Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6666): 109-113, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797025

RESUMO

Aerobic ribonucleotide reductases (RNRs) initiate synthesis of DNA building blocks by generating a free radical within the R2 subunit; the radical is subsequently shuttled to the catalytic R1 subunit through proton-coupled electron transfer (PCET). We present a high-resolution room temperature structure of the class Ie R2 protein radical captured by x-ray free electron laser serial femtosecond crystallography. The structure reveals conformational reorganization to shield the radical and connect it to the translocation path, with structural changes propagating to the surface where the protein interacts with the catalytic R1 subunit. Restructuring of the hydrogen bond network, including a notably short O-O interaction of 2.41 angstroms, likely tunes and gates the radical during PCET. These structural results help explain radical handling and mobilization in RNR and have general implications for radical transfer in proteins.


Assuntos
Proteínas de Bactérias , Entomoplasmataceae , Ribonucleotídeo Redutases , Transporte de Elétrons , Prótons , Ribonucleotídeo Redutases/química , Cristalografia por Raios X/métodos , Entomoplasmataceae/enzimologia , Domínio Catalítico , Proteínas de Bactérias/química
2.
ACS Synth Biol ; 10(7): 1667-1681, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34232633

RESUMO

Synechococcus elongatus PCC 7942 is a model cyanobacterium for study of the circadian clock, photosynthesis, and bioproduction of chemicals, yet nearly 40% of its gene identities and functions remain unknown, in part due to limitations of the existing genetic toolkit. While classical techniques for the study of genes (e.g., deletion or mutagenesis) can yield valuable information about the absence of a gene and its associated protein, there are limits to these approaches, particularly in the study of essential genes. Herein, we developed a tool for inducible degradation of target proteins in S. elongatus by adapting a method using degron tags from the Mesoplasma florum transfer-mRNA (tmRNA) system. We observed that M. florum lon protease can rapidly degrade exogenous and native proteins tagged with the cognate sequence within hours of induction. We used this system to inducibly degrade the essential cell division factor, FtsZ, as well as shell protein components of the carboxysome. Our results have implications for carboxysome biogenesis and the rate of carboxysome turnover during cell growth. Lon protease control of proteins offers an alternative approach for the study of essential proteins and protein dynamics in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Entomoplasmataceae/enzimologia , Proteínas de Plantas/metabolismo , Protease La/metabolismo , Synechococcus/metabolismo , Proteólise
3.
Mol Syst Biol ; 16(12): e9844, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33331123

RESUMO

The near-minimal bacterium Mesoplasma florum is an interesting model for synthetic genomics and systems biology due to its small genome (~ 800 kb), fast growth rate, and lack of pathogenic potential. However, fundamental aspects of its biology remain largely unexplored. Here, we report a broad yet remarkably detailed characterization of M. florum by combining a wide variety of experimental approaches. We investigated several physical and physiological parameters of this bacterium, including cell size, growth kinetics, and biomass composition of the cell. We also performed the first genome-wide analysis of its transcriptome and proteome, notably revealing a conserved promoter motif, the organization of transcription units, and the transcription and protein expression levels of all protein-coding sequences. We converted gene transcription and expression levels into absolute molecular abundances using biomass quantification results, generating an unprecedented view of the M. florum cellular composition and functions. These characterization efforts provide a strong experimental foundation for the development of a genome-scale model for M. florum and will guide future genome engineering endeavors in this simple organism.


Assuntos
Entomoplasmataceae/fisiologia , Sequência de Bases , Biomassa , Entomoplasmataceae/genética , Entomoplasmataceae/crescimento & desenvolvimento , Entomoplasmataceae/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Espaço Intracelular/metabolismo , Cinética , Substâncias Macromoleculares/metabolismo , Ácidos Nucleicos/metabolismo , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Ribossomos/metabolismo , Temperatura , Sítio de Iniciação de Transcrição , Transcrição Gênica
4.
Biocontrol Sci ; 25(3): 167-171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32938846

RESUMO

For the elucidation of the mechanism underlying the photocatalytic bactericidal activity of titanium dioxide (TiO2), we focused on the peptidoglycan layer, a component of the bacterial cell wall. The effect of this layer on the photocatalytic bactericidal activity of TiO2 was evaluated by determining the survival rates of Lactobacillus plantarum (intact cells) and its protoplast cells. Mesoplasma florum, which does not originally possess the peptidoglycan layer, was also used. Our results revealed that the survival rates of the intact cells were lower than those of the protoplast cells. In addition, there was no significance between the survival rates of M. florum cells and the protoplast cells of L. plantarum. It was suggested that the presence of the peptidoglycan layer increases the bactericidal effect by the photocatalysis.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptidoglicano/farmacologia , Titânio/farmacologia , Catálise/efeitos da radiação , Entomoplasmataceae/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Titânio/química
5.
J Theor Biol ; 506: 110406, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32771533

RESUMO

Riboswitches are cis-acting regulatory mRNA elements in bacteria, that modulate the expression of their associated genes in response to a cognate metabolite, operating either on the level of translation or transcription. Transcriptional riboswitches have to fold into functional structures as they are being synthesized and, only if transcription rates and ligand binding kinetics match, structured transcription intermediates are enabled to undergo ligand-dependent conformational refolding as a prerequisite for ligand-mediated gene expression. Therefore, transcription rates are of essential importance for functional riboswitch-mediated gene regulation. Here, we propose a generalized modeling framework for the kinetic mechanisms of transcriptional riboswitches. The formalism accommodates time-dependent transcription rates and changes of metabolite concentration and permits incorporation of variations in transcription rate depending on transcript length. We derive explicit analytical expressions for the fraction of transcripts that determine repression or activation of gene expression as a function of pause site location and its slowing down of transcription for the case of the (2'dG)-sensing riboswitch from Mesoplasma florum. Our modeling challenges the current view on the exclusive importance of metabolite binding to transcripts containing only the aptamer domain. Numerical simulations of transcription proceeding in a continuous manner under time-dependent changes of metabolite concentration further suggest that rapid modulations in concentration result in a reduced dynamic range for riboswitch function regardless of transcription rate, while a combination of slow modulations and small transcription rates ensures a wide range of finely tuneable regulatory outcomes.


Assuntos
Riboswitch , Entomoplasmataceae , Cinética , Ligantes , Conformação de Ácido Nucleico , Riboswitch/genética
6.
Int J Syst Evol Microbiol ; 69(9): 2735-2738, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31483242

RESUMO

Early characterization of strains designated into the genera Entomoplasma and Mesoplasma was based upon biological and chemical characteristics. With the advent of 16S rRNA gene sequence analysis as an added taxonomic character, it became clear that the two genera did not form distinct and separate monophyletic clusters. A genome-level analysis of all 17 validly published species within the family Entomoplasmataceae has recently been performed. Phylogenetic analyses, comparisons of gene content, and the lack of genus-specific genes supported that species from the two genera are intermixed and should not be taxonomically separated. This level of analysis clearly reveals the necessity to revise the taxonomy of this family by merging the two genera into one, Entomoplasma. Additionally, it was definitively determined that the strain originally designated as Acholeplasma multilocale resides in this cluster and should be formally renamed as Entomoplasma multilocale. Merging Mesoplasma and Entomoplasma yields a paraphyletic genus, but is supported by cell morphology and ecology to be distinguished from the genera Spiroplasma and Mycoplasma.


Assuntos
Entomoplasmataceae/classificação , Genoma Bacteriano , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Methods ; 143: 70-76, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730250

RESUMO

Riboswitches form an abundant class of cis-regulatory RNA elements that mediate gene expression by binding a small metabolite. For synthetic biology applications, they are becoming cheap and accessible systems for selectively triggering transcription or translation of downstream genes. Many riboswitches are kinetically controlled, hence knowledge of their co-transcriptional mechanisms is essential. We present here an efficient implementation for analyzing co-transcriptional RNA-ligand interaction dynamics. This approach allows for the first time to model concentration-dependent metabolite binding/unbinding kinetics. We exemplify this novel approach by means of the recently studied I-A 2'-deoxyguanosine (2'dG)-sensing riboswitch from Mesoplasma florum.


Assuntos
Biologia Computacional/métodos , Conformação de Ácido Nucleico , RNA Bacteriano/genética , Riboswitch/genética , Transcrição Gênica , Sítios de Ligação/genética , Entomoplasmataceae/genética , Cinética , Ligantes , Modelos Biológicos , Dobramento de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo
8.
ACS Synth Biol ; 7(1): 209-217, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28893065

RESUMO

Cloning and transplantation of bacterial genomes is a powerful method for the creation of engineered microorganisms. However, much remains to be understood about the molecular mechanisms and limitations of this approach. We report the whole-genome cloning of Mesoplasma florum in Saccharomyces cerevisiae, and use this model to investigate the impact of a bacterial chromosome in yeast cells. Our results indicate that the cloned M. florum genome is subjected to weak transcriptional activity, and causes no significant impact on yeast growth. We also report that the M. florum genome can be transplanted into Mycoplasma capricolum without any negative impact from the putative restriction enzyme encoding gene mfl307. Using whole-genome sequencing, we observed that a small number of mutations appeared in all M. florum transplants. Mutations also arose, albeit at a lower frequency, when the M. capricolum genome was transplanted into M. capricolum recipient cells. These observations suggest that genome transplantation is mutagenic, and that this phenomenon is magnified by the use of genome donor and recipient cell belonging to different species. No difference in efficiency was detected after three successive rounds of genome transplantation, suggesting that the observed mutations were not selected during the procedure. Taken together, our results provide a more accurate picture of the events taking place during bacterial genome cloning and transplantation.


Assuntos
Clonagem Molecular , Entomoplasmataceae/genética , Genoma Bacteriano , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Hidroliases/genética , Mutação , Plasmídeos/genética , Plasmídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
9.
Proc Natl Acad Sci U S A ; 114(51): 13400-13405, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203667

RESUMO

Very large DNA molecules enable comprehensive analysis of complex genomes, such as human, cancer, and plants because they span across sequence repeats and complex somatic events. When physically manipulated, or analyzed as single molecules, long polyelectrolytes are problematic because of mechanical considerations that include shear-mediated breakage, dealing with the massive size of these coils, or the length of stretched DNAs using common experimental techniques and fluidic devices. Accordingly, we harness analyte "issues" as exploitable advantages by our invention and characterization of the "molecular gate," which controls and synchronizes formation of stretched DNA molecules as DNA dumbbells within nanoslit geometries. Molecular gate geometries comprise micro- and nanoscale features designed to synergize very low ionic strength conditions in ways we show effectively create an "electrostatic bottle." This effect greatly enhances molecular confinement within large slit geometries and supports facile, synchronized electrokinetic loading of nanoslits, even without dumbbell formation. Device geometries were considered at the molecular and continuum scales through computer simulations, which also guided our efforts to optimize design and functionalities. In addition, we show that the molecular gate may govern DNA separations because DNA molecules can be electrokinetically triggered, by varying applied voltage, to enter slits in a size-dependent manner. Lastly, mapping the Mesoplasmaflorum genome, via synchronized dumbbell formation, validates our nascent approach as a viable starting point for advanced development that will build an integrated system capable of large-scale genome analysis.


Assuntos
DNA/química , Genômica/métodos , Microfluídica/métodos , Imagem Individual de Molécula/métodos , Entomoplasmataceae/genética , Genômica/instrumentação , Microfluídica/instrumentação , Imagem Individual de Molécula/instrumentação , Eletricidade Estática
10.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115382

RESUMO

The near-minimal bacterium Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. However, the lack of genetic engineering tools for this microorganism has limited our capacity to understand its basic biology and modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first generation of artificial plasmids able to replicate in this bacterium. Selected regions of the predicted M. florum chromosomal origin of replication (oriC) were used to create different plasmid versions that were tested for their transformation frequency and stability. Using polyethylene glycol-mediated transformation, we observed that plasmids harboring both rpmH-dnaA and dnaA-dnaN intergenic regions, interspaced or not with a copy of the dnaA gene, resulted in a frequency of ∼4.1 × 10-6 transformants per viable cell and were stably maintained throughout multiple generations. In contrast, plasmids containing only one M. florumoriC intergenic region or the heterologous oriC region of Mycoplasma capricolum, Mycoplasma mycoides, or Spiroplasma citri failed to produce any detectable transformants. We also developed alternative transformation procedures based on electroporation and conjugation from Escherichia coli, reaching frequencies up to 7.87 × 10-6 and 8.44 × 10-7 transformants per viable cell, respectively. Finally, we demonstrated the functionality of antibiotic resistance genes active against tetracycline, puromycin, and spectinomycin/streptomycin in M. florum Taken together, these valuable genetic tools will facilitate efforts toward building an M. florum-based near-minimal cellular chassis for synthetic biology.IMPORTANCEMesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. M. florum is closely related to the mycoides cluster of mycoplasmas, which has become a model for whole-genome cloning, genome transplantation, and genome minimization. However, M. florum shows higher growth rates than other Mollicutes, has no known pathogenic potential, and possesses a significantly smaller genome that positions this species among some of the simplest free-living organisms. So far, the lack of genetic engineering tools has limited our capacity to understand the basic biology of M. florum in order to modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first artificial plasmids and transformation methods for this bacterium. This represents a strong basis for ongoing genome engineering efforts using this near-minimal microorganism.


Assuntos
Entomoplasmataceae/genética , Plasmídeos/genética , Origem de Replicação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Replicação do DNA , DNA Bacteriano/genética , DNA Intergênico , Proteínas de Ligação a DNA/genética , Farmacorresistência Bacteriana Múltipla , Entomoplasmataceae/efeitos dos fármacos , Escherichia coli/genética , Vetores Genéticos , Mycoplasma/genética , Recombinação Genética , Biologia Sintética , Transformação Bacteriana
11.
BMC Bioinformatics ; 17(Suppl 14): 431, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-28185583

RESUMO

BACKGROUND: Lateral gene transfer (LGT) is an evolutionary process that has an important role in biology. It challenges the traditional binary tree-like evolution of species and is attracting increasing attention of the molecular biologists due to its involvement in antibiotic resistance. A number of attempts have been made to model LGT in the presence of gene duplication and loss, but reliably placing LGT events in the species tree has remained a challenge. RESULTS: In this paper, we propose probabilistic methods that samples reconciliations of the gene tree with a dated species tree and computes maximum a posteriori probabilities. The MCMC-based method uses the probabilistic model DLTRS, that integrates LGT, gene duplication, gene loss, and sequence evolution under a relaxed molecular clock for substitution rates. We can estimate posterior distributions on gene trees and, in contrast to previous work, the actual placement of potential LGT, which can be used to, e.g., identify "highways" of LGT. CONCLUSIONS: Based on a simulation study, we conclude that the method is able to infer the true LGT events on gene tree and reconcile it to the correct edges on the species tree in most cases. Applied to two biological datasets, containing gene families from Cyanobacteria and Molicutes, we find potential LGTs highways that corroborate other studies as well as previously undetected examples.


Assuntos
Transferência Genética Horizontal/genética , Modelos Genéticos , Evolução Biológica , Entomoplasmataceae/classificação , Entomoplasmataceae/genética , Filogenia
12.
PLoS One ; 10(7): e0133384, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26197065

RESUMO

BACKGROUND: Continuous culture devices can be used for various purposes such as establishing reproducible growth conditions or maintaining cell populations under a constant environment for long periods. However, commercially available instruments are expensive, were not designed to handle small volumes in the milliliter range, and can lack the flexibility required for the diverse experimental needs found in several laboratories. METHODOLOGY/PRINCIPAL FINDINGS: We developed a versatile continuous culture system and provide detailed instructions as well as a graphical user interface software for potential users to assemble and operate their own instrument. Three culture chambers can be controlled simultaneously with the proposed configuration, and all components are readily available from various sources. We demonstrate that our continuous culture device can be used under different modes, and can easily be programmed to behave either as a turbidostat or chemostat. Addition of fresh medium to the culture vessel can be controlled by a real-time feedback loop or simply calibrated to deliver a defined volume. Furthermore, the selected light-emitting diode and photodetector enable the use of phenol red as a pH indicator, which can be used to indirectly monitor the bulk metabolic activity of a cell population rather than the turbidity. CONCLUSIONS/SIGNIFICANCE: This affordable and customizable system will constitute a useful tool in many areas of biology such as microbial ecology as well as systems and synthetic biology.


Assuntos
Divisão Celular/fisiologia , Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , Modelos Teóricos , Entomoplasmataceae/citologia , Entomoplasmataceae/crescimento & desenvolvimento , Desenho de Equipamento , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Técnicas Microbiológicas/economia , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
Mol Biol Evol ; 32(7): 1672-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25750180

RESUMO

Despite the general assumption that site-specific mutation rates are independent of the local sequence context, a growing body of evidence suggests otherwise. To further examine context-dependent patterns of mutation, we amassed 5,645 spontaneous mutations in wild- type (WT) and mismatch-repair deficient (MMR(-)) mutation-accumulation (MA) lines of the gram-positive model organism Bacillus subtilis. We then analyzed>7,500 spontaneous base-substitution mutations across B. subtilis, Escherichia coli, and Mesoplasma florum WT and MMR(-) MA lines, finding a context-dependent mutation pattern that is asymmetric around the origin of replication. Different neighboring nucleotides can alter site-specific mutation rates by as much as 75-fold, with sites neighboring G:C base pairs or dimers involving alternating pyrimidine-purine and purine-pyrimidine nucleotides having significantly elevated mutation rates. The influence of context-dependent mutation on genome architecture is strongest in M. florum, consistent with the reduced efficiency of selection in organisms with low effective population size. If not properly accounted for, the disparities arising from patterns of context-dependent mutation can significantly influence interpretations of positive and purifying selection.


Assuntos
Bactérias/genética , Reparo de Erro de Pareamento de DNA/genética , Acúmulo de Mutações , Taxa de Mutação , Bacillus subtilis/genética , Entomoplasmataceae/genética , Escherichia coli/genética , Genoma Bacteriano , Nucleotídeos/genética
14.
Nat Biotechnol ; 32(12): 1276-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25402616

RESUMO

Tunable control of protein degradation in bacteria would provide a powerful research tool. Here we use components of the Mesoplasma florum transfer-messenger RNA system to create a synthetic degradation system that provides both independent control of steady-state protein level and inducible degradation of targeted proteins in Escherichia coli. We demonstrate application of this system in synthetic circuit development and control of core bacterial processes and antibacterial targets, and we transfer the system to Lactococcus lactis to establish its broad functionality in bacteria. We create a 238-member library of tagged essential proteins in E. coli that can serve as both a research tool to study essential gene function and an applied system for antibiotic discovery. Our synthetic protein degradation system is modular, does not require disruption of host systems and can be transferred to diverse bacteria with minimal modification.


Assuntos
Escherichia coli/metabolismo , Proteólise , RNA Mensageiro/genética , Entomoplasmataceae/química , Entomoplasmataceae/metabolismo , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/química , Lactococcus lactis/genética , Dados de Sequência Molecular , RNA Mensageiro/química
15.
ACS Chem Biol ; 9(6): 1330-9, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24673892

RESUMO

Paramagnetic relaxation enhancement (PRE) NMR is a powerful method to study structure, dynamics and function of proteins. Up to now, the application of PRE NMR on RNAs is a significant challenge due to the limited size of chemically synthesized RNA. Here, we present a noncovalent spin labeling strategy to spin label RNAs in high yields required for NMR studies. The approach requires the presence of a helix segment composed of about 10 nucleotides (nt) but is not restricted by the size of the RNA. We show successful application of this strategy on the 2'dG sensing aptamer domain of Mesoplasma florum (78 nt). The aptamer domain was prepared in two fragments. A larger fragment was obtained by biochemical means, while a short spin labeled fragment was prepared by chemical solid-phase synthesis. The two fragments were annealed noncovalently by hybridization. We performed NMR, cw-EPR experiments and gel shift assays to investigate the stability of the two-fragment complex. NMR analysis in (15)N-TROSY and (1)H,(1)H-NOESY spectra of both unmodified and spin labeled aptamer domain show that the fragmented system forms a stable hybridization product, is in structural agreement with the full length aptamer domain and maintains its function. Together with structure modeling, experimentally determined (1)H-Γ2 rates are in agreement with reported crystal structure data and show that distance restraints up to 25 Å can be obtained from NMR PRE data of RNA.


Assuntos
Aptâmeros de Nucleotídeos/genética , Entomoplasmataceae/genética , RNA Bacteriano/química , RNA Bacteriano/genética , Riboswitch/genética , Aptâmeros de Nucleotídeos/química , Pareamento de Bases , Sequência de Bases , Espectroscopia de Ressonância de Spin Eletrônica , Entomoplasmataceae/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Marcadores de Spin
16.
Genome Biol Evol ; 6(3): 500-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24534435

RESUMO

Comparative genomics provides a powerful tool to characterize the genetic differences among species that may be linked to their phenotypic variations. In the case of mosquito-associated Spiroplasma species, such approach is useful for the investigation of their differentiations in substrate utilization strategies and putative virulence factors. Among the four species that have been assessed for pathogenicity by artificial infection experiments, Spiroplasma culicicola and S. taiwanense were found to be pathogenic, whereas S. diminutum and S. sabaudiense were not. Intriguingly, based on the species phylogeny, the association with mosquito hosts and the gain or loss of pathogenicity in these species appears to have evolved independently. Through comparison of their complete genome sequences, we identified the genes and pathways that are shared by all or specific to one of these four species. Notably, we found that a glycerol-3-phosphate oxidase gene (glpO) is present in S. culicicola and S. taiwanense but not in S. diminutum or S. sabaudiense. Because this gene is involved in the production of reactive oxygen species and has been demonstrated as a major virulence factor in Mycoplasma, this distribution pattern suggests that it may be linked to the observed differences in pathogenicity among these species as well. Moreover, through comparative analysis with other Spiroplasma, Mycoplasma, and Mesoplasma species, we found that the absence of glpO in S. diminutum and S. sabaudiense is best explained by independent losses. Finally, our phylogenetic analyses revealed possible recombination of glpO between distantly related lineages and local rearrangements of adjacent genes.


Assuntos
Evolução Molecular , Genes Bacterianos , Spiroplasma/genética , Fatores de Virulência/genética , Animais , Culicidae/microbiologia , DNA Bacteriano/genética , Entomoplasmataceae/genética , Genômica , Glicerolfosfato Desidrogenase/genética , Dados de Sequência Molecular , Mycoplasma/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Spiroplasma/classificação
19.
Curr Biol ; 23(4): R147-9, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23428322

RESUMO

Two recent reports combine mutation accumulation and whole-genome sequencing to measure mutation rates in microbes with unusual genome sizes and life cycles. The results are broadly consistent with the hypothesis that genetic drift plays a role in shaping genomic mutation rates across a wide range of taxa.


Assuntos
Deriva Genética , Tamanho do Genoma/genética , Taxa de Mutação , Chlamydomonas reinhardtii/genética , Entomoplasmataceae/genética , Evolução Molecular , Variação Genética , Genoma , Paramecium tetraurellia/genética
20.
Proc Natl Acad Sci U S A ; 109(45): 18488-92, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23077252

RESUMO

Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N(e)), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N(e) appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N(e).


Assuntos
Evolução Biológica , Chlamydomonas reinhardtii/genética , Entomoplasmataceae/genética , Deriva Genética , Modelos Genéticos , Taxa de Mutação , Isolamento Reprodutivo , Divisão Celular/genética , Tamanho do Genoma/genética , Genoma Bacteriano/genética , Genoma de Planta/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...