh in 129/SvEv Rag2-/- Il10-/- gpt delta (RagIl10gpt) mice of both sexes for 21 weeks induced significantly more severe cecal and colonic pathology compared to uninfected controls. The mutation frequencies in the infected RagIl10gpt males were 2.1-fold higher for the cecum and 1.7-fold higher for the colon than male RagIl10gpt controls. In addition, there was a 12.5-fold increase of G:C-to-T:A transversions in the colon of Hh-infected males compared to controls. In contrast, there was no statistical significance in mutation frequencies between infected female Rag2Il10gpt mice and controls. Moreover, Hh infection in RagIl10gpt males significantly up-regulated transcription of Tnfα and iNos, and decreased mRNA levels of cecal Atm compared to the infected females; there was no significant difference in mRNA levels of Il-22, Il-17A, Ifnγ and Atr between the infected males and females. Significantly higher levels of cecal and colonic iNos expression and γH2AX-positive epithelial cells (a biomarker for double-strand DNA breaks [DSB]) in Hh-infected Rag2Il10gpt males vs. Hh-infected females were noted. Finally, Hh infection and associated inflammation increased levels of intestinal mucosa-associated genotoxic colibactin-producing pks+ Escherichia coli. Elevated Tnfα and iNos responses and bacterial genotoxins, in concert with suppression of the DSB repair responses, may have promoted mutagenesis in the lower bowel mucosa of Hh-infected male RagIl10gpt mice.


Assuntos
Colo/microbiologia , Proteínas de Ligação a DNA/genética , Infecções por Helicobacter/genética , Helicobacter hepaticus/patogenicidade , Interleucina-10/genética , Mucosa Intestinal/microbiologia , Mutagênese/genética , Animais , Células Epiteliais/microbiologia , Feminino , Infecções por Helicobacter/microbiologia , Inflamação/genética , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Interleucina-17/genética , Masculino , Camundongos , Mutação/genética , RNA Mensageiro/genética , Fatores Sexuais , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...