Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
1.
Methods Mol Biol ; 2793: 185-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526732

RESUMO

Single-stranded RNA bacteriophages (ssRNA phages) are small viruses with a compact genome (~3-4 kb) that infect gram-negative bacteria via retractile pili. These phages have been applied in various fields since their discovery approximately 60 years ago. To understand their biology, it is crucial to analyze the structure of mature virions. Cryo-electron microscopy (cryo-EM) has been employed to determine the structures of two ssRNA phages, MS2 and Qß. This chapter presents a method for purifying these two phages and their receptor, the F-pilus, to allow examination using cryo-EM.


Assuntos
Bacteriófagos , Microscopia Crioeletrônica , Bacteriófagos/genética , RNA Viral/genética , Fímbrias Bacterianas , Levivirus/genética
2.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341278

RESUMO

AIMS: This study aimed to compare the heat inactivation kinetics of viable human norovirus with the surrogate, MS2 bacteriophage as well as assess the decay of the RNA signal. METHODS AND RESULTS: Human intestinal enteroids were used to analyze the heat inactivation kinetics of viable human norovirus compared to the surrogate MS2 bacteriophage, which was cultured using a plaque assay. Norovirus decay rates were 0.22 min-1, 0.68 min-1, and 1.11 min-1 for 50°C, 60°C, and 70°C, respectively, and MS2 bacteriophage decay rates were 0.0065 min-1, 0.045 min-1, and 0.16 min-1 for 50°C, 60°C, and 70°C, respectively. Norovirus had significantly higher decay rates than MS2 bacteriophage at all tested temperatures (P = .002-.007). No decrease of RNA titers as measured by reverse transcription-PCR for both human norovirus and MS2 bacteriophage over time was observed, indicating molecular methods do not accurately depict viable human norovirus after heat inactivation and treatment efficiency is underestimated. CONCLUSIONS: Overall, our data demonstrate that MS2 bacteriophage is a conservative surrogate to measure heat inactivation and potentially overestimates the infectious risk of norovirus. Furthermore, this study corroborates that measuring viral RNA titers, as evaluated by PCR methods, does not correlate with the persistence of viable norovirus under heat inactivation.


Assuntos
Norovirus , Humanos , Norovirus/genética , Temperatura Alta , Levivirus/genética , RNA Viral/genética , Cinética , Inativação de Vírus
3.
Water Res ; 252: 121242, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342066

RESUMO

Water reuse is a growing global reality. In regulating water reuse, viruses have come to the fore as key pathogens due to high shedding rates, low infectious doses, and resilience to traditional wastewater treatments. To demonstrate the high log reductions required by emerging water reuse regulations, cost and practicality necessitate surrogates for viruses for use as challenge organisms in unit process evaluation and monitoring. Bacteriophage surrogates that are mitigated to the same or lesser extent than viruses of concern are routinely used for individual unit process testing. However, the behavior of these surrogates over a multi-barrier treatment train typical of water reuse has not been well-established. Toward this aim, we performed a meta-analysis of log reductions of common bacteriophage surrogates for five treatment processes typical of water reuse treatment trains: advanced oxidation processes, chlorination, membrane filtration, ozonation, and ultraviolet (UV) disinfection. Robust linear regression was applied to identify a range of doses consistent with a given log reduction of bacteriophages and viruses of concern for each treatment process. The results were used to determine relative conservatism of surrogates. We found that no one bacteriophage was a representative or conservative surrogate for viruses of concern across all multi-barrier treatments (encompassing multiple mechanisms of virus mitigation). Rather, a suite of bacteriophage surrogates provides both a representative range of inactivation and information about the effectiveness of individual processes within a treatment train. Based on the abundance of available data and diversity of virus treatability using these five key water reuse treatment processes, bacteriophages MS2, phiX174, and Qbeta were recommended as a core suite of surrogates for virus challenge testing.


Assuntos
Bacteriófagos , Purificação da Água , Água , Bacteriófago phi X 174 , Purificação da Água/métodos , Desinfecção/métodos , Levivirus
4.
Nanoscale ; 16(6): 3121-3132, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38258446

RESUMO

Self-assembly is a vital part of the life cycle of certain icosahedral RNA viruses. Furthermore, the assembly process can be harnessed to make icosahedral virus-like particles (VLPs) from coat protein and RNA in vitro. Although much previous work has explored the effects of RNA-protein interactions on the assembly products, relatively little research has explored the effects of coat-protein concentration. We mix coat protein and RNA from bacteriophage MS2, and we use a combination of gel electrophoresis, dynamic light scattering, and transmission electron microscopy to investigate the assembly products. We show that with increasing coat-protein concentration, the products transition from well-formed MS2 VLPs to "monster" particles consisting of multiple partial capsids to RNA-protein condensates consisting of large networks of RNA and partially assembled capsids. We argue that the transition from well-formed to monster particles arises because the assembly follows a nucleation-and-growth pathway in which the nucleation rate depends sensitively on the coat-protein concentration, such that at high protein concentrations, multiple nuclei can form on each RNA strand. To understand the formation of the condensates, which occurs at even higher coat-protein concentrations, we use Monte Carlo simulations with coarse-grained models of capsomers and RNA. These simulations suggest that the formation of condensates occurs by the adsorption of protein to the RNA followed by the assembly of capsids. Multiple RNA molecules can become trapped when a capsid grows from capsomers attached to two different RNA molecules or when excess protein bridges together growing capsids on different RNA molecules. Our results provide insight into an important biophysical process and could inform design rules for making VLPs for various applications.


Assuntos
Capsídeo , Levivirus , Levivirus/genética , Levivirus/metabolismo , Proteínas do Capsídeo/metabolismo , RNA Viral/genética , Vírion
5.
Food Microbiol ; 119: 104453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225042

RESUMO

This study assessed the efficacy of ozone (bubble diffusion in water; 6.25 ppm) and photodynamic inactivation (PDT) using curcumin (75 µM) as photosensitizer (LED emission 430-470 nm; 33.6 mW/cm2 irradiance; 16.1, 20.2, and 24.2 J/cm2 light dose) against the Norovirus surrogate bacteriophage MS2 in Brazilian berries (black mulberry and pitanga) and surfaces (glass and stainless steel). Contaminated berries and surfaces were immersed in ozonized water or exposed to PDT-curcumin for different time intervals. Transmission electron microscopy was used to assess the effects of the treatments on MS2 viral particles. The MS2 inactivation by ozone and PDT-curcumin varied with the fruit and the surface tested. Ozone reduced the MS2 titer up to 3.6 log PFU/g in black mulberry and 4.1 log PFU/g in pitanga. On surfaces, the MS2 reduction by ozone reached 3.6 and 4.8 log PFU/cm2 on glass and stainless steel, respectively. PDT-curcumin reduced the MS2 3.2 and 4.8 log PFU/g in black mulberry and pitanga and 2.7 and 3.3 log PFU/cm2 on glass and stainless steel, respectively. MS2 particles were disintegrated by exposure of MS2 to ozone and PDT-curcumin on pitanga. Results can contribute to establishing effective practices for controlling NoV in fruits and surfaces, estimated based on MS2 bacteriophage behavior.


Assuntos
Curcumina , Norovirus , Ozônio , Frutas , Levivirus , Aço Inoxidável , Ozônio/farmacologia , Brasil , Curcumina/farmacologia , Água/farmacologia , Inativação de Vírus
6.
Sci Total Environ ; 913: 169759, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171462

RESUMO

Microplastics have emerged as a concerning contaminant in drinking water sources, potentially interacting with pathogenic microorganisms and affecting the disinfection processes. In this study, MS2 was selected as an alternative for the human enteric virus. The influence of microplastics polyvinylchloride (MPs-PVC) on ultraviolet light emitting diode (UV-LED) inactivation of MS2 was investigated under various water chemistry conditions, such as MPs-PVC concentration, pH, salinity, and humic acid concentration. The results revealed that higher concentrations of MPs-PVC led to the reduced inactivation of MS2 by decreased UV transmittance, hindering the disinfection process. Additionally, the inactivation efficiency of MS2 in the presence of MPs-PVC was influenced by pH, and acidic solution (pH at 4, 5, and 6) exhibited higher efficiency compared to alkaline solution (pH at 8 and 9) and neutral solution (pH at 7). The low Na+ concentrations (0-50 mM) had a noticeable effect on MS2 inaction efficiency in the presence of MPs-PVC, while the addition of Ca2+ posed an insignificant effect due to the preferential interaction with MPs-PVC. Furthermore, the inactivation rate of MS2 initially increased and then decreased with increasing the concentration of humic acid, which was significantly different without MPs-PVC. These findings shed light on the complex interactions between MPs-PVC and MS2 in the UV-LED disinfection process under various water-quality parameters, contributing to drinking water safety and treatment.


Assuntos
Água Potável , Microplásticos , Humanos , Plásticos , Levivirus , Raios Ultravioleta , Substâncias Húmicas , Cloreto de Polivinila
7.
J Water Health ; 22(1): 138-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295077

RESUMO

In this study, two types of woodchip-amended biosand filters (Filter A sand: woodchip = 33%: 67% versus Filter B sand: woodchip = 50%: 50%, by volume) were constructed, and their abilities to remove MS2 bacteriophage and nitrate were investigated. The results indicated that Filter A and Filter B could reduce nitrate up to 40 and 36%, respectively, indicating that the nitrate reduction increased with the increase in woodchip proportion. The study underscores a positive correlation between nitrate reduction and proportional increase in woodchip content, implying the potential for fine-tuning nitrate removal by varying sand-woodchip compositions. W-BSFs could remove MS2 bacteriophage to 1.91-log10 (98.8%) by Filter A and 1.88-log10 (98.7%) by Filter B over 39 weeks. The difference in sand-woodchip proportion did not significantly impact the MS2 reduction, demonstrating that a single W-BSF can maintain its virus removal performance fairly well over a long-term period. These results indicated that the nitrate reduction could be adjusted by varying sand-woodchip contents without impacting virus removal performance. Microbial community analysis indicated that the nitrate removal by the W-BSFs could be attributed to the denitrifying bacteria, such as the family Streptomycetaceae, the genera Pseudomonas, and Bacillus, and relative abundances of the phylum Nitrospirae.


Assuntos
Bacillus , Nitratos , Areia , Levivirus , Bactérias , Reatores Biológicos
8.
Chemosphere ; 351: 141101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171396

RESUMO

Waterborne pathogenic viruses present unrelenting challenges to the global health and wastewater treatment industry. Phytoremediation offers promising solutions for wastewater treatment through plant-based technologies. This study investigated antiviral mechanisms in-vivo using bacteriophages MS2 and T4 as surrogates for effective herbs screened in-vitro from three embryophytes (Ocimum basilicum, Mentha sp., Plectranthus amboinicus), two macrophytes (Eichhornia crassipes, Pistia stratiotes) and a perennial grass (Cyperus rotundas). In-silico virtual screening predicted antiviral phytochemicals for further antiviral potency assessment. Results suggested in-vitro antiviral activities of embryophytes and macrophytes were higher (43-62%) than grass (21-26%). O. basilicum (OB, 57-62%) and P. stratiotes (PS, 59-60%) exhibited the highest antiviral activities. In-vivo tests showed notable virus reduction (>60%) in culture solution, attributed to rhizofiltration (66-74%) and phytoinactivation/phytodegradation (63-84%). In-silico analysis identified rutin as a primary antiviral phytochemical for MS2 (-9.7 kcal/mol) and T4 (-10.9 kcal/mol), correlating with dose-response inactivation (∼58-62%). In-vivo tests suggested additional phytocompounds may contribute to viral inactivation, presenting new opportunities for herb-based wastewater treatment solutions. Consequently, this study not only demonstrates the antiviral capabilities of OB and PS but also introduces an innovative approach for addressing viral contaminants in water.


Assuntos
Araceae , Eichhornia , Poluentes Químicos da Água , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Plantas/metabolismo , Eichhornia/metabolismo , Araceae/metabolismo , Poaceae/metabolismo , Levivirus , Antivirais/farmacologia
9.
J Chem Theory Comput ; 19(21): 7924-7933, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37856311

RESUMO

For the first time, a complete all-atom molecular dynamics (MD) model of a virus, bacteriophage MS2, in its entirety, including a protein outer shell, native genomic RNA with necessary divalent ions, and surrounding explicit aqueous solution with ions at physiological concentration, was built. The model is based on an experimentally measured cryo-EM structure, which was substantially augmented by reconstructing missing or low-resolution parts of the measured density (where the atomistic structure cannot be fit unambiguously). The model was tested by a quarter of a microsecond MD run, and various biophysical characteristics are obtained and analyzed. The developed methodology of building the model can be used for reconstructing other large biomolecular structures when experimental data are fragmented and/or of varying resolution, while the model itself can be used for studying the biology of MS2, including the dynamics of its interaction with the host bacteria.


Assuntos
Levivirus , Simulação de Dinâmica Molecular , Levivirus/química , Levivirus/genética , Vírion/química , Íons , Microscopia Crioeletrônica/métodos
10.
Food Res Int ; 172: 113163, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689914

RESUMO

Accumulating evidences strongly support the correlations between the compositions of gut microbiome and therapeutic effects on Type 2 diabetes (T2D). Notably, gut microbes such as Akkermansia muciniphila are found able to regulate microecological balance and alleviate dysmetabolism of mice bearing T2D. In order to search out similarly functional bacteria, bacteriophage MS2 with a good specificity to bacteria carrying fertility (F) factor were used to treat T2D mice. Based on multi-omics analysis of microbiome and global metabolism of mice, we observed that gavage of bacteriophage MS2 and metformin led to a significant increase in the abundance of Corynebacterium glutamicum and A. muciniphila, respectively. Consequently, the gut microbiota were remodeled, leading to variations in metabolites and a substantial increase in short-chain fatty acids (SCFAs). In which, the amount of acetate, propionate, and butyrate presented negative correlations to that of proinflammatory cytokines, which was beneficial to repairing the intestinal barriers and improving their functions. Moreover, main short fatty acid (SCFA) producers exhibited positive interactions, further facilitating the restoration of gut eubiosis. These findings revealed that C. glutamicum and its metabolites may be potential dietary supplements for the treatment of T2D. Moreover, our research contributes to a novel understanding of the underlying mechanism by which functional foods exert their anti-diabetic effects.


Assuntos
Corynebacterium glutamicum , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Ácidos Graxos Voláteis , Butiratos , Bactérias , Levivirus
11.
Environ Sci Technol ; 57(36): 13346-13355, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647137

RESUMO

Despite the widespread adoption of wastewater surveillance, more research is needed to understand the fate and transport of viral genetic markers in wastewater. This information is essential for optimizing monitoring strategies and interpreting wastewater surveillance data. In this study, we examined the solid-liquid partitioning behavior of four viruses in wastewater: SARS-CoV-2, respiratory syncytial virus (RSV), rhinovirus (RV), and F+ coliphage/MS2. We used two approaches: (1) laboratory partitioning experiments using lab-grown viruses and (2) distribution experiments using endogenous viruses in raw wastewater. Partition experiments were conducted at 4 and 22 °C. Wastewater samples were spiked with varying concentrations of each virus, solids and liquids were separated via centrifugation, and viral RNA concentrations were quantified using reverse-transcription-digital droplet PCR (RT-ddPCR). For the distribution experiments, wastewater samples were collected from six wastewater treatment plants and processed without spiking exogenous viruses; viral RNA concentrations were measured in wastewater solids and liquids. In both experiments, RNA concentrations were higher in the solid fraction than the liquid fraction by approximately 3-4 orders of magnitude. Partition coefficients (KF) ranged from 2000-270,000 mL·g-1 across viruses and temperature conditions. Distribution coefficients (Kd) were consistent with results from partitioning experiments. Further research is needed to understand how virus and wastewater characteristics might influence the partitioning of viral genetic markers in wastewater.


Assuntos
COVID-19 , Vírus Sinciciais Respiratórios , Humanos , Águas Residuárias , Rhinovirus , SARS-CoV-2 , Levivirus , Adsorção , Marcadores Genéticos , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA Viral
12.
J Hazard Mater ; 458: 131966, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399721

RESUMO

Pathogenic viruses (e.g., Enteroviruses, Noroviruses, Rotaviruses, and Adenovirus) present in wastewater, even at low concentrations, can cause serious waterborne diseases. Improving water treatment to enhance viral removal is of paramount significance, especially given the COVID-19 pandemic. This study incorporated microwave-enabled catalysis into membrane filtration and evaluated viral removal using a model bacteriophage (MS2) as a surrogate. Microwave irradiation effectively penetrated the PTFE membrane module and enabled surface oxidation reactions on the membrane-coated catalysts (i.e., BiFeO3), which thus elicited strong germicidal effects via local heating and radical formation as reported previously. A log removal of 2.6 was achieved for MS2 within a contact time as low as 20 s using 125-W microwave irradiation with the initial MS2 concentration of 105 PFU∙mL-1. By contrast, almost no inactivation could be achieved without microwave irradiation. COMSOL simulation indicates that the catalyst surface could be heated up to 305 oC with 125-W microwave irradiation for 20 s and also analyzed microwave penetration into catalyst or water film layers. This research provides new insights to the antiviral mechanisms of this microwave-enabled catalytic membrane filtration.


Assuntos
COVID-19 , Vírus , Purificação da Água , Humanos , Inativação de Vírus/efeitos da radiação , Micro-Ondas , Pandemias , Desinfecção , Levivirus , Filtração
13.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516445

RESUMO

AIMS: Viral diseases can be indirectly transmitted by contaminated non-food contact surfaces to final food products by cross-contamination. The interaction of metal surfaces and viruses, MS2 coliphage and hepatitis A virus (HAV), was investigated for strategy development in decreasing this transmission risk. METHODS AND RESULTS: MS2 deposited onto stainless-steel surface was stable but inactivated at 0.95 log10 PFU min-1 on 99.9% copper surfaces. Greater copper-inactivation of MS2 was observed in (a) simple media (phosphate buffered saline, PBS) than protein-rich media (beef extract buffer), and (b) acidic than pH ≥ 6.8 environments. Among food matrices (strawberry juices and beef broth), the greatest MS2 inactivation by copper occurred in filtered strawberry juice at pH 3.5. At a reduction of 0.17 log10 PFU min-1, HAV survived longer than MS2 on copper by FRhK-4 cell infectivity assay. CONCLUSIONS: The inactivation of virus on copper surfaces was greater in acidic viral surrounding environments and in simple PBS medium. In the same 99% PBS medium, MS2 may not be an appropriate surrogate for HAV when assessing viral inactivation on copper surfaces.


Assuntos
Antivirais , Vírus da Hepatite A , Animais , Bovinos , Cobre/farmacologia , Colífagos , Inativação de Vírus , Levivirus/fisiologia
14.
Virology ; 585: 139-144, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343460

RESUMO

The surface hydrophobicity of native or engineered non-enveloped viruses and virus-like particles (VLPs) is a key parameter regulating their fate in living and artificial aqueous systems. Its modulation is mainly depending on the structure and environment of particles. Nevertheless, unexplained variations have been reported between structurally similar viruses and with pH. This indicates that some modulating factors of their hydrophobicity remain to be identified. Herein we investigate the potential involvement of RNA cargo in the MS2 phage used as non-enveloped RNA virus model, by examining the SDS-induced electrophoretic mobility shift (SEMS) determined for native MS2 virions and corresponding RNA-free VLPs at various pH. Interestingly, the SEMS of VLPs was larger and more variable from pH 5 to 9 compared to native virions. These observations are discussed in term of RNA-dependent changes in surface hydrophobicity, suggesting that RNA cargo may be a major modulator/regulator of this viral parameter.


Assuntos
Levivirus , RNA Viral , Levivirus/genética , Levivirus/química , RNA Viral/genética , Interações Hidrofóbicas e Hidrofílicas
15.
Chemosphere ; 335: 138988, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247678

RESUMO

Titanium suboxides (TSO) are identified as a series of compounds showing excellent electro- and photo-chemical properties. TSO composites with carbon-based materials such as graphene have further improved water splitting and pollutant removal performance. However, their expensive and multi-step synthesis limits their wide-scale use. Furthermore, recently discovered laser-induced graphene (LIG) is a single-step and low-cost fabrication of graphene-based composites. Moreover, LIG's highly electrically conductive surface aids in tremendous environmental applications, including bacterial inactivation, anti-biofouling, and pollutant sensing. Here, we demonstrate the single-step in-situ fabrication of TSO-LIG composite by directly scribing the TiO2 mixed poly(ether) sulfone sheets using a CO2 infrared laser. In contrast, earlier composites were derived from either commercial-grade TSO or synthesized TSO with graphene in multi step processes. The characteristic Ti3+ peaks in XPS confirmed the conversion of TiO2 into its sub-stoichiometric form, enhancing the electro-catalytical properties of the LIG-TiOx composite surface. Electrochemical characterization, including impedance spectroscopy, validated the surface's enhanced electrochemical activity and electrode stability. Furthermore, the LIG-TiOx composite surfaces were tested for anti-biofouling action and electrochemical application as electrodes and filters. The composite electrodes exhibit enhanced degradation performance for removing emerging pollutant antibiotics ciprofloxacin and methylene blue due to the in-situ hydroxyl radical generation. Additionally, the LIG-TiOx conductive filters showed the complete 6-log killing of mixed bacterial culture and MS2 phage virus in flow-through filtration mode at 2.5 V, which is ∼2.5-log more killing compared to non-composited LIG filers at 500 Lm-2h-1. Nevertheless, these cost-effective LIG-TiOx composites have excellent electrical properties and can be effectively utilized for energy and environmental applications.


Assuntos
Bacteriófagos , Poluentes Ambientais , Grafite , Levivirus , Titânio , Lasers
16.
J Food Prot ; 86(2): 100032, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916576

RESUMO

Frozen berries have been repeatedly linked to acute gastroenteritis caused by norovirus, the most common cause of foodborne illness in the United States. Many guidelines recommend that frozen berries be microwaved for at least 2 min, but it is unclear if this thermal treatment is effective at inactivating norovirus. The objective of this study was to model the effect of microwave heating at varying power levels on the survival of bacteriophage MS2, a norovirus surrogate, when inoculated onto frozen strawberries. Bacteriophage MS2 was inoculated onto the surface of frozen strawberries with a starting concentration of approximately 10 log PFU/g. Samples (either 3 or 5 whole strawberries) were heated in a 1300-Watt domestic research microwave oven (frequency of 2450 MHz) at power levels of 30, 50, 70, and 100% (full power), for times ranging from 15 to 300 s to determine inactivation. Temperatures at berry surfaces were monitored during heating using fiberoptic thermometry. All experiments were conducted in triplicate. The primary model for thermal inactivation was a log-linear model of logN vs. time. The secondary model was for a D-value decreasing linearly with temperature and an added term that was path-dependent on the thermal history. Parameters in the model were estimated using dynamic temperature history at the surface of the berry, via nonlinear regression using all data simultaneously. The root mean square error was ∼0.5 PFU/g out of a total 6-log reduction. Log reductions of 1.1 ± 0.4, 1.5 ± 0.5, 3.1 ± 0.1, and 3.8 ± 0.2 log PFU/g were observed for 30, 50, 70, and 100% microwave power levels when three berries were heated for 60 s. D-values were 21.4 ± 1.95 s and 10.6 ± 1.1 s at 10 and 60°C, respectively. This work demonstrates an approach to estimate inactivation parameters for viruses from dynamic temperature data during microwave heating. These findings will be useful in predicting the safety effect of microwave heating of berries in the home or food service.


Assuntos
Fragaria , Norovirus , Levivirus , Microbiologia de Alimentos , Calefação , Micro-Ondas , Inativação de Vírus
17.
Environ Sci Technol ; 57(10): 4231-4240, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853925

RESUMO

Grignard Pure (GP) is a unique and proprietary blend of triethylene glycol (TEG) and inert ingredients designed for continuous antimicrobial treatment of air. TEG has been designated as a ″Safer Chemical" by the US EPA. GP has already received approval from the US EPA under its Section 18 Public Health Emergency Exemption program for use in seven states. This study characterizes the efficacy of GP for inactivating MS2 bacteriophage─a nonenveloped virus widely used as a surrogate for SARS-CoV-2. Experiments measured the decrease in airborne viable MS2 concentration in the presence of different concentrations of GP from 60 to 90 min, accounting for both natural die-off and settling of MS2. Experiments were conducted both by introducing GP aerosol into air containing MS2 and by introducing airborne MS2 into air containing GP aerosol. GP is consistently able to rapidly reduce viable MS2 bacteriophage concentration by 2-3 logs at GP concentrations of 0.04-0.5 mg/m3 (corresponding to TEG concentrations of 0.025 to 0.287 mg/m3). Related GP efficacy experiments by the US EPA, as well as GP (TEG) safety and toxicology, are also discussed.


Assuntos
Anti-Infecciosos , COVID-19 , Humanos , SARS-CoV-2 , Levivirus , Aerossóis e Gotículas Respiratórios
18.
Water Res ; 230: 119543, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628868

RESUMO

The applicability of chemical actinometry to characterize the fluence in UV reactors with reflections, non-parallel light, and variable water transmittance is limited due to the unknown effective path length or hydraulic shortcuts within the reactor. In this study, the effects of reflection and transmittance on actinometry were examined and a new, optimized and easy method for determining fluence was developed. KI/KIO3 and uridine actinometry experiments were carried out under controlled conditions using a collimated beam apparatus and a completely mixed batch reactor with or without diffuse reflection and compared to biodosimetry results. Whereas optically opaque actinometers such as KI/KIO3 are not directly capable of predicting the fluence of reflecting reactors, the results of uridine actinometry are influenced by reflection and transmission. To precisely predict the fluence rate in UV reactors with uridine, knowledge about the effective optical path length of the light is needed. Here, an existing method to mathematically calculate the optical path length was adopted and optimized for uridine actinometry. Results for average fluence were validated by biodosimetry using MS2 phages under different degrees of reflection and transmission. It could be shown that by modifying the bottom of the reactor with diffusely reflecting polytetrafluoroethylene foil, the fluence rate was increased by a factor of approximately 2.6 and the path length by factor of 2.4. When only half of the bottom was covered with reflective foil, fluence rate increased by a factor of 1.8 and path length by 1.8. Although this new approach cannot replace biodosimetry, to predict the fluence distribution received by microorganisms, it can provide means to characterize more complex reactor designs, validate results of advanced reactor modeling, and quantify fluence for non-parallel irradiation and reflective light, especially for the application of high fluence (e.g., advanced oxidation processes), where biodosimetry may be too sensitive. Further, comparing the fluence obtained with actinometry to the results of biodosimetry might qualitatively indicate hydraulic short cuts or unideal fluence distributions for flow-through reactors.


Assuntos
Raios Ultravioleta , Purificação da Água , Desinfecção/métodos , Purificação da Água/métodos , Levivirus
19.
Infect Control Hosp Epidemiol ; 44(4): 663-665, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098916

RESUMO

In an unventilated room, 2 commercial portable air cleaners with high efficiency particulate air (HEPA) filters and a do-it-yourself box fan air cleaner with minimum efficiency reporting value (MERV)-13 filters significantly reduced aerosolized bacteriophage MS2. Increasing airflow and addition of ultraviolet-C light plus titanium dioxide-generated photocatalytic oxidation enhanced viral clearance.


Assuntos
Filtros de Ar , Filtração , Humanos , Levivirus
20.
Infect Control Hosp Epidemiol ; 44(4): 670-673, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35997135

RESUMO

In a randomized trial, patients wearing slippers whenever out of bed transferred bacteriophage MS2 from hospital room floors to patients and surfaces significantly less often than controls not provided with slippers. Wearing slippers could provide a simple means to reduce the risk for acquisition of healthcare-associated pathogens from contaminated floors.Registration: ClinicalTrials.gov; NCT04935892.


Assuntos
Hospitais , Levivirus , Humanos , Instalações de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...