Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.275
Filtrar
1.
Sci Rep ; 14(1): 7983, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575668

RESUMO

Dimension reduction has been used to visualise the distribution of multidimensional microbiome data, but the composite variables calculated by the dimension reduction methods have not been widely used to investigate the relationship of the human gut microbiome with lifestyle and disease. In the present study, we applied several dimension reduction methods, including principal component analysis, principal coordinate analysis (PCoA), non-metric multidimensional scaling (NMDS), and non-negative matrix factorization, to a microbiome dataset from 186 subjects with symptoms of  allergic rhinitis (AR) and 106 controls. All the dimension reduction methods supported that the distribution of microbial data points appeared to be continuous rather than discrete. Comparison of the composite variables calculated from the different dimension reduction methods showed that the characteristics of the composite variables differed depending on the distance matrices and the dimension reduction methods. The first composite variables calculated from PCoA and NMDS with the UniFrac distance were strongly associated with AR (FDR adjusted P = 2.4 × 10-4 for PCoA and P = 2.8 × 10-4 for NMDS), and also with the relative abundance of Bifidobacterium and Prevotella. The abundance of Bifidobacterium was also linked to intake of several nutrients, including carbohydrate, saturated fat, and alcohol via composite variables. Notably, the association between the composite variables and AR was much stronger than the association between the relative abundance of individual genera and AR. Our results highlight the usefulness of the dimension reduction methods for investigating the association of microbial composition with lifestyle and disease in clinical research.


Assuntos
Microbioma Gastrointestinal , Rinite Alérgica , Humanos , Bifidobacterium , Prevotella , Análise de Escalonamento Multidimensional
2.
Cancer Immunol Immunother ; 73(5): 94, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564002

RESUMO

The advent of tumor immunotherapy in patients has revolutionized the treatment of tumors and significantly improved survival rates for a wide range of tumors. However, the full therapeutic potential of immune checkpoint inhibitors (ICIs) has yet to be realized, as not all patients have a lasting survival benefit from them, and a significant proportion of patients show primary or acquired resistance to immunotherapy. Bifidobacterium is one of the most common probiotics, and its antitumor and immunomodulatory effects have been demonstrated in recent years, but its immunomodulatory effects in tumors, especially on ICIs and in combination, have not been extensively studied in clinical practice, and its effects on the immune system and the mechanisms that modulate immunotherapy are largely unknown. Therefore, this review will focus on the immunomodulatory effects of Bifidobacteria in malignancies and the possible mechanisms of action of Bifidobacteria on immunotherapy in the hope of providing a basis for further research and better application of Bifidobacteria in clinical practice.


Assuntos
Imunomodulação , Imunoterapia , Humanos , Bifidobacterium , Inibidores de Checkpoint Imunológico
3.
Gut Microbes ; 16(1): 2300847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439565

RESUMO

Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.


Assuntos
Desoxiadenosinas , Microbioma Gastrointestinal , Doenças Metabólicas , Tionucleosídeos , Humanos , Metionina , Bifidobacterium , Racemetionina
4.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542148

RESUMO

Bifidobacteria are probiotic microorganisms commonly found in the gastrointestinal tract, some of which are known to utilize linear arabino-oligosaccharides (AOS) as prebiotic carbohydrates. In general, the synergistic actions of exo-type α-l-arabinofuranosidases (ABFs) and endo-α-1,5-l-arabinanases (ABNs) are required for efficient arabinan degradation. In this study, the putative gene cluster for arabinan degradation was discovered in the genome of Bifidobacterium longum subsp. suis. It consists of a variety of genes encoding exo- and endo-hydrolases, sugar-binding proteins, ABC-binding cassettes, and transcriptional regulators. Among them, two endo-ABNs GH43 (BflsABN43A and BflsABN43B), two exo-ABFs GH43 (BflsABF43A and BflsABF43B), and an exo-ABF GH51 (BflsABF51) were predicted to be the key hydrolases for arabinan degradation. These hydrolase genes were functionally expressed in Escherichia coli, and their enzymatic properties were characterized. Their synergism in arabinan degradation has been proposed from the detailed modes of action. Extracellular endo-BflsABN43A hydrolyzes sugar beet and debranched arabinans into the short-chain branched and linear AOS. Intracellularly, AOS can be further degraded into l-arabinose via the cooperative actions of endo-BflsABN43B, exo-BflsABF43A with debranching activity, α-1,5-linkage-specific exo-BflsABF43B, and exo-BflsABF51 with dual activities. The resulting l-arabinose is expected to be metabolized into energy through the pentose phosphate pathway by three enzymes expressed from the ara operon of bifidobacteria. It is anticipated that uncovering arabinan utilization gene clusters and their detailed functions in the genomes of diverse microorganisms will facilitate the development of customized synbiotics.


Assuntos
Arabinose , Bifidobacterium , Polissacarídeos , Polissacarídeos/metabolismo , Família Multigênica , Oligossacarídeos , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
5.
Nutrients ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542727

RESUMO

Visceral fat accumulation is considered to be associated with a higher risk of chronic diseases. We investigated the effects of Bifidobacterium longum subsp. longum (B. longum) BB536 and Bifidobacterium breve (B. breve) MCC1274 on body composition, including visceral fat, in a randomized, parallel-group, placebo-controlled study. Participants were between 29 and 64 years of age and had a body mass index (BMI) of greater than 23 and less than 30. One hundred participants were randomly assigned to the probiotics group or placebo group. Participants were administered probiotic capsules containing 1 × 1010 colony-forming units (CFUs) of B. longum BB536 and 5 × 109 CFU of B. breve MCC1274 or placebo capsules without bifidobacteria for 16 weeks. In the probiotics group, abdominal visceral fat area, total abdominal fat area, and serum triglyceride levels were significantly decreased compared to those in the placebo group. Additionally, the increase in BMI observed in the placebo group was significantly suppressed in the probiotics group. This study showed that B. longum BB536 and B. breve MCC1274 reduced abdominal visceral fat and total fat levels in healthy normal and overweight adults, suggesting their beneficial effects on body composition.


Assuntos
Bifidobacterium breve , Bifidobacterium longum , Bifidobacterium , Probióticos , Adulto , Humanos , Sobrepeso/terapia , Composição Corporal
6.
Microbiome ; 12(1): 60, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515179

RESUMO

BACKGROUND: The gut microbiota is recognized as a regulator of brain development and behavioral outcomes during childhood. Nonetheless, associations between the gut microbiota and behavior are often inconsistent among studies in humans, perhaps because many host-microbe relationships vary widely between individuals. This study aims to stratify children based on their gut microbiota composition (i.e., clusters) and to identify novel gut microbiome cluster-specific associations between the stool metabolomic pathways and child behavioral outcomes. METHODS: Stool samples were collected from a community sample of 248 typically developing children (3-5 years). The gut microbiota was analyzed using 16S sequencing while LC-MS/MS was used for untargeted metabolomics. Parent-reported behavioral outcomes (i.e., Adaptive Skills, Internalizing, Externalizing, Behavioral Symptoms, Developmental Social Disorders) were assessed using the Behavior Assessment System for Children (BASC-2). Children were grouped based on their gut microbiota composition using the Dirichlet multinomial method, after which differences in the metabolome and behavioral outcomes were investigated. RESULTS: Four different gut microbiota clusters were identified, where the cluster enriched in both Bacteroides and Bifidobacterium (Ba2) had the most distinct stool metabolome. The cluster characterized by high Bifidobacterium abundance (Bif), as well as cluster Ba2, were associated with lower Adaptive Skill scores and its subcomponent Social Skills. Cluster Ba2 also had significantly lower stool histidine to urocanate turnover, which in turn was associated with lower Social Skill scores in a cluster-dependent manner. Finally, cluster Ba2 had increased levels of compounds involved in Galactose metabolism (i.e., stachyose, raffinose, alpha-D-glucose), where alpha-D-glucose was associated with the Adaptive Skill subcomponent Daily Living scores (i.e., ability to perform basic everyday tasks) in a cluster-dependent manner. CONCLUSIONS: These data show novel associations between the gut microbiota, its metabolites, and behavioral outcomes in typically developing preschool-aged children. Our results support the concept that cluster-based groupings could be used to develop more personalized interventions to support child behavioral outcomes. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Pré-Escolar , Humanos , Bifidobacterium/genética , Cromatografia Líquida , Microbioma Gastrointestinal/genética , Glucose , Metaboloma , Metabolômica/métodos , RNA Ribossômico 16S , Espectrometria de Massas em Tandem
7.
J Agric Food Chem ; 72(13): 7055-7073, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520351

RESUMO

Ulcerative colitis (UC) is a major disease that has endangered human health. Our previous study demonstrated that Bifidobacterium longum subsp. longum YS108R, a ropy exopolysaccharide (EPS)-producing bacterium, could alleviate UC in mice, but it is unclear whether EPS is the key substance responsible for its action. In this study, we proposed to investigate the remitting effect of EPS from B. longum subsp. longum YS108R on UC in a DSS-induced UC mouse model. Water extraction and alcohol precipitation were applied to extract EPS from the supernatant of B. longum subsp. longum YS108R culture. Then the animal trial was performed, and the results indicated that YS108R EPS ameliorated colonic pathological damage and the intestinal barrier. YS108R EPS suppressed inflammation via NF-κB signaling pathway inhibition and attenuated oxidative stress via the Nrf2 signaling pathway activation. Remarkably, YS108R EPS regulated gut microbiota, as evidenced by an increase in short-chain fatty acid (SCFA)-producing bacteria and a decline in Gram-negative bacteria, resulting in an increase of propionate and butyrate and a reduction of lipopolysaccharide (LPS). Collectively, YS108R EPS manipulated the intestinal microbiota and its metabolites, which further improved the intestinal barrier and inhibited inflammation and oxidative stress, thereby alleviating UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Bifidobacterium/metabolismo , Colo , Modelos Animais de Doenças , Bactérias , Inflamação , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL
8.
Gut Microbes ; 16(1): 2329147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528729

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by immune-mediated, chronic inflammation of the intestinal tract. The occurrence of IBD is driven by the complex interactions of multiple factors. The objective of this study was to evaluate the therapeutic effects of IAA in colitis. METHOD: C57/BL6 mice were administered 2.5% DSS in drinking water to induce colitis. IAA, Bifidobacterium pseudolongum, and R-equol were administered by oral gavage and fed a regular diet. The Disease Activity Index was used to evaluate disease activity. The degree of colitis was evaluated using histological morphology, RNA, and inflammation marker proteins. CD45+ CD4+ FOXP3+ Treg and CD45+ CD4+ IL17A+ Th17 cells were detected by flow cytometry. Analysis of the gut microbiome in fecal content was performed using 16S rRNA gene sequencing. Gut microbiome metabolites were analyzed using Untargeted Metabolomics. RESULT: In our study, we found IAA alleviates DSS-induced colitis in mice by altering the gut microbiome. The abundance of Bifidobacterium pseudolongum significantly increased in the IAA treatment group. Bifidobacterium pseudolongum ATCC25526 alleviates DSS-induced colitis by increasing the ratio of Foxp3+T cells in colon tissue. R-equol alleviates DSS-induced colitis by increasing Foxp3+T cells, which may be the mechanism by which ATCC25526 alleviates DSS-induced colitis in mice. CONCLUSION: Our study demonstrates that IAA, an indole derivative, alleviates DSS-induced colitis by promoting the production of Equol from Bifidobacterium pseudolongum, which provides new insights into gut homeostasis regulated by indole metabolites other than the classic AHR pathway.


Assuntos
Bifidobacterium , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Equol/metabolismo , Equol/farmacologia , Equol/uso terapêutico , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
9.
Endocrinol Diabetes Nutr (Engl Ed) ; 71(1): 19-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38331656

RESUMO

Irritable bowel syndrome (IBS) is a gastrointestinal functional disorder mainly characterised by abdominal pain, bloating and altered bowel habits. Dysbiosis might seem to be involved in the pathogenesis of the disease. Probiotics represent a potential treatment, since these could favour the functional microbiota and improve symptoms. The aim was to review the effectiveness of the use of probiotics in IBS symptomatology, analysing the influence of duration and dose. 18 articles were included. At the individual level, Lactobacillus, Bifidobacterium and Bacillus could be useful in the treatment of symptoms. Bifidobacterium bifidum reported the best results (1 × 109 CFU/day for 4 weeks). The most effective combination was 2 Lactobacillus strains, one of Bifidobacterium and one of Streptococcus (4 × 109 CFU/day for 4 weeks). Future clinical trials should confirm these results and analyse the difference between individual and combined treatments.


Assuntos
Síndrome do Intestino Irritável , Probióticos , Humanos , Síndrome do Intestino Irritável/terapia , Probióticos/uso terapêutico , Lactobacillus , Bifidobacterium , Dor Abdominal/etiologia , Dor Abdominal/terapia
10.
Benef Microbes ; 15(1): 19-38, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38350479

RESUMO

Species diversity of the Bifidobacterium genus was scarcely explored in different rearing systems of poultry. The aim of the study was to isolate intestinal species and compare their physiological and traits for adaptation to the avian intestinal niche. Fourteen strains isolated from chickens of intensive rearing farms and free-range hens, were identified by 16S rDNA sequencing, rep-PCR fingerprinting, and carbohydrates fermentation. Strains belonged to species Bifidobacterium pseudolongum subsp. pseudolongum and subsp. globosum, B. pullorum, B. animalis subsp lactis, B. boum, B. thermacidophilum subsp. thermacidophilum and B. thermophilum. One strain of B. animalis and B. pullorum, and two of B. pseudolongum subsp. pseudolongum were obtained from chicks, while the others were from free-range adult hens. Growth (in MRSc) at the poultry physiological temperature, acids production in caecal water with raffinose (rCW), ex vivo adhesion (%) to avian intestinal epithelial cells (IEC), and auto-aggregation (%) were used for discrimination inter- and intra-specific. Significantly different acetic and lactic acids production and growth temperatures were observed in strains of the same species/subspecies. Remarkable auto-aggregation capability was observed in B. thermacidophilum subsp. thermacidophilum LET 406 (40.2 ± 1.1%), while adhesion property was highlighted in B. pseudolongum subsp. pseudolongum LET 408 (65.30 ± 4.75% in jejunum; 46.05 ± 2.80 in ileum). Scanning Electronic Microscopy of the interaction IEC-LET 408 revealed an irregular bacterial surface exhibiting vesicle-like arrangements and filaments that formed a network among bacteria cells and with the epithelial cells, as possible adaptative response to promote its persistence in the gut. These finds will be valuable for bacterial supplements design intended to intensive rearing.


Assuntos
Galinhas , Probióticos , Animais , Feminino , Bifidobacterium , DNA Ribossômico/genética
11.
J Agric Food Chem ; 72(7): 3572-3583, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334304

RESUMO

In this study, we aimed to explore the protective effects of Bifidobacterium in colitis mice and the potential mechanisms. Results showed that Bifidobacterium breve (B. breve) effectively colonized the intestinal tract and alleviated colitis symptoms by reducing the disease activity index. Moreover, B. breve mitigated intestinal epithelial cell damage, inhibited the pro-inflammatory factors, and upregulated tight junction (TJ)-proteins. Gut microbiota and metabolome analysis found that B. breve boosted bile acid-regulating genera (such as Bifidobacterium and Clostridium sensu stricto 1), which promoted bile acid deconjugation in the intestine. Notably, cholic acid (CA) was closely associated with the expression levels of inflammatory factors and TJ-proteins (p < 0.05). Our in vitro cell experiments further confirmed that CA (20.24 ± 4.53 pg/mL) contributed to the inhibition of lipopolysaccharide-induced tumor necrosis factor-α expression (49.32 ± 5.27 pg/mL) and enhanced the expression of TJ-proteins (Occludin and Claudin-1) and MUC2. This study suggested that B. breve could be a probiotic candidate for use in infant foods.


Assuntos
Bifidobacterium breve , Colite , Microbioma Gastrointestinal , Humanos , Lactente , Animais , Camundongos , Bifidobacterium breve/genética , Ácido Cólico/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Colite/microbiologia , Mucosa Intestinal , Bifidobacterium , Inflamação , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos
12.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339084

RESUMO

The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants' microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants.


Assuntos
Bifidobacterium animalis , Microbiota , Lactente , Feminino , Humanos , Fórmulas Infantis , Leite Humano , Suplementos Nutricionais , Aleitamento Materno , Bifidobacterium , Fezes/microbiologia , Oligossacarídeos/farmacologia
13.
Biomacromolecules ; 25(3): 2024-2032, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393758

RESUMO

α-Glucan microparticles (GMPs) have significant potential as high-value biomaterials in various industries. This study proposes a bottom-up approach for producing GMPs using four amylosucrases from Bifidobacterium sp. (BASs). The physicochemical characteristics of these GMPs were analyzed, and the results showed that the properties of the GMPs varied depending on the type of enzymes used in their synthesis. As common properties, all GMPs exhibited typical B-type crystal patterns and poor colloidal dispersion stability. Interestingly, differences in the physicochemical properties of GMPs were generated depending on the synthesis rate of linear α-glucan by the enzymes and the degree of polymerization (DP) distribution. Consequently, we found differences in the properties of GMPs depending on the DP distribution of linear glucans prepared with four BASs. Furthermore, we suggest that precise control of the type and characteristics of the enzymes provides the possibility of producing GMPs with tailored physicochemical properties for various industrial applications.


Assuntos
Bifidobacterium , Glucanos , Guanosina Monofosfato , Tionucleotídeos , Glucanos/química , Glucosiltransferases
14.
mSystems ; 9(3): e0071523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38363147

RESUMO

Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.


Assuntos
Fucose , Leite Humano , Lactente , Feminino , Humanos , Leite Humano/química , Fucose/análise , Lactose/análise , Oligossacarídeos/análise , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/metabolismo , Acetatos/análise , Carbono/análise , Lactatos/análise
15.
Microbiol Spectr ; 12(4): e0365623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411074

RESUMO

Neuroblastoma (NB) is a type of neuroectodermal tumor that originates from primitive sympathetic ganglion cells. Although many risk factors contributing to the occurrence of NB have been reported in recent years, the role of the gut microbiota in its development remains unclear. A bidirectional Mendelian randomization (MR) analysis was conducted to elucidate the causal relationship between the gut microbiota and NB. In the MR analysis, we employed the inverse-variance weighted (IVW) method as the primary criterion for assessing causality, while also utilizing three additional approaches, including MR-Egger, weighted median model, and weighted mode, for comprehensive evaluation. For gut microbiota that were causally associated with NB, a reverse MR was also used to assess the stability of this causal relationship. Finally, we also used external cohorts for validation and performed a meta-analysis of the results. The IVW results indicated a causal relationship between six gut microbiota and NB. Among the six gut microbiota, genus Lachnospiraceae [IVW odds ratio (OR): 2.66, 95% confidence interval (CI): 1.09-6.51, P value: 0.03] exhibited a detrimental effect against NB. On the other hand, the class Actinobacteria (IVW OR: 0.24, 95% CI: 0.07-0.77, P value: 0.02), the family Bifidobacteriaceae (IVW OR: 0.40, 95% CI: 0.17-0.96, P value: 0.04), the genus Desulfovibrio (IVW OR: 0.50, 95% CI: 0.25-0.97, P value: 0.04), the genus Bifidobacterium (IVW OR: 0.39, 95% CI: 0.16-0.92, P value: 0.03), and the genus Howardella (IVW OR: 0.55, 95% CI: 0.31-0.97, P value: 0.04) displayed a protective effect on NB. A reverse MR analysis did not reveal a causality between NB and the six gut microbiota. Meta-analysis showed that genus Bifidobacterium (meta OR: 0.41, 95% CI: 0.22-0.75, P < 0.01) and genus Lachnospiraceae (meta OR: 2.20, 95% CI: 1.01-4.79, P < 0.05) were still significant. IMPORTANCE: Bidirectional Mendelian randomization was used to explore the causality between gut microbiota and neuroblastoma (NB). The results showed that there is a causal relationship between the six gut microbiota and NB, of which two gut microbiota were further confirmed in the meta-analysis. This may provide a new perspective on the prevention and treatment of NB.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Neuroblastoma , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Neuroblastoma/genética , Fatores de Risco , Bifidobacterium/genética , Clostridiales , Estudo de Associação Genômica Ampla
16.
mSystems ; 9(3): e0102723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421203

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major public health problem due to the high incidence affecting approximately one-third of the world's population. NAFLD is usually linked to obesity and excessive weight. A subset of patients with NAFLD expresses normal or low body mass index; thus, the condition is called non-obese NAFLD or lean NAFLD. However, patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. Furthermore, preclinical results from non-obese animal models with NAFLD are unclear. Gut microbiota and their metabolites in non-obese/lean-NAFLD patients differ from those in obese NAFLD patients. Therefore, we analyzed the biochemical indices, intestinal flora, and intestinal metabolites in a non-obese NAFLD mouse model established using a methionine-choline-deficient (MCD) diet. The significantly lean MCD mice had a remarkable fatty liver with lower serum triglyceride and free fatty acid levels, as well as higher alanine transaminase and aspartate transaminase levels than normal mice. 16S RNA sequencing of fecal DNA showed that the overall richness and diversity of the intestinal flora decreased in MCD mice, whereas the Firmicutes:Bacteroidota ratio was increased. g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium were the predominant species in non-obese NAFLD mice. Fecal metabolomics using liquid chromatography-tandem mass spectrometry revealed the potential biomarkers for the prognosis and diagnosis of non-obese NAFLD, including high levels of tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, and low levels of 3-carbamoyl-2-phenylpropionaldehyde, N-succinyl-L,L-2,6-diaminopimelate, 4-methyl-5-thiazoleethanol, homogentisic acid, and estriol. Our findings could be useful to identify and develop drugs to treat non-obese NAFLD and lean NAFLD. IMPORTANCE: Patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. In fact, about 40% of people with NAFLD worldwide are non-obese, and nearly one-fifth are lean. Lean NAFLD unfortunately may be unnoticed for years and remains undetected until hepatic damage is advanced and the prognosis is compromised. This study focused on the lean NAFLD, screened therapeutic agents, and biomarkers for the prognosis and diagnosis using MCD-induced male C57BL/6J mice. The metabolites tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, together with the predominant flora including g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium, were specific in non-obese NAFLD mice and might be used as targets for non-obese NAFLD drug exploration. This study is particularly significant for non-obese NAFLDs that need to be more actively noticed and vigilant.


Assuntos
Bifidobacterium , Firmicutes , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Panteteína/análogos & derivados , Tiramina/análogos & derivados , Humanos , Animais , Camundongos , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Obesidade/complicações , Biomarcadores , Colina , Fosfatos
17.
J Sci Food Agric ; 104(7): 4165-4175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299445

RESUMO

BACKGROUND: Neonatal feces are one of the most important sources for probiotic isolation. The purpose of this study was the isolation and identification of Bifidobacterium spp. from neonatal feces and the evaluation of in vitro probiotic properties of strains including safety tests. RESULTS: A total of 40 isolates were obtained from 14 healthy newborns' feces in Erzurum province, Türkiye. By their rep-PCR patterns and 16S rRNA gene sequences, isolates were identified as 26 Bifidobacterium breve and 14 Bifidobacterium longum. Fifteen of the isolates tolerated bile salts and showed high resistance to simulated gastric juice. Isolates exhibited varying rates of auto-aggregation and hydrophobicity. In addition, most of the isolates displayed antibacterial activity against Escherichia coli O157:H7, Staphylococcus aureus ATCC 29213, Salmonella Typhimurium RSHMB 95091, and Pseudomonas aeruginosa ATCC 9027. However, only one strain showed bile salt hydrolase activity and two strains showed the ability to produce H2O2. Bifidobacterium strains were generally sensitive to the tested antibiotics and lacked kanamycin, gentamicin, and streptomycin resistance genes, and hemolytic and DNAse activities. On the other hand, it was determined that five strains had various virulence genes including gelE, esp, efaAfs, hyl, and ace. CONCLUSION: Results of the present study suggested that B. longum BH28, B. breve BH4 and B. breve BH5 strains have the potential as probiotic candidates for further studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bifidobacterium , Probióticos , Recém-Nascido , Humanos , RNA Ribossômico 16S/genética , Peróxido de Hidrogênio , Turquia , Fezes/microbiologia , Antibacterianos/farmacologia
18.
BMC Microbiol ; 24(1): 60, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373929

RESUMO

BACKGROUND: The impact of probiotic strains on host health is widely known. The available studies on the interaction between bacteria and the host are focused on the changes induced by bacteria in the host mainly. The studies determining the changes that occurred in the bacteria cells are in the minority. Within this paper, we determined what happens to the selected Bifidobacterium adolescentis and Bifidobacterium longum ssp. longum in an experimental environment with the intestinal epithelial layer. For this purpose, we tested the bacteria cells' viability, redox activity, membrane potential and enzymatic activity in different environments, including CaCo-2/HT-29 co-culture, cell culture medium, presence of inflammatory inductor (TNF-α) and oxygen. RESULTS: We indicated that the external milieu impacts the viability and vitality of bacteria. Bifidobacterium adolescentis decrease the size of the live population in the cell culture medium with and without TNF-α (p < 0.001 and p < 0.01 respectively). In contrast, Bifidobacterium longum ssp. longum significantly increased survivability in contact with the eukaryotic cells and cell culture medium (p < 0.001). Bifidobacterium adolescentis showed significant changes in membrane potential, which was decreased in the presence of eukaryotic cells (p < 0.01), eukaryotic cells in an inflammatory state (p < 0.01), cell culture medium (p < 0.01) and cell culture medium with TNF-α (p < 0.05). In contrast, Bifidobacterium longum ssp. longum did not modulate membrane potential. Instead, bacteria significantly decreased the redox activity in response to milieus such as eukaryotic cells presence, inflamed eukaryotic cells as well as the culture medium (p < 0.001). The redox activity was significantly different in the cells culture medium vs the presence of eukaryotic cells (p < 0.001). The ability to ß-galactosidase production was different for selected strains: Bifidobacterium longum ssp. longum indicated 91.5% of positive cells, whereas Bifidobacterium adolescentis 4.34% only. Both strains significantly reduced the enzyme production in contact with the eukaryotic milieu but not in the cell culture media. CONCLUSION: The environmental-induced changes may shape the probiotic properties of bacterial strains. It seems that the knowledge of the sensitivity of bacteria to the external environment may help to select the most promising probiotic strains, reduce research costs, and contribute to greater reproducibility of the obtained probiotic effects.


Assuntos
Bifidobacterium adolescentis , Bifidobacterium longum , Bifidobacterium , Probióticos , Humanos , Fator de Necrose Tumoral alfa , Células CACO-2 , Células Eucarióticas , Reprodutibilidade dos Testes , Bactérias
19.
Medicine (Baltimore) ; 103(5): e36493, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306556

RESUMO

Recent studies have shown that gut microbiota is associated with coronavirus disease 2019 (COVID-19). However, the causal impact of the gut microbiota on COVID-19 remains unclear. We performed a bidirectional Mendelian randomization. The summary statistics on the gut microbiota from the MiBioGen consortium. Summary statistics for COVID-19 were obtained from the 6th round of the COVID-19 Host Genetics Initiative genome-wide association study meta-analysis. Inverse variance weighting was used as the main method to test the causal relationship between gut microbiota and COVID-19. Reverse Mendelian randomization analysis was performed. Mendelian randomization analysis showed that Intestinimas.id.2062 was associated with an increased risk of severe COVID-19. Bifidobacterium.id.436, LachnospiraceaeUCG010.id.11330, RikenellaceaeRC9gutgroup.id.11191 increase the risk of hospitalized COVID-19. RuminococcaceaeUCG014.id.11371 shows the positive protection on hospitalized COVID-19. There is no causal relationship between gut microbiota and infection with COVID-19. According to the results of reverse Mendelian randomization analysis, no significant causal effect of COVID-19 on gut microbiota was found. The study found that gut microbiota with COVID-19 has a causal relationship. This study provides a basis for the theory of the gut-lung axis. Further randomized controlled trials are needed to clarify the protective effect of probiotics against COVID-19 and the specific protective mechanisms. This study has important implications for gut microbiota as a nondrug intervention for COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Bifidobacterium/genética
20.
Nutrients ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337627

RESUMO

Proton pump inhibitors (PPIs) are currently routinely used for the treatment of reflux esophagitis (RE); however, with frequent symptom recurrence after discontinuation and limited clinical improvement in accompanying gastrointestinal symptoms. This study aims to explore the adjuvant therapeutic effect of Bifidobacterium supplement for RE patients. A total of 110 eligible RE patients were recruited and randomly assigned to the placebo and probiotic groups. All patients were treated with rabeprazole tablets and simultaneously received either Bifidobacterium animalis subsp. lactis MH-02 or placebo for 8 weeks. Patients who achieved clinical remission then entered the next 12 weeks of follow-up. RDQ, GSRS scores, and endoscopy were performed to assess clinical improvement, and changes in intestinal microbiota were analyzed with high-throughput sequencing. Our results revealed that MH-02 combined therapy demonstrated an earlier time to symptom resolution (50.98% vs. 30.61%, p = 0.044), a significant reduction in the GSRS score (p = 0.0007), and a longer mean time to relapse (p = 0.0013). In addition, high-throughput analyses showed that MH-02 combined therapy increased the α (p = 0.001) diversity of gut microbiota and altered microbial composition by beta diversity analysis, accompanied with significantly altered gut microbiota taxa at the genus level, where the abundance of some microbial genera including Bifidobacterium, Clostridium, and Blautia were increased, while the relative abundance of Streptococcus and Rothia were decreased (p < 0.05). Collectively, these results support the beneficial effects of MH-02 as a novel complementary strategy in RE routine treatment.


Assuntos
Bifidobacterium animalis , Esofagite Péptica , Probióticos , Humanos , Bifidobacterium , Inibidores da Bomba de Prótons/uso terapêutico , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...