Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570044

RESUMO

Climate change and plastic pollution are likely the most relevant challenges for the environment in the 21st century. Developing cost-effective technologies for the bioconversion of methane (CH4) into polyhydroxyalkanoates (PHAs) could simultaneously mitigate CH4 emissions and boost the commercialization of biodegradable polymers. Despite the fact that the role of temperature, nitrogen deprivation, CH4:O2 ratio or micronutrients availability on the PHA accumulation capacity of methanotrophs has been carefully explored, there is still a need for optimization of the CH4-to-PHA bioconversion process prior to becoming a feasible platform in future biorefineries. In this study, the influence of different cultivation broth pH values (5.5, 7, 8.5 and 10) on bacterial biomass growth, CH4 bioconversion rate, PHA accumulation capacity and bacterial community structure was investigated in a stirred tank bioreactor under nitrogen deprivation conditions. Higher CH4 elimination rates were obtained at increasing pH, with a maximum value of 50.4 ± 2.7 g CH4·m-3·h-1 observed at pH 8.5. This was likely mediated by an increased ionic strength in the mineral medium, which enhanced the gas-liquid mass transfer. Interestingly, higher PHB accumulations were observed at decreasing pH, with the highest PHB contents recorded at a pH 5.5 (43.7 ± 3.4 %w·w-1). The strong selective pressure of low pH towards the growth of Type II methanotrophic bacteria could explain this finding. The genus Methylocystis increased its abundance from 34 % up to 85 and 90 % at pH 5.5 and 7, respectively. On the contrary, Methylocystis was less abundant in the community enriched at pH 8.5 (14 %). The accumulation of intracellular PHB as energy and carbon storage material allowed the maintenance of high CH4 biodegradation rates during 48 h after complete nitrogen deprivation. The results here obtained demonstrated for the first time a crucial and multifactorial role of pH on the bioconversion performance of CH4 into PHA.


Assuntos
Methylocystaceae , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Carbono/metabolismo , Metano/metabolismo , Methylocystaceae/metabolismo , Nitrogênio/metabolismo , Concentração de Íons de Hidrogênio
2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38366911

RESUMO

Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.


Assuntos
Methylocystaceae , Solo , Methylocystaceae/genética , Temperatura , Camada de Gelo , Temperatura Baixa , Metano , Água , DNA
3.
Artigo em Inglês | MEDLINE | ID: mdl-38259170

RESUMO

A bacterial strain, designated NLS-7T, was isolated through enrichment of landfill cover soil in methane-oxidizing conditions. Strain NLS-7T is a Gram-stain negative, non-motile rod, approximately 0.8 µm wide by 1.3 µm long. Phylogenetic analysis based on 16S rRNA gene sequencing places it within the genus Methylocystis, with its closest relatives being M. hirsuta, M. silviterrae and M. rosea, with 99.9, 99.7 and 99.6 % sequence similarity respectively. However, average nucleotide identity and average amino acid identity values below the 95 % threshold compared to all the close relatives and digital DNA-DNA hybridization values between 20.9 and 54.1 % demonstrate that strain NLS-7T represents a novel species. Genome sequencing generated 4.31 million reads and genome assembly resulted in the generation of 244 contigs with a total assembly length of 3 820 957 bp (N50, 37 735 bp; L50, 34). Genome completeness is 99.5 % with 3.98 % contamination. It is capable of growth on methane and methanol. It grows optimally at 30 °C between pH 6.5 and 7.0. Strain NLS-7T is capable of atmospheric dinitrogen fixation and can use ammonium (as NH4Cl), l-aspartate, l-arginine, yeast extract, nitrate, l-leucine, l-proline, l-methionine, l-lysine and l-alanine as nitrogen sources. The major fatty acids are C18:1 ω8c and C18:1 ω7c. Based upon this polyphasic taxonomic study, strain NLS-7T represents a novel species of the genus Methylocystis, for which the name Methylocystis suflitae sp. nov. is proposed. The type strain is NLS-7T (=ATCC TSD-256T=DSM 112294T). The 16S rRNA gene and genome sequences of strain NLS-7T have been deposited in GenBank under accession numbers ON715489 and GCA_024448135.1, respectively.


Assuntos
Methylocystaceae , Methylocystaceae/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Bactérias , Metano
4.
Bioresour Technol ; 389: 129853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813313

RESUMO

The production of polyhydroxyalkanoates (PHAs) through the biological conversion of methane is a promising solution to address both methane emissions and plastic waste. Type II methanotrophs naturally accumulate a representative PHA, poly(3-hydroxybutyrate) (PHB), using methane as the sole carbon source. In this study, we aimed to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV copolymer) with improved properties compared with PHB, using the type II methanotroph, Methylocystis sp. MJC1. We optimized the pH, valerate concentration, and valerate supply time in a one-step cultivation process using a gas bioreactor to enhance PHBV copolymer production yield and the 3-hydroxyvalerate (3HV) molar fraction. Under the optimal conditions, the biomass reached 21.3 g DCW/L, and PHBV copolymer accumulation accounted for 41.9 % of the dried cell weight, with a 3HV molar fraction of 28.4 %. The physicochemical properties of the purified PHBV copolymer were characterized using NMR, FTIR, TGA, DSC, and GPC.


Assuntos
Methylocystaceae , Poliésteres , Hidroxibutiratos , Valeratos , Metano
5.
Environ Microbiol ; 25(11): 2338-2350, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395163

RESUMO

Copper plays a critical role in controlling greenhouse gas emissions as it is a key component of the particulate methane monooxygenase and nitrous oxide reductase. Some methanotrophs excrete methanobactin (MB) that has an extremely high copper affinity. As a result, MB may limit the ability of other microbes to gather copper, thereby decreasing their activity as well as impacting microbial community composition. Here, we show using forest soil microcosms that multiple forms of MB; MB from Methylosinus trichosporium OB3b (MB-OB3b) and MB from Methylocystis sp. strain SB2 (MB-SB2) increased nitrous oxide (N2 O) production as well caused significant shifts in microbial community composition. Such effects, however, were mediated by the amount of copper in the soils, with low-copper soil microcosms showing the strongest response to MB. Furthermore, MB-SB2 had a stronger effect, likely due to its higher affinity for copper. The presence of either form of MB also inhibited nitrite reduction and generally increased the presence of genes encoding for the iron-containing nitrite reductase (nirS) over the copper-dependent nitrite reductase (nirK). These data indicate the methanotrophic-mediated production of MB can significantly impact multiple steps of denitrification, as well as have broad effects on microbial community composition of forest soils.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Cobre , Óxido Nitroso , Methylocystaceae/genética , Methylosinus trichosporium/genética , Nitrito Redutases , Solo
7.
PLoS One ; 18(5): e0284846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163531

RESUMO

Biodegradable polyhydroxybutyrate (PHB) can be produced from methane by some type II methanotroph such as the genus Methylocystis. This study presents the comparative genomic analysis of a newly isolated methanotroph, Methylocystis sp. MJC1 as a biodegradable PHB-producing platform strain. Methylocystis sp. MJC1 accumulates up to 44.5% of PHB based on dry cell weight under nitrogen-limiting conditions. To facilitate its development as a PHB-producing platform strain, the complete genome sequence of Methylocystis sp. MJC1 was assembled, functionally annotated, and compared with genomes of other Methylocystis species. Phylogenetic analysis has shown that Methylocystis parvus to be the closest species to Methylocystis sp. MJC1. Genome functional annotation revealed that Methylocystis sp. MJC1 contains all major type II methanotroph biochemical pathways such as the serine cycle, EMC pathway, and Krebs cycle. Interestingly, Methylocystis sp. MJC1 has both particulate and soluble methane monooxygenases, which are not commonly found among Methylocystis species. In addition, this species also possesses most of the RuMP pathway reactions, a characteristic of type I methanotrophs, and all PHB biosynthetic genes. These comparative analysis would open the possibility of future practical applications such as the development of organism-specific genome-scale models and application of metabolic engineering strategies to Methylocystis sp. MJC1.


Assuntos
Metano , Methylocystaceae , Filogenia , Metano/metabolismo , Genômica , Methylocystaceae/genética , Methylocystaceae/metabolismo
8.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 5): 111-118, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158309

RESUMO

Methanobactins (MBs) are ribosomally produced and post-translationally modified peptides (RiPPs) that are used by methanotrophs for copper acquisition. The signature post-translational modification of MBs is the formation of two heterocyclic groups, either an oxazolone, pyrazinedione or imidazolone group, with an associated thioamide from an X-Cys dipeptide. The precursor peptide (MbnA) for MB formation is found in a gene cluster of MB-associated genes. The exact biosynthetic pathway of MB formation is not yet fully understood, and there are still uncharacterized proteins in some MB gene clusters, particularly those that produce pyrazinedione or imidazolone rings. One such protein is MbnF, which is proposed to be a flavin monooxygenase (FMO) based on homology. To help to elucidate its possible function, MbnF from Methylocystis sp. strain SB2 was recombinantly produced in Escherichia coli and its X-ray crystal structure was resolved to 2.6 Šresolution. Based on its structural features, MbnF appears to be a type A FMO, most of which catalyze hydroxylation reactions. Preliminary functional characterization shows that MbnF preferentially oxidizes NADPH over NADH, supporting NAD(P)H-mediated flavin reduction, which is the initial step in the reaction cycle of several type A FMO enzymes. It is also shown that MbnF binds the precursor peptide for MB, with subsequent loss of the leader peptide sequence as well as the last three C-terminal amino acids, suggesting that MbnF might be needed for this process to occur. Finally, molecular-dynamics simulations revealed a channel in MbnF that is capable of accommodating the core MbnA fragment minus the three C-terminal amino acids.


Assuntos
Methylocystaceae , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , NADP/metabolismo , Methylocystaceae/química , Methylocystaceae/metabolismo , Cristalografia por Raios X , Aminoácidos
9.
Appl Environ Microbiol ; 89(6): e0011323, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184406

RESUMO

Methylocystis spp. are known to have a low salt tolerance (≤1.0% NaCl). Therefore, we tested various amino acids and other well-known osmolytes for their potential to act as an osmoprotectant under otherwise growth-inhibiting NaCl conditions. Adjustment of the medium to 10 mM asparagine had the greatest osmoprotective effect under severe salinity (1.50% NaCl), leading to partial growth recovery of strain SC2. The intracellular concentration of asparagine increased to 264 ± 57 mM, with a certain portion hydrolyzed to aspartate (4.20 ± 1.41 mM). In addition to general and oxidative stress responses, the uptake of asparagine specifically induced major proteome rearrangements related to the KEGG level 3 categories of "methane metabolism," "pyruvate metabolism," "amino acid turnover," and "cell division." In particular, various proteins involved in cell division (e.g., ChpT, CtrA, PleC, FtsA, FtsH1) and peptidoglycan synthesis showed a positive expression response. Asparagine-derived 13C-carbon was incorporated into nearly all amino acids. Both the exometabolome and the 13C-labeling pattern suggest that in addition to aspartate, the amino acids glutamate, glycine, serine, and alanine, but also pyruvate and malate, were most crucially involved in the osmoprotective effect of asparagine, with glutamate being a major hub between the central carbon and amino acid pathways. In summary, asparagine induced significant proteome rearrangements, leading to major changes in central metabolic pathway activity and the sizes of free amino acid pools. In consequence, asparagine acted, in part, as a carbon source for the growth recovery of strain SC2 under severe salinity. IMPORTANCE Methylocystis spp. play a major role in reducing methane emissions into the atmosphere from methanogenic wetlands. In addition, they contribute to atmospheric methane oxidation in upland soils. Although these bacteria are typical soil inhabitants, Methylocystis spp. are thought to have limited capacity to acclimate to salt stress. This called for a thorough study into potential osmoprotectants, which revealed asparagine as the most promising candidate. Intriguingly, asparagine was taken up quantitatively and acted, at least in part, as an intracellular carbon source under severe salt stress. The effect of asparagine as an osmoprotectant for Methylocystis spp. is an unexpected finding. It may provide Methylocystis spp. with an ecological advantage in wetlands, where these methanotrophs colonize the roots of submerged vascular plants. Collectively, our study offers a new avenue into research on compounds that may increase the resilience of Methylocystis spp. to environmental change.


Assuntos
Asparagina , Methylocystaceae , Asparagina/metabolismo , Methylocystaceae/metabolismo , Ácido Aspártico , Proteoma/metabolismo , Cloreto de Sódio/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Metano/metabolismo , Estresse Salino , Piruvatos/metabolismo
10.
Nature ; 618(7963): 87-93, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37259003

RESUMO

Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.


Assuntos
Proteínas de Bactérias , Elementos da Série dos Lantanídeos , Lantânio , Multimerização Proteica , Disprósio/química , Disprósio/isolamento & purificação , Íons/química , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/isolamento & purificação , Lantânio/química , Neodímio/química , Neodímio/isolamento & purificação , Methylocystaceae , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Estrutura Quaternária de Proteína
11.
mSystems ; 7(5): e0040322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154142

RESUMO

A high NH4+ load is known to inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined global proteomics with amino acid profiling and nitrogen oxides measurements to elucidate the cellular acclimatization response of Methylocystis sp. strain SC2 to high NH4+ levels. Relative to 1 mM NH4+, a high (50 mM and 75 mM) NH4+ load under CH4-replete conditions significantly increased the lag phase duration required for proteome adjustment. The number of differentially regulated proteins was highly significantly correlated with an increasing NH4+ load. The cellular responses to increasing ionic and osmotic stress involved a significant upregulation of stress-responsive proteins, the K+ "salt-in" strategy, the synthesis of compatible solutes (glutamate and proline), and the induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Nitric oxide reductase and hybrid cluster proteins (Hcps) were the candidate enzymes for the production of N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition in response to increasing NH4+ exposure, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+. IMPORTANCE In addition to reducing CH4 emissions from wetlands and landfills, the activity of alphaproteobacterial methane oxidizers of the genus Methylocystis contributes to the sink capacity of forest and grassland soils for atmospheric methane. The methane-oxidizing activity of Methylocystis spp. is, however, sensitive to high NH4+ concentrations. This is due to the competition of CH4 and NH3 for the active site of particulate methane monooxygenase, thereby resulting in the production of toxic hydroxylamine with an increasing NH4+ load. An understanding of the physiological and molecular response mechanisms of Methylocystis spp. is therefore of great importance. Here, we combined global proteomics with amino acid profiling and NOx measurements to disentangle the cellular mechanisms underlying the acclimatization of Methylocystis sp. strain SC2 to an increasing NH4+ load.


Assuntos
Methylocystaceae , Oxirredução , Áreas Alagadas , Metano/metabolismo , Aminoácidos/metabolismo
12.
mBio ; 13(5): e0223922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36129259

RESUMO

Methanotrophs require copper for their activity as it plays a critical role in the oxidation of methane to methanol. To sequester copper, some methanotrophs secrete a copper-binding compound termed methanobactin (MB). MB, after binding copper, is reinternalized via a specific outer membrane TonB-dependent transporter (TBDT). Methylosinus trichosporium OB3b has two such TBDTs (MbnT1 and MbnT2) that enable M. trichosporium OB3b to take up not only its own MB (MB-OB3b) but also heterologous MB produced from other methanotrophs, e.g., MB of Methylocystis sp. strain SB2 (MB-SB2). Here, we show that uptake of copper in the presence of heterologous MB-SB2 can either be achieved by initiating transcription of mbnT2 or by using its own MB-OB3b to extract copper from MB-SB2. Transcription of mbnT2 is mediated by the N-terminal signaling domain of MbnT2 together with an extracytoplasmic function sigma factor and an anti-sigma factor encoded by mbnI2 and mbnR2, respectively. Deletion of mbnI2R2 or excision of the N-terminal region of MbnT2 abolished induction of mbnT2. However, copper uptake from MB-SB2 was still observed in M. trichosporium OB3b mutants that were defective in MbnT2 induction/function, suggesting another mechanism for uptake copper-loaded MB-SB2. Additional deletion of MB-OB3b synthesis genes in the M. trichosporium OB3b mutants defective in MbnT2 induction/function disrupted their ability to take up copper in the presence of MB-SB2, indicating a role of MB-OB3b in copper extraction from MB-SB2. IMPORTANCE Methanotrophs play a critical role in the global carbon cycle, as well as in future strategies for mitigating climate change through their consumption of methane, a trace atmospheric gas much more potent than carbon dioxide in global warming potential. Copper uptake is critical for methanotrophic activity, and here, we show different approaches for copper uptake. This study expands our knowledge and understanding of how methanotrophs collect and compete for copper, and such information may be useful in future manipulation of methanotrophs for a variety of environmental and industrial applications.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Cobre/metabolismo , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Methylocystaceae/genética , Methylocystaceae/química , Methylocystaceae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metano/metabolismo
13.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077288

RESUMO

Chlorimuron-ethyl is a widely used herbicide in agriculture. However, uncontrolled chlorimuron-ethyl application causes serious environmental problems. Chlorimuron-ethyl can be effectively degraded by microbes, but the underlying molecular mechanisms are not fully understood. In this study, we identified the possible pathways and key genes involved in chlorimuron-ethyl degradation by the Chenggangzhangella methanolivorans strain CHL1, a Methylocystaceae strain with the ability to degrade sulfonylurea herbicides. Using a metabolomics method, eight intermediate degradation products were identified, and three pathways, including a novel pyrimidine-ring-opening pathway, were found to be involved in chlorimuron-ethyl degradation by strain CHL1. Transcriptome sequencing indicated that three genes (atzF, atzD, and cysJ) are involved in chlorimuron-ethyl degradation by strain CHL1. The gene knock-out and complementation techniques allowed for the functions of the three genes to be identified, and the enzymes involved in the different steps of chlorimuron-ethyl degradation pathways were preliminary predicted. The results reveal a previously unreported pathway and the key genes of chlorimuron-ethyl degradation by strain CHL1, which have implications for attempts to enrich the biodegradation mechanism of sulfonylurea herbicides and to construct engineered bacteria in order to remove sulfonylurea herbicide residues from environmental media.


Assuntos
Herbicidas , Methylocystaceae , Poluentes do Solo , Biodegradação Ambiental , Herbicidas/metabolismo , Methylocystaceae/metabolismo , Pirimidinas/metabolismo , Poluentes do Solo/metabolismo , Compostos de Sulfonilureia/metabolismo
14.
Waste Manag ; 150: 364-372, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914413

RESUMO

Biogas-based biopolymer production represents an alternative biogas valorization route with potential to cut down plastic pollution and greenhouse gas emissions. This study investigated for the first time the continuous bioconversion of methane, contained in biogas, into poly(3-hydroxybutyrate) (PHB) by a mixed methanotrophic culture using an innovative high mass-transfer Taylor flow bioreactor. Following a hydrodynamic flow regime mapping, the influence of the gas residence time and the internal gas recirculation on CH4 abatement was assessed under non nutrient limiting conditions. Under optimal operational conditions (gas residence time of 60 min and internal gas recycling ratio of 17), the bioreactor was able to support a CH4 removal efficiency of 63.3%, a robust CH4 elimination capacity (17.2 g-CH4 m-3h-1) and a stable biomass concentration (1.0 g L-1). The simultaneous CH4 abatement and PHB synthesis was investigated under 24-h:24-h nitrogen feast/famine continuous operation. The cyclic nitrogen starvation and the Taylor flow imposed in the bioreactor resulted in a relatively constant biomass concentration of 0.6 g L-1 with PHB contents ranging from 11 to 32% w w-1 (on a dry weight basis), entailing an average PHB productivity of 5.9 g-PHB m-3 d-1 with an associated PHB yield of 19.8 mg-PHB g-CH4-1. Finally, the molecular analysis of the microbial population structure indicated that type II methanotrophs outcompeted non-PHB accumulating type I methanotrophs, with a heterotrophic-methanotrophic consortium enriched in Methylocystis, Hyphomicrobium, Rubinisphaeraceae SH PL14 and Pseudonocardia.


Assuntos
Biocombustíveis , Methylocystaceae , Ácido 3-Hidroxibutírico , Reatores Biológicos , Hidroxibutiratos/química , Metano , Nitrogênio , Poliésteres
15.
Microbiol Spectr ; 10(4): e0182222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35861510

RESUMO

Chlorimuron-ethyl is a commonly used sulfonylurea herbicide, and its long-term residues cause serious environmental problems. Biodegradation of chlorimuron-ethyl is effective and feasible, and many degrading strains have been obtained, but still, the genes and enzymes involved in this degradation are often unclear. In this study, whole-genome sequencing was performed on chlorimuron-ethyl-degrading strain, Chenggangzhangella methanolivorans CHL1. The complete genome of strain CHL1 contains one circular chromosome of 5,542,510 bp and a G+C content of 68.17 mol%. Three genes, sulE, pnbA, and gst, were predicted to be involved in the degradation of chlorimuron-ethyl, and this was confirmed by gene knockout and gene complementation experiments. The three genes were cloned and expressed in Escherichia coli BL21 (DE3) to allow for the evaluation of the catalytic activities of the respective enzymes. The glutathione-S-transferase (GST) catalyzes the cleavage of the sulfonylurea bridge of chlorimuron-ethyl, and the esterases, PnbA and SulE, both de-esterify it. This study identifies three key functional genes of strain CHL1 that are involved in the degradation of chlorimuron-ethyl and also provides new approaches by which to construct engineered bacteria for the bioremediation of environments polluted with sulfonylurea herbicides. IMPORTANCE Chlorimuron-ethyl is a commonly used sulfonylurea herbicide, worldwide. However, its residues in soil and water have a potent toxicity toward sensitive crops and other organisms, such as microbes and aquatic algae, and this causes serious problems for the environment. Microbial degradation has been demonstrated to be a feasible and promising strategy by which to eliminate xenobiotics from the environment. Many chlorimuron-ethyl-degrading microorganisms have been reported, but few studies have investigated the genes and enzymes that are involved in the degradation. In this work, two esterase-encoding genes (sulE, pnbA) and a glutathione-S-transferase-encoding gene (gst) responsible for the detoxification of chlorimuron-ethyl by strain Chenggangzhangella methanolivorans CHL1 were identified, then cloned and expressed in Escherichia coli BL21 (DE3). These key chlorimuron-ethyl-degrading enzymes are candidates for the construction of engineered bacteria to degrade this pesticide and enrich the resources for bioremediating environments polluted with sulfonylurea herbicides.


Assuntos
Herbicidas , Poluentes do Solo , Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutationa , Herbicidas/metabolismo , Methylocystaceae , Pirimidinas , Poluentes do Solo/metabolismo , Compostos de Sulfonilureia , Transferases
16.
Sci Total Environ ; 843: 157036, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772551

RESUMO

Biochar and hydrochar, as valuable and eco-friendly soil remediation materials from greenwaste, have potential to enhance methane oxidation in paddy soil. But the mechanism of biomass carbon on the improvement of methane-oxidizing bacteria communities in paddy soil has not been adequately elucidated. In the present study, the effect of different-temperature rice straw-based biomass carbon (RB400, RB600, RH250 and RH300) on methane oxidation were investigated by analyzing the soil dissolved organic matter (DOM), physicochemical properties and changes in microbial community structure. The results of the 17-day incubation experiment showed that the methane oxidation rate increased under all types of biomass carbon in the first 6 days. The enhancement of methane oxidation rate was more pronounced for biochar compared to hydrochar, with RB600 being the most effective treatment. The result of excitation-emission matrix (EEM) fluorescence spectroscopy showed that less DOM were released from the soil in the biochar treatments compared to the hydrochar treatments and protein-like were detected only in the hydrochar group. Microbial analysis further showed that hydrochar inhibited the growth of Bacillus, Methylobacter, and Methylocystis, while RB600 significantly increased the relative abundance of methanotrophs (responsible for methane oxidation), such as Methylocystis and Methylobacter, which was consistent with their different effects on the methane oxidation rate. Moreover, from the analysis of principal component analysis (PCA) and canonical correspondence analysis (CCA), Methylobacter and Methylocystis were negatively respond to H/C of biomass carbon. The present study provides a deeper understanding of the effect of biomass carbon obtained by different processes on methane oxidation when applied to soil from the perspective of organic matter and microbial communities.


Assuntos
Methylocystaceae , Oryza , Carvão Vegetal/química , Metano/análise , Solo/química , Microbiologia do Solo
17.
Sci Total Environ ; 842: 156781, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724786

RESUMO

Appropriate crop rotation in rice field is an important measure to maintain soil fertility and rice productivity. However, the effects of different rice rotation systems on methane (CH4) emission and the underlying mechanisms, as well as rice grain yields have not been well assessed. Here, a 2-year field study involving three rice rotation systems (Wh-PR: wheat-flooded rice rotation, Ra-PR: rapeseed-flooded rice rotation, Ra-UR: rapeseed-aerobic rice rotation) was conducted. CH4 emissions, methanogenic and methanotrophic communities and rice grain yields were measured during rice growing seasons to determine which rice rotation pattern can reduce CH4 emissions and improve rice grain yields. The average cumulative CH4 emission was 136.19 kg C ha-1 in Ra-PR system, which was significantly higher than that in Wh-PR and Ra-UR systems by 60.6 % and 14.6-fold, respectively. These results were mainly attributed to the low soil dissolved organic carbon in Wh-PR system and the well aerated soil condition in Ra-UR system, as compared with Ra-PR system. Rice grain yields exhibited no significant differences among the three rotation systems in 2019 and 2020. The abundances of methanogens in Ra-PR system were obviously higher than those in Wh-PR and Ra-UR systems. While the abundances of methanotrophs were comparable between Ra-PR and Wh-PR systems, which exhibited significantly lower abundances than that in Ra-UR system. CH4 fluxes showed markedly positive relations to the abundances of methanogens, while exhibited no relationship with the abundances of methanotrophs. Both methanogenic and methanotrophic community compositions differed considerably in Wh-PR and Ra-UR systems in comparison with Ra-PR system. Specifically, the relative low abundances of Methanothrix and Type I methanotrophs occurred in Wh-PR and Ra-UR systems, whereas Methanosarcina, Methanocella, Methanomassiliicoccus and type II methanotrophs (Methylocystis and Methylosinus) were found in higher relative abundances in Wh-PR and Ra-UR systems. Overall, changing the preceding upland crop types or introducing aerobic rice to substitute flooded rice in rice-based rotation systems could diminish CH4 emissions, mainly by regulating soil properties and eventually changing soil methanogenic and methanotrophic communities.


Assuntos
Methylococcaceae , Methylocystaceae , Oryza , Metano , Estações do Ano , Solo , Microbiologia do Solo
18.
Bioresour Technol ; 353: 127141, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35405209

RESUMO

Methylocystis parvus OBBP accumulates polyhydroxybutyrate (PHB) using methane as the sole carbon and energy source. In this work, the feasibility of producing (R)-3-hydroxybutyric acid (R3HBA) via intracellularly accumulated PHB through depolymerization (in-vivo) was investigated. Results showed that a PHB to R3HBA conversion of 77.2 ± 0.9% (R3HBA titer of 0.153 ± 0.002 g L-1) can be attained in a mineral medium containing 1 g L-1 KNO3 at 30 °C with shaking at 200 rpm and a constant pH of 11 for 72 h. Nitrogen deprivation and neutral or acidic pHs strongly reduced the excreted R3HBA concentration. Reduced oxygen availability negatively affected the R3HBA yield, which decreased to 73.6 ± 4.9% (titer of 0.139 ± 0.01 g L-1) under microaerobic conditions. Likewise, the presence of increasing concentrations of R3HBA in the medium before the onset of PHB depolymerization reduced the initial R3HBA release rate and R3HBA yield.


Assuntos
Metano , Methylocystaceae , Ácido 3-Hidroxibutírico , Hidroxibutiratos , Poliésteres
19.
Chemosphere ; 299: 134443, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364084

RESUMO

The design of efficient cultivation strategies to produce bioplastics from biogas is crucial for the implementation of this biorefinery process. In this work, biogas-based polyhydroxybutyrate (PHB) production and CH4 biodegradation performance was investigated for the first time in a stirred tank bioreactor inoculated with Methylocystis parvus str. OBBP. Decreasing nitrogen loading rates in continuous mode and alternating feast:famine regimes of 24 h-cycles, and alternating feast:famine regimes of 24 h:24 h and 24 h:48 h were tested. Continuous N feeding did not support an effective PHB production despite the occurrence of nitrogen limiting conditions. Feast-famine cycles of 24 h:24 h (with 50% stoichiometric nitrogen supply) supported the maximum PHB production (20 g-PHB m-3 d-1) without compromising the CH4-elimination capacity (25 g m-3 h-1) of the system. Feast:famine ratios ≤1:2 entailed the deterioration of process performance at stoichiometric nitrogen inputs ≤60%.


Assuntos
Biocombustíveis , Methylocystaceae , Reatores Biológicos , Metano/metabolismo , Methylocystaceae/metabolismo , Nitrogênio/metabolismo
20.
Appl Environ Microbiol ; 88(7): e0234621, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285718

RESUMO

Aerobic methanotrophic activity is highly dependent on copper availability, and methanotrophs have developed multiple strategies to collect copper. Specifically, when copper is limiting (ambient concentrations less than 1 µM), some methanotrophs produce and secret a small modified peptide (less than 1,300 Da) termed methanobactin (MB) that binds copper with high affinity. As MB is secreted into the environment, other microbes that require copper for their metabolism may be inhibited as MB may make copper unavailable; e.g., inhibition of denitrifiers as complete conversion nitrate to dinitrogen involves multiple enzymes, some of which are copper-dependent. Of key concern is inhibition of the copper-dependent nitrous oxide reductase (NosZ), the only known enzyme capable of converting nitrous oxide (N2O) to dinitrogen. Herein, we show that different forms of MB differentially affect copper uptake and N2O reduction by Pseudomonas stutzeri strain DCP-Ps1 (that expresses clade I NosZ) and Dechloromonas aromatica strain RCB (that expresses clade II NosZ). Specifically, in the presence of MB from Methylocystis sp. strain SB2 (SB2-MB), copper uptake and nosZ expression were more significantly reduced than in the presence of MB from Methylosinus trichosporium OB3b (OB3b-MB). Further, N2O accumulation increased more significantly for both P. stutzeri strain DCP-Ps1 and D. aromatica strain RCB in the presence of SB2-MB versus OB3b-MB. These data illustrate that copper competition between methanotrophs and denitrifying bacteria can be significant and that the extent of such competition is dependent on the form of MB that methanotrophs produce. IMPORTANCE Herein, it was demonstrated that the different forms of methanobactin differentially enhance N2O emissions from Pseudomonas stutzeri strain DCP-Ps1 (harboring clade I nitrous oxide reductase) and Dechloromonas aromatica strain RCB (harboring clade II nitrous oxide reductase). This work contributes to our understanding of how aerobic methanotrophs compete with denitrifiers for the copper uptake and also suggests how MBs prevent copper collection by denitrifiers, thus downregulating expression of nitrous oxide reductase. This study provides critical information for enhanced understanding of microbe-microbe interactions that are important for the development of better predictive models of net greenhouse gas emissions (i.e., methane and nitrous oxide) that are significantly controlled by microbial activity.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Pseudomonas stutzeri , Betaproteobacteria , Cobre/metabolismo , Imidazóis , Methylocystaceae/metabolismo , Óxido Nitroso/metabolismo , Oligopeptídeos , Pseudomonas stutzeri/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...